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Memory-Centric, Data-Intensive Workloads

• Workloads are becoming increasingly data-intensive



The data volume is increasing beyond 
what main memory can hold!



Two Main Solutions

Just buy more 
DRAM...

Out-of-core 
Programming



Just Buy More DRAM

Don't need to 
change 

applications

Pros: Cons:

DRAM is very 
expensive

DRAM has a very high 
energy cost

Price Capacity $/GB

DRAM $106 32GB $3.30

PMEM $275 128GB $2.10

NVMe $169 2TB $0.08

SATA SSD $175 4TB $0.04

HDD $369 18TB $0.02



Out-Of-Core Programming

• Use storage to offload memory pressure

Don't need to 
spend money 
on hardware

Development 
Complexity

Pros: Cons:

Suboptimal, one-off, 
manual solutions

More energy 
efficient 

(less DRAM)



Typical Out-Of-Core Programming Approach
• Have separate, synchronous phases for compute and I/O
• Incur memory wall in the compute phases
• Incur I/O bottleneck in the I/O phases
• When combined, they make for a very slow program!

Compute I/O Map Shuffle Reduce

Memory Wall I/O Bottleneck Memory Wall I/O Bottleneck Memory Wall

(e.g., many scientific simulations) (e.g., Apache Spark)



We want an effectively infinite memory abstraction to interact 
with data, but without having to purchase more DRAM!



Blurring The Line Between Memory and Storage

9

• Storage has emerged with similar 
performance to DRAM

• Compute Express Link (CXL) is emerging that 
allows storage to be accessed as memory

• We can combine DRAM and storage into a 
tiered distributed shared memory (DSM)



But how can we efficiently hide this high-performance storage 
under a memory abstraction?



Limitations of Existing DSMs

• Agnostic to application behavior
o Significant performance overhead to maintain coherence
o Flurries of small messages to handle caching and replication
o E.g., locking a page to ensure coherence

• DSMs are Cloud-focused
o Provide replication to handle frequent hardware failures, incurring overhead
o Must handle multi-tenancy, requiring acceptable performance for all but best for 

none
o No optimizations for coordinated (e.g., MPI) workloads common in HPC

• No tiering
o Most DSMs focus only on DRAM, but ignore storage tiers
o Limited capacity



Tiered DSM Challenges

• Applications must be able to propagate access pattern intentions
oCan reduce the need for fine-grained synchronizations
oCan improve tiered data organization decisions

• Memory coherence policies must be optimized to address the 
characteristics of HPC
oCoordinated workloads do not always need aggressive cache evictions
oFor example, read-only analysis workflows never need to invalidate 

caches

• New data placement + prefetching policies must be developed to 
address memory behavior, rather than storage



Our Approach: The MegaMmap Adapter

• A durable, persistent, and intuitive DSM system that allows massive 
datasets to be presented as memory
o Reduces out-of-core complexity

• A user-driven transactional memory access API, which leads to 
improved decision-making in cache coherence and data organization 
policies by propagating memory access intent

• Intent-aware memory coherence optimizations, which improves the 
latency and bandwidth of memory accesses based on workload 
characteristics.

• Tiered data organization policies, which minimize I/O stall times by 
leveraging heterogeneous storage hardware and advance knowledge of 
access pattern intent.



An Infinite Nonvolatile 
Memory Abstraction



Presenting Datasets As Memory

• Mass datasets in memory
• Transactions mark the access 

pattern
• Transactions are not a 

significant burden to users 
since they are similar to 
iterators



Actively Ensuring Data 
Persistence and Consistency



Actively Ensuring Persistence

• We use Hermes to persist data from 
applications

• Data must be persisted before the job ends
• The shared cache (Hermes) handles this 

situation
• The shared cache also handles consistency 

– all processes have the same view



Efficient Memory Coherence



An Infinite Non-Volatile Memory Abstraction

• R/W local avoids cache coherence overheads completely, since all 
data is accessed locally

• R global avoids cache coherence as well since no one modifies data
• R/W/A global minimizes the overhead using properties of queueing – 

modifications are sent asynchronously and sequenced



Masking I/O Stalls with Informed 
Tiered Data Movement Policies



Masking I/O Stalls



Evaluation



Evaluation Objectives

• Memory coherence of DSM are not a scalability bottleneck 
compared to leading HPC+Cloud communication solutions, such 
as MPI and Spark.

• Tiering memory can increase the resolution of scientific datasets 
by eliminating memory constraints, allowing more detail in the 
final simulation data.

• Intelligently tiering memory can bring performance benefits to 
out-of-core algorithms.

• DRAM consumption can be lowered by offloading memory to 
tiered storage.



• MegaMmap scales just as well as MPI
• MegaMmap scales and performs better 

than spark

DSMs can 
perform well



We can do more science!

• MegaMmap allows for twice the data to be 
processed without crashing



We can use less memory!

• MegaMmap algorithms can use half the 
memory with minimal performance 
impacts



Conclusion



Conclusion

• We demonstrate that the complexity of developing out-of-core 
algorithms can be reduced by enabling massive persistent 
datasets to be presented as memory

• We demonstrate how leveraging a transactional memory API can 
be used to reap substantial benefits in tiering performance.

• Evaluations showcase that developing algorithms with 
MegaMmap reduces peak memory utilization by as much as 2x
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