
Uncharted Territory –
Exploring New Frontiers for HDF5
Quincey Koziol, Principal Engineer | HDF5 User Group Meeting - 2024

• Introduction

• Accelerator-Native I/O Pipeline

• Sharded Storage

• Streaming Access

Agenda

Uncharted Territory
Exploring New Frontiers for HDF5

•A sampling of near-future HDF5 projects
•Accelerator-native I/O Pipeline

•Sharded Storage

•Streamed Access

Uncharted Territory
Exploring New Frontiers for HDF5

•A sampling of near-future HDF5 projects
•Accelerator-native I/O Pipeline

•Sharded Storage

•Streamed Access

•Also on the horizon
•Queries, with Indexing

•Security, Resiliency, and Access-control

•Data Warehousing

•DPU Coprocessing

•Cloud-native Storage

•Concurrent Multiprocess Access

Accelerator-native I/O Pipeline

— Jensen Huang, NVIDIA CEO, GTC 2024

“We need another way of doing computing — so that we can
continue to scale, so that we can continue to drive down the

cost of computing, so that we can continue to consume
more and more computing while being sustainable.

Accelerated computing is a dramatic speedup over general-
purpose computing, in every single industry.”

HDF5 Background

Chunked

Better access time for

subsets; extendible;

can have filters (e.g.

compression)

Contiguous
(default)

Data elements stored

physically adjacent

to each otherConceptual Array

Data in the file

Chunked
w/Filters
(compression)

