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Memory-Centric, Data-Intensive Workloads

* Workloads are becoming increasingly data-intensive



The data volume is increasing beyond
what main memory can hold!



Two Main Solutions

</

Just buy more Out-of-core
DRAM... Programming



ALEE Just Buy More DRAM

Pros: Cons:

fa] HelloWorldCore (1 tests)

4 @ HelloWorldTests (1)
4 ) HelloWorldTests (1)

4 ) UnitTest1 (1)
@ TestMethod1

Don't need to DRAM is very DRAM has a very high
change expensive energy cost
applications




Out-Of-Core Programming

* Use storage to offload memory pressure

Pros:
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Typical Out-Of-Core Programming Approach

Have separate, synchronous phases for compute and I/0
Incur memory wall in the compute phases

Incur I/0O bottleneck in the I/0 phases

When combined, they make for a very slow program!

(e.g., many scientific simulations) (e.g., Apache Spark)

Compute 170 Map Shuffle Reduce

Memory Wall  1/0 Bottleneck Memory Wall |/0O Bottleneck  Memory Wall



We want an effectively infinite memory abstraction to interact
with data, but without having to purchase more DRAM!



Blurring The Line Between Memory and Storage
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* Storage has emerged with similar
performance to DRAM

* Compute Express Link (CXL) is emerging that
allows storage to be accessed as memory

* We can combine DRAM and storage into a
tiered distributed shared memory (DSM)




But how can we efficiently hide this high-performance storage
under a memory abstraction?



Limitations of Existing DSMs

* Agnostic to application behavior
o Significant performance overhead to maintain coherence
o Flurries of small messages to handle caching and replication
o E.g., locking a page to ensure coherence

e DSMs are Cloud-focused

o Provide replication to handle frequent hardware failures, incurring overhead

o Must handle multi-tenancy, requiring acceptable performance for all but best for
none

o No optimizations for coordinated (e.g., MPI) workloads common in HPC
* No tiering

o Most DSMs focus only on DRAM, but ignore storage tiers

o Limited capacity



Tiered DSM Challenges

* Applications must be able to propagate access pattern intentions
o Can reduce the need for fine-grained synchronizations
o Can improve tiered data organization decisions

* Memory coherence policies must be optimized to address the
characteristics of HPC
o Coordinated workloads do not always need aggressive cache evictions
o For example, read-only analysis workflows never need to invalidate
caches

* New data placement + prefetching policies must be developed to
address memory behavior, rather than storage



Our Approach: The MegaMmap Adapter

A durable, persistent, and intuitive DSM system that allows massive
datasets to be presented as memory

o Reduces out-of-core complexity

* A user-driven transactional memory access API, which leads to
iImproved decision-making in cache coherence and data organization
policies by propagating memory access intent

* Intent-aware memory coherence optimizations, which improves the
latency and bandwidth of memory accesses based on workload
characteristics.

* Tiered data organization policies, which minimize I/0 stall times by
leveraging heterogeneous storage hardware and advance knowledge of

access pattern intent.



An Infinite Nonvolatile
Memory Abstraction



Presenting Datasets As Memory

void KMeansInertia(std: :vector<Point3D>
int rank = mpi::get_rank();
int nprocs = mpi::get_comm_size();

tks)

{

mm: :Vector<Point3D> pts ("/points.parquet");

pts.BoundMemory (MEGABYTES (1) ) ;

pts.Pgas (rank, nprocs);

float distance = 0;

tx = pts.SegTxBegin (
pts.local_off (), pts.local_size(),
MM READ ONLY) ;

for (Point3D p : tx) {
distance += pow (NearestCentroid (p,

}

pts.TxEnd () ;

return distance;

ks),

2) i

Mass datasets in memory
Transactions mark the access
pattern

Transactions are not a
significant burden to users
since they are similar to
iterators



Actively Ensuring Data
Persistence and Consistency



Actively Ensuring Persistence
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We use Hermes to persist data from
applications

Data must be persisted before the job ends
The shared cache (Hermes) handles this
situation

The shared cache also handles consistency
— all processes have the same view



Efficient Memory Coherence



An Infinite Non-Volatile Memory Abstraction

+ Node1 :: Node2 : : Node1l :: Node2 : : Nodel :: Node2 :
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1) R/W Local 2) R Global 3) R/W/A Global

* R/W local avoids cache coherence overheads completely, since all
data is accessed locally

* Rglobal avoids cache coherence as well since no one modifies data

* R/WI/A global minimizes the overhead using properties of queueing —
modifications are sent asynchronously and sequenced



Masking I/0O Stalls with Informed
Tiered Data Movement Policies



Masking I/0 Stalls

Algorithm 1 Private Cache Prefetcher

I: function PREFETCHER(V e, Tz, MinScore)

20:
21:
22:
23:
24:
25:
26:
27
28:
29:
30:
3l
32:

bl A A

Evict(VeeTx)
Prefetch(Vee,To,MinScore)
Te.Head=Tz.Tail

end function
: function EViCcT(Vee, T'x)

N =Vec.Max/Vec.PageSize

for Page in Tx[T'z.Head: Tx.Tail] do
Page.SetScore(0.0,Vec. Nodeld)

end for

for Page in Tx[Tx.Tail : Tx.Tail +N] do
Page.SetScore(1.0,Vec. Nodeld)

end for

Evict] f ZeroScore(Tx[Tx.Head: Tx.Tail))

. end function
: function PREFETCH(V ec, Tz, MinSecore)

BaseTime=()
N=(Vec.Mar—Vec.Cur)/Vec.PageSize
for Page in Tz[Tx.Tail :Tx.Tail+N] do
T = Page.GetTier()
BaseTime+= Page.GetSize()/T.BW
end for
EstTime = BaseT'ime
Score=1.0
while Score > MinScore do
Page=Tx[Tz.Tail+ N]
T'= Page.GetTier()
EstTime+= Page.Get Size() [/ T.BW
Score= BaseTime/EstTime
Page.SetScore(Score,Vec.Nodeld)
N=N+1
end while

33: end function




Evaluation



Evaluation Objectives

* Memory coherence of DSM are not a scalability bottleneck
compared to leading HPC+Cloud communication solutions, such
as MPIl and Spark.

* Tiering memory can increase the resolution of scientific datasets
by eliminating memory constraints, allowing more detail in the
final simulation data.

* Intelligently tiering memory can bring performance benefits to
out-of-core algorithms.

* DRAM consumption can be lowered by offloading memory to
tiered storage.
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DSMs can
perform well

MegaMmap scales just as well as MPI
MegaMmap scales and performs better
than spark



We can do more science!
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MegaMmap allows for twice the data to be
processed without crashing



We can use less memory!
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Conclusion



Conclusion

* We demonstrate that the complexity of developing out-of-core
algorithms can be reduced by enabling massive persistent
datasets to be presented as memory

* We demonstrate how leveraging a transactional memory APl can
be used to reap substantial benefits in tiering performance.

* Evaluations showcase that developing algorithms with
MegaMmap reduces peak memory utilization by as much as 2x
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