
Uncharted Territory –
Exploring New Frontiers for HDF5 
Quincey Koziol, Principal Engineer |  HDF5 User Group Meeting - 2024



• Introduction

• Accelerator-Native I/O Pipeline

• Sharded Storage

• Streaming Access

Agenda



Uncharted Territory
Exploring New Frontiers for HDF5

•A sampling of near-future HDF5 projects
•Accelerator-native I/O Pipeline

•Sharded Storage

•Streamed Access



Uncharted Territory
Exploring New Frontiers for HDF5

•A sampling of near-future HDF5 projects
•Accelerator-native I/O Pipeline

•Sharded Storage

•Streamed Access

•Also on the horizon
•Queries, with Indexing

•Security, Resiliency, and Access-control

•Data Warehousing

•DPU Coprocessing

•Cloud-native Storage

•Concurrent Multiprocess Access



Accelerator-native I/O Pipeline



— Jensen Huang, NVIDIA CEO, GTC 2024

“We need another way of doing computing — so that we can 
continue to scale, so that we can continue to drive down the 

cost of computing, so that we can continue to consume 
more and more computing while being sustainable.  

Accelerated computing is a dramatic speedup over general-
purpose computing, in every single industry.”
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CPU Implementation

•I/O is performed with POSIX calls

•Dataset chunks are cached in CPU memory

•I/O filters run on CPU and access chunks in CPU memory

•Uncompressed data is transferred to GPU memory
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Accelerator Implementation

•I/O is performed with GPUDirect Storage (GDS) calls

•Dataset chunks are cached in GPU memory

•I/O filters run as GPU kernels and access chunks in GPU memory

• Including using the hardware accelerated decompression engine in upcoming NVIDIA GPUs

•Uncompressed data is transferred to GPU memory
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How will the HDF5 library need to change?

•Update Virtual File Driver interface

•Add flag(s) to indicate where a VFD plugin’s source / destination buffers can be

•Update HDF5 chunk cache

•Refactor to allow data to be cached in CPU, GPU, and possibly other memory

•Update HDF5 I/O filter interface

•Add flag(s) to indicate where filter’s source / destination buffers can be
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How will applications need to change?

They don’t!

Why?

Library can auto-detect if buffer pointer for read / write is in GPU or CPU memory, then 
compose optimal I/O pipeline out of components that understand CPU / GPU memory



On The Horizon

Add support for “Data Processing Units” (DPUs)

“The CPU is for general-purpose computing, the GPU is for accelerated computing, 
and the DPU, which moves data around the data center, does data processing.”

— NVIDIA Documentation
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On The Horizon

Add support for “Data Processing Units” (DPUs)

Offload coordination and data movement operations to DPU

•Have the GPU contact the DPU for I/O requests

•DPU can send data directly back to GPU

•Keep metadata cache on DPU

Repurpose CPU to only general-purpose operations

•Build indices, track performance, do “weird” stuff

“The CPU is for general-purpose computing, the GPU is for accelerated computing, 
and the DPU, which moves data around the data center, does data processing.”

— NVIDIA Documentation



Sharding HDF5 Storage
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HDF5 Native File Format Today

HDF5 was built and optimized for high-speed POSIX I/O

•Self-describing, sequential data layout, in single file*

•Many custom data structures

• B-trees, heaps, etc.

•Blocks of dataset elements: contiguous & chunked layout

When running parallel applications with MPI, we compensated quickly

•Require applications to perform collective metadata modification

When cloud computing with object storage arose, we avoided it for 10 years
•Then started finding ways to compensate

•Highly Scalable Data Service (HSDS)

• Cloud-hosted

• JSON + dataset blocks

• Requires server / service

•“Cloud-optimized” HDF5 access with read-only S3 VFD

• Uses native file format, stored as single object
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Rebasing for the Win
Credit to Jay Lofstead for the title ☺

What would a modern HDF5 file format look like?

•Targeting: POSIX file systems, object stores, cloud storage

•What to keep

•Data model concepts: groups, datasets, attributes, links, etc.

•Self-describing format

•Scalable I/O on array data

•What to leave behind

•Metadata combined in same file as raw data

•Custom file data structures

•What to add

•Sharded dataset storage

•Database for metadata



Things to Keep

Data Model Concepts

•Critical to semantic model of HDF5

•Datasets, Groups, Attributes, Links, Dataspaces, Datatypes

Self-Describing Format

•But make this more robust, so future format variants can always be auto-detected

Scalable Array I/O

•The sine qua non of HDF5



Things to Leave Behind

Metadata combined in same file as raw data

•Wow, was this a bad idea!

•At least in the ”small fragments of metadata scattered everywhere” form

•Page-aligned blocks of metadata probably would have been OK

Custom file data structures

•At least most of them

•The world did not need 2 more B-tree implementations, 3 kinds of heaps, etc.



Things to Add

Sharded dataset storage

•Learn from and exceed Zarr’s capabilities

•Sharded storage is much more friendly to object stores & cloud storage

Use a database for storing metadata

•Tuned and maintained B-trees, paged I/O, caching, etc.

•Opens up ability to query metadata in standard & scalable ways

•Local & remote possible

• i.e. SQLite as well as DynamoDB



What will this look like?
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Treat a directory as an HDF5 container

•Easy to detect when opening:

• If the name you give is a file, open as a native format file

• If the name you give is a directory, open as a bundle

•Creation property for new bundle containers
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What will this look like?