Layout

CPU-Based I/O Pipeline

CPU

GPU

M
em

o
ry

Storage

On-node Interconnect

M
em

o
ry

CPU-Based I/O Pipeline

CPU

GPU

M
em

o
ry

Storage

On-node Interconnect

M
em

o
ry

CPU-Based I/O Pipeline

CPU

GPU

M
em

o
ry

Storage

On-node Interconnect

M
em

o
ry

CPU-Based I/O Pipeline

CPU

GPU

M
em

o
ry

Storage

On-node Interconnect

M
em

o
ry

CPU-Based I/O Pipeline

CPU

GPU

M
em

o
ry

Storage

On-node Interconnect

M
em

o
ry

CPU-Based I/O Pipeline

CPU

GPU

M
em

o
ry

Storage

On-node Interconnect

M
em

o
ry

CPU-Based I/O Pipeline

CPU

GPU

M
em

o
ry

Storage

On-node Interconnect

M
em

o
ry

CPU-Based I/O Pipeline

CPU

GPU

M
em

o
ry

Storage

On-node Interconnect

M
em

o
ry

CPU-Based I/O Pipeline

CPU

GPU

M
em

o
ry

Storage

On-node Interconnect

M
em

o
ry

CPU-Based I/O Pipeline

CPU

GPU

M
em

o
ry

Storage

On-node Interconnect

M
em

o
ry

CPU-Based I/O Pipeline

CPU

GPU

M
em

o
ry

Storage

On-node Interconnect

M
em

o
ry

CPU-Based I/O Pipeline

CPU

GPU

M
em

o
ry

Storage

On-node Interconnect

M
em

o
ry

CPU-Based I/O Pipeline

CPU

GPU

M
em

o
ry

Storage

On-node Interconnect

M
em

o
ry

CPU-Based I/O Pipeline

CPU

GPU

Storage

On-node Interconnect
M

em
o

ry

M
em

o
ry

GPU-Based I/O Pipeline

CPU

GPU

M
em

o
ry

Storage

On-node Interconnect

M
em

o
ry

GPU-Based I/O Pipeline

CPU

GPU

M
em

o
ry

Storage

On-node Interconnect

M
em

o
ry

GPU-Based I/O Pipeline

CPU

GPU

M
em

o
ry

Storage

On-node Interconnect

M
em

o
ry

GPU-Based I/O Pipeline

CPU

GPU

M
em

o
ry

Storage

On-node Interconnect

M
em

o
ry

GPU-Based I/O Pipeline

CPU

GPU

M
em

o
ry

Storage

On-node Interconnect

M
em

o
ry

GPU-Based I/O Pipeline

CPU

GPU

M
em

o
ry

Storage

On-node Interconnect

M
em

o
ry

GPU-Based I/O Pipeline

CPU

GPU

M
em

o
ry

Storage

On-node Interconnect

M
em

o
ry

GPU-Based I/O Pipeline

CPU

GPU

M
em

o
ry

Storage

On-node Interconnect

M
em

o
ry

CPU Implementation

•I/O is performed with POSIX calls

•Dataset chunks are cached in CPU memory

•I/O filters run on CPU and access chunks in CPU memory

•Uncompressed data is transferred to GPU memory

CPU-Based I/O Pipeline

CPU

GPU

Storage

On-node Interconnect
M

em
o

ry

M
em

o
ry

CPU-Based I/O Pipeline

CPU

GPU

Storage

On-node Interconnect
M

em
o

ry

M
em

o
ry

I/O is performed
with POSIX calls

CPU-Based I/O Pipeline

CPU

GPU

Storage

On-node Interconnect
M

em
o

ry

M
em

o
ry

Dataset chunks
are cached in
CPU memory

CPU-Based I/O Pipeline

CPU

GPU

Storage

On-node Interconnect
M

em
o

ry

M
em

o
ry

I/O filters run on
CPU and access
chunks in CPU
memory

CPU-Based I/O Pipeline

CPU

GPU

Storage

On-node Interconnect
M

em
o

ry

M
em

o
ry

Uncompressed
data is transferred
to GPU memory

Accelerator Implementation

•I/O is performed with GPUDirect Storage (GDS) calls

•Dataset chunks are cached in GPU memory

•I/O filters run as GPU kernels and access chunks in GPU memory

• Including using the hardware accelerated decompression engine in upcoming NVIDIA GPUs

•Uncompressed data is transferred to GPU memory

GPU-Based I/O Pipeline

CPU

GPU

M
em

o
ry

Storage

On-node Interconnect

M
em

o
ry

GPU-Based I/O Pipeline

CPU

GPU

M
em

o
ry

Storage

On-node Interconnect

M
em

o
ry

GPU-Based I/O Pipeline

CPU

GPU

Storage

On-node Interconnect
M

em
o

ry

M
em

o
ry

I/O is
performed
with GDS calls

GPU-Based I/O Pipeline

CPU

GPU

Storage

On-node Interconnect
M

em
o

ry

M
em

o
ry

Dataset chunks
are cached in
GPU memory

GPU-Based I/O Pipeline

CPU

GPU

Storage

On-node Interconnect
M

em
o

ry

M
em

o
ry

I/O filters run as
GPU kernels and
access chunks in
GPU memory

How will the HDF5 library need to change?

•Update Virtual File Driver interface

•Add flag(s) to indicate where a VFD plugin’s source / destination buffers can be

•Update HDF5 chunk cache

•Refactor to allow data to be cached in CPU, GPU, and possibly other memory

•Update HDF5 I/O filter interface

•Add flag(s) to indicate where filter’s source / destination buffers can be

How will applications need to change?

How will applications need to change?

They don’t!

How will applications need to change?

They don’t!

Why?

How will applications need to change?

They don’t!

Why?

Library can auto-detect if buffer pointer for read / write is in GPU or CPU memory, then
compose optimal I/O pipeline out of components that understand CPU / GPU memory

On The Horizon

Add support for “Data Processing Units” (DPUs)

“The CPU is for general-purpose computing, the GPU is for accelerated computing,
and the DPU, which moves data around the data center, does data processing.”

— NVIDIA Documentation

On The Horizon

Add support for “Data Processing Units” (DPUs)

Offload coordination and data movement operations to DPU

•Have the GPU contact the DPU for I/O requests

•DPU can send data directly back to GPU

•Keep metadata cache on DPU

“The CPU is for general-purpose computing, the GPU is for accelerated computing,
and the DPU, which moves data around the data center, does data processing.”

— NVIDIA Documentation

On The Horizon

Add support for “Data Processing Units” (DPUs)

Offload coordination and data movement operations to DPU

•Have the GPU contact the DPU for I/O requests

•DPU can send data directly back to GPU

•Keep metadata cache on DPU

Repurpose CPU to only general-purpose operations

•Build indices, track performance, do “weird” stuff

“The CPU is for general-purpose computing, the GPU is for accelerated computing,
and the DPU, which moves data around the data center, does data processing.”

— NVIDIA Documentation

Sharding HDF5 Storage

HDF5 Native File Format Today

HDF5 Native File Format Today

HDF5 was built and optimized for high-speed POSIX I/O

•Self-describing, sequential data layout, in single file*

•Many custom data structures

• B-trees, heaps, etc.

•Blocks of dataset elements: contiguous & chunked layout

HDF5 Native File Format Today

HDF5 was built and optimized for high-speed POSIX I/O

•Self-describing, sequential data layout, in single file*

•Many custom data structures

• B-trees, heaps, etc.

