Gnosis
Research
Center

Enlarging Effective DRAM
Capacity through Hermes

Luke Logan
Llogan@hawk.iit.edu

Gnosis Research Center @ Illinois Tech

Logan, Luke, Xian-He Sun, and Anthony Kougkas. "MegaMmap: Blurring the Boundary Between Memory and Storage
for Data-Intensive Workloads." The International Conference for High Performance Computing, Networking, Storage,
and Analysis, 2024 (SC'24). 1


mailto:Llogan@hawk.iit.edu

Memory-Centric, Data-Intensive Workloads

* Workloads are becoming increasingly data-intensive



The data volume is increasing beyond
what main memory can hold!



Two Main Solutions

</

Just buy more Out-of-core
DRAM... Programming



ALEE Just Buy More DRAM

Pros: Cons:

fa] HelloWorldCore (1 tests)

4 @ HelloWorldTests (1)
4 ) HelloWorldTests (1)

4 ) UnitTest1 (1)
@ TestMethod1

Don't need to DRAM is very DRAM has a very high
change expensive energy cost
applications




Out-Of-Core Programming

* Use storage to offload memory pressure

Pros:

$

)

Don't need to
spend money
on hardware

9

) (

.f.

@ ®
—

More energy
efficient
(less DRAM)

Development
Complexity

g
LTRY

Suboptimal, one-off,
manual solutions



Typical Out-Of-Core Programming Approach

Have separate, synchronous phases for compute and I/0
Incur memory wall in the compute phases

Incur I/0O bottleneck in the I/0 phases

When combined, they make for a very slow program!

(e.g., many scientific simulations) (e.g., Apache Spark)

Compute 170 Map Shuffle Reduce

Memory Wall  1/0 Bottleneck Memory Wall |/0O Bottleneck  Memory Wall



We want an effectively infinite memory abstraction to interact
with data, but without having to purchase more DRAM!



Blurring The Line Between Memory and Storage

Block

Bandwidth: 120MBps
Latency: 20ms

Device | .
Bandwidth: 1.2GBps

—_———————— o

| Latency: 20us
Zoned 7 '
Namespace | —
Bandwidth: 6GBps
/| Latency: 100ns
Byte
Addressable
e
| Node 1 | | Node N
I 1
I I
Q| I
2. | Rank 0 Rank 1 Lo Rank R Rank R+1
| |
I \/
I AN
o | /\\
o | |
§ ! Page 0 Page 1 Lo PageP | Page P+1
|
i T Z | i T
T | |DRAM | | |DRAM
2 [ o fox
o 1 [HOD | 1 [HoD |
o

* Storage has emerged with similar
performance to DRAM

* Compute Express Link (CXL) is emerging that
allows storage to be accessed as memory

* We can combine DRAM and storage into a
tiered distributed shared memory (DSM)




But how can we efficiently hide this high-performance storage
under a memory abstraction?



Limitations of Existing DSMs

* Agnostic to application behavior
o Significant performance overhead to maintain coherence
o Flurries of small messages to handle caching and replication
o E.g., locking a page to ensure coherence

e DSMs are Cloud-focused

o Provide replication to handle frequent hardware failures, incurring overhead

o Must handle multi-tenancy, requiring acceptable performance for all but best for
none

o No optimizations for coordinated (e.g., MPI) workloads common in HPC
* No tiering

o Most DSMs focus only on DRAM, but ignore storage tiers

o Limited capacity



Tiered DSM Challenges

* Applications must be able to propagate access pattern intentions
o Can reduce the need for fine-grained synchronizations
o Can improve tiered data organization decisions

* Memory coherence policies must be optimized to address the
characteristics of HPC
o Coordinated workloads do not always need aggressive cache evictions
o For example, read-only analysis workflows never need to invalidate
caches

* New data placement + prefetching policies must be developed to
address memory behavior, rather than storage



Our Approach: The MegaMmap Adapter

A durable, persistent, and intuitive DSM system that allows massive
datasets to be presented as memory

o Reduces out-of-core complexity

* A user-driven transactional memory access API, which leads to
iImproved decision-making in cache coherence and data organization
policies by propagating memory access intent

* Intent-aware memory coherence optimizations, which improves the
latency and bandwidth of memory accesses based on workload
characteristics.

* Tiered data organization policies, which minimize I/0 stall times by
leveraging heterogeneous storage hardware and advance knowledge of

access pattern intent.