Treat a directory as an HDF5 container

•Easy to detect when opening:

• If the name you give is a file, open as a native format file

• If the name you give is a directory, open as a bundle

•Creation property for new bundle containers

Bootstrap bundle configuration from JSON “superblock” file

•Easy to read and understand

•Self-describing

•Specifies the name & type of the metadata database

• File name or connection info to reach cloud database

“Bundles”



What will this look like?

Metadata Database File / Connection

•Need schema for tables and record information

• Maybe:

• A table per group, storing links for the group

• A table per object, storing attributes

• Still unknown:

• How to store object’s metadata?

• e.g. dataset dimensions, storage layout, etc?

• Really want both tables & stores (for sets of key-value pairs) in DB

“Bundles”



What will this look like?

Metadata Database File / Connection

•Need schema for tables and record information

• Maybe:

• A table per group, storing links for the group

• A table per object, storing attributes

• Still unknown:

• How to store object’s metadata?

• e.g. dataset dimensions, storage layout, etc?

• Really want both tables & stores (for sets of key-value pairs) in DB

Dataset storage

•Lots of options that can leverage file system and object storage

• Can aggregate 1+ datasets into single file

• Can shard dataset chunks into file-per-chunk

• Can use sub-filing in a more natural way

• etc.

“Bundles”
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Extract [more] components from Native VOL connector

•Anything that will be common across many connectors

•Include in main HDF5 library, or create “I/O core” library

•Leave only the “knowledge” about the file format-specific aspects of the file in the Native VOL 
connector



How to implement bundles?

Extract [more] components from Native VOL connector

•Anything that will be common across many connectors

•Include in main HDF5 library, or create “I/O core” library

•Leave only the “knowledge” about the file format-specific aspects of the file in the Native VOL 
connector

Write New ‘Bundle’ VOL Connector

•Uses file system as object store

•Making it easy to transition bundle to <-> from file system, on-prem, and cloud

•Implements metadata operations on database
•Probably will abstract this as pluggable interface

• Support SQLite, DynamoDB, etc.

•Owns the knowledge of where and how datasets are aggregated or sharded

•Calls “I/O core” library for as much functionality as possible



On The Horizon

Add support for concurrent bundle access

•Multiple processes accessing a database is well-known technology

•Sharding datasets enables easier modifications to both structure and contents of datasets



Streaming HDF5 Data



Why is Streaming Performance Bad?

HDF5’s current API is very oriented to accessing arbitrary subsets of arrays:

•Set up description of dataspace selection in file

•Perform I/O operation

•Construct I/O vector information for file and memory

•Determine and initialize datatype conversion

•Access file

•[Type Convert]

•Destroy selection

Lots of overhead when operating in a loop!

•Especially when performing single-element appends

•More overhead for extending a dataset dimension in the loop

•Even worse when accessing variable-length elements



Code Comparison – Today’s API



How to Improve Performance?

Extract all common setup & teardown from loop

•Dimension and number of elements to append

•Datatype of memory buffer

Significant reduction in overhead:

<initialize streaming>

loop:
 <append>

<shutdown streaming>

Describe everything

 - Create stream context

Copy data to internal buffer

 - Periodically [convert] and flush

Finish last [convert] and flush

 - Destroy stream context



New Streaming API Routines

hid_t H5Dcursor_create(hid_t dataset_id, H5D_cursor_mode_t 
mode, unsigned axis, size_t extension, hid_t mem_type_id, 
hid_t dxpl_id)

herr_t H5Dcursor_write(hid_t cursor_id, const void *buf)

herr_t H5Dcursor_read(hid_t cursor_id, void *buf)

herr_t H5Dcursor_close(hid_t cursor_id)



Code Comparison – Streaming API



Optimizing Streamed Storage

HDF5 “extensible array” (E-array) file data structure

•Provides constant time lookup, i.e. O(1)

•Also provides constant time append, i.e. O(1)

•Used for indexing chunks of datasets with one unlimited dimension

• Each element in E-array is ”chunk record” that points at a chunk of fixed-size elements in the file

• If no compression, each chunk is same size, even when storing variable-sized datatype elements

• Variable-length data is stored in a separate heap file data structure, referenced by fixed-size heap 
IDs in the elements within the chunks



Optimizing Streamed Storage

HDF5 “extensible array” (E-array) file data structure
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Optimizing Streamed Storage

B+-tree

25

10 40

25 / jane 40 / rose 50 / dave5 / dan 10 / jim



Optimizing Streamed Storage

E+-array



Optimizing Streamed Storage

E+-array









Optimizing Streamed Storage

Benefits of E+-arrays with extended chunk format for streaming

•Still provides constant time lookup, i.e. O(1)

•Continues to provide constant time append, i.e. O(1)

•Now also provides zero index accesses when streaming through elements

•Can ignore index after first lookup when reading

•Can lazily create index when writing

• Or even never create the index, if streaming reads will be only accesses in the future

•For variable-length datatypes, eliminates all extra I/O accesses to retrieve variable-length 
info from heap

•All VL info is contained within chunk, and brought into memory in one I/O operation, with 
fixed-size components of datatype
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