•Blocks of dataset elements: contiguous & chunked layout

When running parallel applications with MPI, we compensated

•Require applications to perform collective metadata modification

HDF5 Native File Format Today

HDF5 was built and optimized for high-speed POSIX I/O

•Self-describing, sequential data layout, in single file*

•Many custom data structures

• B-trees, heaps, etc.

•Blocks of dataset elements: contiguous & chunked layout

When running parallel applications with MPI, we compensated quickly

•Require applications to perform collective metadata modification

When cloud computing with object storage arose, we avoided it for 10 years

HDF5 Native File Format Today

HDF5 was built and optimized for high-speed POSIX I/O

•Self-describing, sequential data layout, in single file*

•Many custom data structures

• B-trees, heaps, etc.

•Blocks of dataset elements: contiguous & chunked layout

When running parallel applications with MPI, we compensated quickly

•Require applications to perform collective metadata modification

When cloud computing with object storage arose, we avoided it for 10 years
•Then started finding ways to compensate

•Highly Scalable Data Service (HSDS)

• Cloud-hosted

• JSON + dataset blocks

• Requires server / service

•“Cloud-optimized” HDF5 access with read-only S3 VFD

• Uses native file format, stored as single object

Compared to Zarr

Compared to Zarr

Compared to Zarr

Compared to Zarr

Compared to Zarr

Rebasing for the Win

Rebasing for the Win
Credit to Jay Lofstead for the title ☺

Rebasing for the Win
Credit to Jay Lofstead for the title ☺

What would a modern HDF5 file format look like?

•Targeting: POSIX file systems, object stores, cloud storage

Rebasing for the Win
Credit to Jay Lofstead for the title ☺

What would a modern HDF5 file format look like?

•Targeting: POSIX file systems, object stores, cloud storage

•What to keep

•Data model concepts: groups, datasets, attributes, links, etc.

•Self-describing format

•Scalable I/O on array data

Rebasing for the Win
Credit to Jay Lofstead for the title ☺

What would a modern HDF5 file format look like?

•Targeting: POSIX file systems, object stores, cloud storage

•What to keep

•Data model concepts: groups, datasets, attributes, links, etc.

•Self-describing format

•Scalable I/O on array data

•What to leave behind

•Metadata combined in same file as raw data

•Custom file data structures

Rebasing for the Win
Credit to Jay Lofstead for the title ☺

What would a modern HDF5 file format look like?

•Targeting: POSIX file systems, object stores, cloud storage

•What to keep

•Data model concepts: groups, datasets, attributes, links, etc.

•Self-describing format

•Scalable I/O on array data

•What to leave behind

•Metadata combined in same file as raw data

•Custom file data structures

•What to add

•Sharded dataset storage

•Database for metadata

Things to Keep

Data Model Concepts

•Critical to semantic model of HDF5

•Datasets, Groups, Attributes, Links, Dataspaces, Datatypes

Self-Describing Format

•But make this more robust, so future format variants can always be auto-detected

Scalable Array I/O

•The sine qua non of HDF5

Things to Leave Behind

Metadata combined in same file as raw data

•Wow, was this a bad idea!

•At least in the ”small fragments of metadata scattered everywhere” form

•Page-aligned blocks of metadata probably would have been OK

Custom file data structures

•At least most of them

•The world did not need 2 more B-tree implementations, 3 kinds of heaps, etc.

Things to Add

Sharded dataset storage

•Learn from and exceed Zarr’s capabilities

•Sharded storage is much more friendly to object stores & cloud storage

Use a database for storing metadata

•Tuned and maintained B-trees, paged I/O, caching, etc.

•Opens up ability to query metadata in standard & scalable ways

•Local & remote possible

• i.e. SQLite as well as DynamoDB

What will this look like?

What will this look like?

“Bundles”

What will this look like?

Treat a directory as an HDF5 container

•Easy to detect when opening:

• If the name you give is a file, open as a native format file

• If the name you give is a directory, open as a bundle

•Creation property for new bundle containers

“Bundles”

What will this look like?

Treat a directory as an HDF5 container

•Easy to detect when opening:

• If the name you give is a file, open as a native format file

• If the name you give is a directory, open as a bundle

•Creation property for new bundle containers

Bootstrap bundle configuration from JSON “superblock” file

•Easy to read and understand

•Self-describing

•Specifies the name & type of the metadata database

• File name or connection info to reach cloud database

“Bundles”

What will this look like?

Metadata Database File / Connection

•Need schema for tables and record information

• Maybe:

• A table per group, storing links for the group

• A table per object, storing attributes

• Still unknown:

• How to store object’s metadata?

