
Optimizing Molecular 
Dynamics AI model using 
HDF5 and DYAD

Presented by: Hariharan Devarajan devarajan1@llnl.gov

LLNL-PRES-867285

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National 
Security, LLC. This material is based upon work supported by LLNL LDRD 23-ERD-045 and 24-SI-005..

HDF5 User 
Group Meeting 
(HUG 2024)
Chicago, IL

mailto:devarajan1@llnl.gov


2

Acknowledgements

Current and Past Flux team:
Thomas Scogland, Albert Chu, Tapasya Patki, Stephen Herbein, Mark Grondona, Becky Springmeyer, Christopher 
Moussa, Jim Garlick, Daniel Milroy, Clay England, Michela Taufer, Ryan Day, Dong H. Ahn, Barry Rountree, Zeke 
Morton, Jae-Seung Yeom, James Corbett, Vanessa Sochat, and William Hobbs.

University of Tennessee, Knoxville:
Michela Taufer, Ian Lumsden, and Jack Marquez

LLNL’s MuMMI Team:
Loïc Pottier, Konstantia Georgouli, Tim Hsu, and Timo Bremer

LLNL’s IOPP Team:
Chen Wang and Kathryn Mohror



The Massively 
Parallel Multiscale 
Machine-Learned 
Modeling 
Infrastructure 
(MuMMI)

 A framework for executing multiscale modeling 
simulations of large molecular systems

 Studies the plasma membrane and RAS-RAF-14-3-3

 AI-assisted workflow with offline training, online 
inference and simulation with feedback mechanisms.

 Accuracy of AI training improves the initial conditions 
for molecular interaction which significantly improve 
resolution of the workflow.

3



AI training 
segment of 
MuMMI.

 Training Dataset (320 GB): 600 files with 8k samples.
 Each sample has 8,691 elements.

 Each element is 8 Bytes.

 Data format NPZ files.

4

 PyTorch Data Loader: Map-style data loader
 With 6 worker processes per GPU

 Batch size of 256 samples

 Computation: step is .133 seconds

 Hardware (used 32 nodes)
 Corona cluster at LLNL with 8 GPUs per node

 256 GB of RAM and 3.2 TB NVMe SSD per node

 Tools DFTracer
 DFAnalyzer

 Perfetto UI



Perfetto
viewer

5

- Timeline of the application 
- Reading one sample results in Many I/O calls



Perfetto
viewer
(zoomed)

6

- Many small reads for one numpy open.
- Gaps in reading and numpy open call



Behavior
Summary

7



POSIX I/O 
Time, BW, 
and 
Transfer 
Size

8

- Average transfer 
transfer size per 
time step is good 
but many read 
calls.

- Average BW is 2.2 
GB/s



Optimization 1
Switch NPZ to HDF5



Perfetto
viewer

10

- Faster execution time
- The reading a batch is much more efficient.



Perfetto
viewer
(zoomed)

11

- Large single read calls



Behavior
Summary

12



POSIX I/O 
Time and 
BW

13

- Larger size improves bandwidth from Lustre to 8GB /s.
- The I/O time is optimized by almost 30x.
- Overall the timeline is reduced from 390 to 29 seconds 13.4x faster runtime.



Optimization 2
Utilizing DYAD for node-local caching



Perfetto
viewer

Producer

F1 F2

Shared Storage

F1 F2

Consumer

Manual 
Synchronization

Slow Shared 
Storage BW

With 
DYAD

Producer

F1 F2

D
YA

D

Consumer

Automatic
Sync

RDMA 
Transfer

Global 
MDM

2. DYAD waits 
for producer file

1. Produce locally and notify DYAD

3. Request 
for

 remote 
file

F1 F2

4. Write

5. Consumer reads like global FS

Node-local storage enables 
faster I/O and publication

RDMA transfer 
enables faster 

data availability

15

I. Lumsden, H. Devarajan, J. Marquez, S. Brink, D. Boehme, O. Pearce, J.S. Yeom, and M. Taufer. 2024. Empirical Study of Molecular Dynamics Workflow Data 
Movement: DYAD vs Traditional I/O Systems. In Proceedings of the 2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).

Producer: the first AI worker which 
accessed the file would store it in cache.

Consumer: the AI worker which 
accessed the cached file



Behavior
Summary

16



POSIX I/O 
Time and 
BW

17

- Faster storage to share data further improves bandwidth to 62GB/s.
- The I/O time is further optimized by 7.5x.
- Overall the timeline is reduced from 29 to 15 seconds 1.9x faster runtime.



Key Learnings

 Format has a significant effect on I/O Performance.

 Large Data accesses do not require explicit chunking.
 Adding explicit chunking hurt performance by 1.8x

 Prefetching policy of PyTorch is not aggressive. 
 Typically it would wait for a cache miss to do next rounds of 

prefetching.

 Utilizing node-local storage with RDMA for inter-node data 
movement can speed up AI training.

 Interacting with domain scientists to explain data format intricates 
is fun. 

18



Conclusions

1. Using Numpy Array APIs lead to many small accesses and large 
number of metadata calls.
 Most due to the buffering and decompression schemes within the format.

2. HDF5 format for large simulation samples are efficient to share data. 
 Some apps use shared and other use one sample per file.

 This leads to 30x faster performance than Numpy Array

3. Utilizing node-local storage with DYAD can optimize AI training by 
almost 7.5x as compared to HDF5 with PFS.

19

DYAD AnalyzerDFTracer

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or 
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.


	Slide 1: Optimizing Molecular Dynamics AI model using HDF5 and DYAD
	Slide 2
	Slide 3: The Massively Parallel Multiscale Machine-Learned Modeling Infrastructure (MuMMI)
	Slide 4: AI training segment of MuMMI.
	Slide 5: Perfetto viewer
	Slide 6: Perfetto viewer (zoomed)
	Slide 7: Behavior Summary
	Slide 8: POSIX I/O Time, BW, and Transfer Size
	Slide 9: Optimization 1
	Slide 10: Perfetto viewer
	Slide 11: Perfetto viewer (zoomed)
	Slide 12: Behavior Summary
	Slide 13: POSIX I/O Time and BW
	Slide 14: Optimization 2
	Slide 15: Perfetto viewer
	Slide 16: Behavior Summary
	Slide 17: POSIX I/O Time and BW
	Slide 18: Key Learnings
	Slide 19: Conclusions