An Infinite Nonvolatile
Memory Abstraction



Presenting Datasets As Memory

void KMeansInertia(std: :vector<Point3D>
int rank = mpi::get_rank();
int nprocs = mpi::get_comm_size();

tks)

{

mm: :Vector<Point3D> pts ("/points.parquet");

pts.BoundMemory (MEGABYTES (1) ) ;

pts.Pgas (rank, nprocs);

float distance = 0;

tx = pts.SegTxBegin (
pts.local_off (), pts.local_size(),
MM READ ONLY) ;

for (Point3D p : tx) {
distance += pow (NearestCentroid (p,

}

pts.TxEnd () ;

return distance;

ks),

2) i

Mass datasets in memory
Transactions mark the access
pattern

Transactions are not a
significant burden to users
since they are similar to
iterators



Actively Ensuring Data
Persistence and Consistency



Actively Ensuring Persistence

A Data Scientific Deep
PpS Analytics Simulation Learning
Unified Mem APl |LogMem| .
(mm::Vector<T>) Access
MegaMmap Expected |Accesses
i Private Cache (pcache
HITEr; ey :(p ;) Prefetcher
. Evict | . Fault |
l l
(MemTasks) Write[ Read[ |Score
I I I
Hermes
. MemTask Scheduler
Runtime ‘
|
Distributed Worker Pool Shared Cache (scache)
Worker 1 Worker N Metadata Manager
] Data Organizer
% % __HDF5 | Data Stager | Parquet
J ) _POSIX_| 1/0Clients | memcpy

DMSH —— =]

We use Hermes to persist data from
applications

Data must be persisted before the job ends
The shared cache (Hermes) handles this
situation

The shared cache also handles consistency
— all processes have the same view



Efficient Memory Coherence



An Infinite Non-Volatile Memory Abstraction

+ Node1 :: Node2 : : Node1l :: Node2 : : Nodel :: Node2 :
Read 0 Read 1 Read 0 Read 0 Read 0 Write 0
Write 0 Write 1 | . o b :

I ’1‘ 1 l 1 | ¢ [ | I I 1 ! 1
Pcache Pcache Pcache Pcache Pcache Pcache
Page 0 Page 1 Page 0 Page 0 Page 0 Page 0

RO |w[] Workers |R1 IW‘I Workers  |RO RO |wo| Workers

1) R/W Local 2) R Global 3) R/W/A Global

* R/W local avoids cache coherence overheads completely, since all
data is accessed locally

* Rglobal avoids cache coherence as well since no one modifies data

* R/WI/A global minimizes the overhead using properties of queueing —
modifications are sent asynchronously and sequenced



Masking I/0O Stalls with Informed
Tiered Data Movement Policies



Masking I/0 Stalls

Algorithm 1 Private Cache Prefetcher

I: function PREFETCHER(V e, Tz, MinScore)

20:
21:
22:
23:
24:
25:
26:
27
28:
29:
30:
3l
32:

bl A A

Evict(VeeTx)
Prefetch(Vee,To,MinScore)
Te.Head=Tz.Tail

end function
: function EViCcT(Vee, T'x)

N =Vec.Max/Vec.PageSize

for Page in Tx[T'z.Head: Tx.Tail] do
Page.SetScore(0.0,Vec. Nodeld)

end for

for Page in Tx[Tx.Tail : Tx.Tail +N] do
Page.SetScore(1.0,Vec. Nodeld)

end for

Evict] f ZeroScore(Tx[Tx.Head: Tx.Tail))

. end function
: function PREFETCH(V ec, Tz, MinSecore)

BaseTime=()
N=(Vec.Mar—Vec.Cur)/Vec.PageSize
for Page in Tz[Tx.Tail :Tx.Tail+N] do
T = Page.GetTier()
BaseTime+= Page.GetSize()/T.BW
end for
EstTime = BaseT'ime
Score=1.0
while Score > MinScore do
Page=Tx[Tz.Tail+ N]
T'= Page.GetTier()
EstTime+= Page.Get Size() [/ T.BW
Score= BaseTime/EstTime
Page.SetScore(Score,Vec.Nodeld)
N=N+1
end while

33: end function




Evaluation



Evaluation Objectives

* Memory coherence of DSM are not a scalability bottleneck
compared to leading HPC+Cloud communication solutions, such
as MPIl and Spark.