• e.g. dataset dimensions, storage layout, etc?

• Really want both tables & stores (for sets of key-value pairs) in DB

“Bundles”

What will this look like?

Metadata Database File / Connection

•Need schema for tables and record information

• Maybe:

• A table per group, storing links for the group

• A table per object, storing attributes

• Still unknown:

• How to store object’s metadata?

• e.g. dataset dimensions, storage layout, etc?

• Really want both tables & stores (for sets of key-value pairs) in DB

Dataset storage

•Lots of options that can leverage file system and object storage

• Can aggregate 1+ datasets into single file

• Can shard dataset chunks into file-per-chunk

• Can use sub-filing in a more natural way

• etc.

“Bundles”

How to implement bundles?

How to implement bundles?

Extract [more] components from Native VOL connector

•Anything that will be common across many connectors

•Include in main HDF5 library, or create “I/O core” library

•Leave only the “knowledge” about the file format-specific aspects of the file in the Native VOL
connector

How to implement bundles?

Extract [more] components from Native VOL connector

•Anything that will be common across many connectors

•Include in main HDF5 library, or create “I/O core” library

•Leave only the “knowledge” about the file format-specific aspects of the file in the Native VOL
connector

Write New ‘Bundle’ VOL Connector

•Uses file system as object store

•Making it easy to transition bundle to <-> from file system, on-prem, and cloud

•Implements metadata operations on database
•Probably will abstract this as pluggable interface

• Support SQLite, DynamoDB, etc.

•Owns the knowledge of where and how datasets are aggregated or sharded

•Calls “I/O core” library for as much functionality as possible

On The Horizon

Add support for concurrent bundle access

•Multiple processes accessing a database is well-known technology

•Sharding datasets enables easier modifications to both structure and contents of datasets

Streaming HDF5 Data

Why is Streaming Performance Bad?

HDF5’s current API is very oriented to accessing arbitrary subsets of arrays:

•Set up description of dataspace selection in file

•Perform I/O operation

•Construct I/O vector information for file and memory

•Determine and initialize datatype conversion

•Access file

•[Type Convert]

•Destroy selection

Lots of overhead when operating in a loop!

•Especially when performing single-element appends

•More overhead for extending a dataset dimension in the loop

•Even worse when accessing variable-length elements

Code Comparison – Today’s API

How to Improve Performance?

Extract all common setup & teardown from loop

•Dimension and number of elements to append

•Datatype of memory buffer

Significant reduction in overhead:

<initialize streaming>

loop:
 <append>

<shutdown streaming>

Describe everything

 - Create stream context

Copy data to internal buffer

 - Periodically [convert] and flush

Finish last [convert] and flush

 - Destroy stream context

New Streaming API Routines

hid_t H5Dcursor_create(hid_t dataset_id, H5D_cursor_mode_t
mode, unsigned axis, size_t extension, hid_t mem_type_id,
hid_t dxpl_id)

herr_t H5Dcursor_write(hid_t cursor_id, const void *buf)

herr_t H5Dcursor_read(hid_t cursor_id, void *buf)

herr_t H5Dcursor_close(hid_t cursor_id)

Code Comparison – Streaming API

Optimizing Streamed Storage

HDF5 “extensible array” (E-array) file data structure

•Provides constant time lookup, i.e. O(1)

•Also provides constant time append, i.e. O(1)

•Used for indexing chunks of datasets with one unlimited dimension

• Each element in E-array is ”chunk record” that points at a chunk of fixed-size elements in the file

• If no compression, each chunk is same size, even when storing variable-sized datatype elements

• Variable-length data is stored in a separate heap file data structure, referenced by fixed-size heap
IDs in the elements within the chunks

Optimizing Streamed Storage

HDF5 “extensible array” (E-array) file data structure

Optimizing Streamed Storage

B-tree

25 / jane

20 / jim 40 / ron

24 / rose 30 / dan 50 / dave 5 / kim 15 / mary

Optimizing Streamed Storage

B+-tree

25

10 40

25 / jane 40 / rose 50 / dave5 / dan 10 / jim

Optimizing Streamed Storage

E+-array

Optimizing Streamed Storage

E+-array

Optimizing Streamed Storage

Benefits of E+-arrays with extended chunk format for streaming

•Still provides constant time lookup, i.e. O(1)

•Continues to provide constant time append, i.e. O(1)

•Now also provides zero index accesses when streaming through elements

•Can ignore index after first lookup when reading

•Can lazily create index when writing

• Or even never create the index, if streaming reads will be only accesses in the future