* Tiering memory can increase the resolution of scientific datasets
by eliminating memory constraints, allowing more detail in the
final simulation data.

* Intelligently tiering memory can bring performance benefits to
out-of-core algorithms.

* DRAM consumption can be lowered by offloading memory to
tiered storage.



500

400

RUNTIME (S)
=
[=]

200

100

350

300

250

RUNTIME (S}

KMeans

[0 Spark. = Mega

=—fr=—Spark (mem) —@—Meaga (mam)
a A _ﬁ ™y

ir r

48 96 192 384
4 PROCESSES
DBScan
—udbscan I Mega

—ir—udbscan (mem] —a— Mega (mem)

# PROCESSES

r

d8d

720

100

a0

B0

X 8 8233883

iy
=

[=]

MEMORY USE (%)

MEMORY USE (34)

300

250

B

RUNTIME (S)
&
=

100

50

120

100

RUNTIME (S}
[=1] (=]
(=) (=)

Y
[=]

20

[ Spark

= Spark (mam) ——Maga (mam)

Random Forest

[ Mega

EIMPY

== MP| ([mem)

48

o5 152
# PROCESSES

26

384

Gray-Scott
[ Mega

182
# PROCESSES

—@— Mega (mem)

384

720

720

n
[=3
MEMORY USE (%)

5 & & 8 &8 32 8 & 3

[y
[=]

=

MEMORY SE (%)

DSMs can
perform well

MegaMmap scales just as well as MPI
MegaMmap scales and performs better
than spark



We can do more science!

Dataset Size

_ 2K s MPI(mem) —— X 100
o —»— Mega (mem \ 80 =
: 1.5K LY w
5 1k 60 2
—
E .-.__‘-" 40 é
<L \
= .5K — \ a0 W
a8 \ =
0 0

2048 2368 2688 3008 3456
CHARACTERISTIC DIMENSION (L)

MegaMmap allows for twice the data to be
processed without crashing



We can use less memory!

KMeans Random Forest
800 1 ' 1250
@ 600 ' ’ @ 1000 * MegaMmap algorithms can use half the
bt o . « .
5 400 ’ AE 730 memory with minimal performance
= 5 500 .
& | < impact
200 1 550 pacts
0 E 0 -
32 28 24 20 16 12 B 32 28 24 20 1 12 &
DBSCAN Gray-Scott
1250 4
_ 1000 _
g E
£ 500 €
ot ot
250 4
0_.

32 28 24 20 16 12 &8 32 28 24 20 1l 12 8
Per-Node Memory (GE) Per-Node Memory (GB)



Conclusion



Conclusion

* We demonstrate that the complexity of developing out-of-core
algorithms can be reduced by enabling massive persistent
datasets to be presented as memory

* We demonstrate how leveraging a transactional memory APl can
be used to reap substantial benefits in tiering performance.

* Evaluations showcase that developing algorithms with
MegaMmap reduces peak memory utilization by as much as 2x



	Slide 1: Enlarging Effective DRAM Capacity through Hermes
	Slide 2: Memory-Centric, Data-Intensive Workloads
	Slide 3
	Slide 4: Two Main Solutions
	Slide 5: Just Buy More DRAM
	Slide 6: Out-Of-Core Programming
	Slide 7: Typical Out-Of-Core Programming Approach
	Slide 8
	Slide 9: Blurring The Line Between Memory and Storage
	Slide 10
	Slide 11: Limitations of Existing DSMs
	Slide 12: Tiered DSM Challenges
	Slide 13: Our Approach: The MegaMmap Adapter
	Slide 14: An Infinite Nonvolatile Memory Abstraction
	Slide 15: Presenting Datasets As Memory
	Slide 16: Actively Ensuring Data Persistence and Consistency
	Slide 17: Actively Ensuring Persistence
	Slide 18: Efficient Memory Coherence
	Slide 19: An Infinite Non-Volatile Memory Abstraction
	Slide 20: Masking I/O Stalls with Informed Tiered Data Movement Policies
	Slide 21: Masking I/O Stalls
	Slide 22: Evaluation
	Slide 23: Evaluation Objectives
	Slide 24: DSMs can perform well
	Slide 25: We can do more science!
	Slide 26: We can use less memory!
	Slide 27: Conclusion
	Slide 28: Conclusion