•For variable-length datatypes, eliminates all extra I/O accesses to retrieve variable-length
info from heap

•All VL info is contained within chunk, and brought into memory in one I/O operation, with
fixed-size components of datatype

	Slide 1: Uncharted Territory – Exploring New Frontiers for HDF5
	Slide 2
	Slide 3: Uncharted Territory
	Slide 4: Uncharted Territory
	Slide 5
	Slide 6
	Slide 7: HDF5 Background
	Slide 8: CPU-Based I/O Pipeline
	Slide 9: CPU-Based I/O Pipeline
	Slide 10: CPU-Based I/O Pipeline
	Slide 11: CPU-Based I/O Pipeline
	Slide 12: CPU-Based I/O Pipeline
	Slide 13: CPU-Based I/O Pipeline
	Slide 14: CPU-Based I/O Pipeline
	Slide 15: CPU-Based I/O Pipeline
	Slide 16: CPU-Based I/O Pipeline
	Slide 17: CPU-Based I/O Pipeline
	Slide 18: CPU-Based I/O Pipeline
	Slide 19: CPU-Based I/O Pipeline
	Slide 20: CPU-Based I/O Pipeline
	Slide 21: CPU-Based I/O Pipeline
	Slide 22: GPU-Based I/O Pipeline
	Slide 23: GPU-Based I/O Pipeline
	Slide 24: GPU-Based I/O Pipeline
	Slide 25: GPU-Based I/O Pipeline
	Slide 26: GPU-Based I/O Pipeline
	Slide 27: GPU-Based I/O Pipeline
	Slide 28: GPU-Based I/O Pipeline
	Slide 29: GPU-Based I/O Pipeline
	Slide 30: CPU Implementation
	Slide 31: CPU-Based I/O Pipeline
	Slide 32: CPU-Based I/O Pipeline
	Slide 33: CPU-Based I/O Pipeline
	Slide 34: CPU-Based I/O Pipeline
	Slide 35: CPU-Based I/O Pipeline
	Slide 36: Accelerator Implementation
	Slide 37: GPU-Based I/O Pipeline
	Slide 38: GPU-Based I/O Pipeline
	Slide 39: GPU-Based I/O Pipeline
	Slide 40: GPU-Based I/O Pipeline
	Slide 41: GPU-Based I/O Pipeline
	Slide 42: How will the HDF5 library need to change?
	Slide 43: How will applications need to change?
	Slide 44: How will applications need to change?
	Slide 45: How will applications need to change?
	Slide 46: How will applications need to change?
	Slide 47: On The Horizon
	Slide 48: On The Horizon
	Slide 49: On The Horizon
	Slide 50
	Slide 51: HDF5 Native File Format Today
	Slide 52: HDF5 Native File Format Today
	Slide 53: HDF5 Native File Format Today
	Slide 54: HDF5 Native File Format Today
	Slide 55: HDF5 Native File Format Today
	Slide 56: Compared to Zarr
	Slide 57: Compared to Zarr
	Slide 58: Compared to Zarr
	Slide 59: Compared to Zarr
	Slide 60: Compared to Zarr
	Slide 61: Rebasing for the Win
	Slide 62: Rebasing for the Win
	Slide 63: Rebasing for the Win
	Slide 64: Rebasing for the Win
	Slide 65: Rebasing for the Win
	Slide 66: Rebasing for the Win
	Slide 67: Things to Keep
	Slide 68: Things to Leave Behind
	Slide 69: Things to Add
	Slide 70: What will this look like?
	Slide 71: What will this look like?
	Slide 72: What will this look like?
	Slide 73: What will this look like?
	Slide 74: What will this look like?
	Slide 75: What will this look like?
	Slide 76: How to implement bundles?
	Slide 77: How to implement bundles?
	Slide 78: How to implement bundles?
	Slide 79: On The Horizon
	Slide 80
	Slide 81: Why is Streaming Performance Bad?
	Slide 82: Code Comparison – Today’s API
	Slide 83: How to Improve Performance?
	Slide 84: New Streaming API Routines
	Slide 85: Code Comparison – Streaming API
	Slide 86: Optimizing Streamed Storage
	Slide 87: Optimizing Streamed Storage
	Slide 88: Optimizing Streamed Storage
	Slide 89: Optimizing Streamed Storage
	Slide 90: Optimizing Streamed Storage
	Slide 91: Optimizing Streamed Storage
	Slide 92
	Slide 93
	Slide 94
	Slide 95: Optimizing Streamed Storage
	Slide 96

