

Optimizing Molecular Dynamics AI model using HDF5 and DYAD

Presented by: Hariharan Devarajan devarajan1@llnl.gov

HDF5 User Group Meeting (HUG 2024) Chicago, IL

LLNL-PRES-867285

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. This material is based upon work supported by LLNL LDRD 23-ERD-045 and 24-SI-005.

Acknowledgements

Current and Past Flux team:

Thomas Scogland, Albert Chu, Tapasya Patki, Stephen Herbein, Mark Grondona, Becky Springmeyer, Christopher Moussa, Jim Garlick, Daniel Milroy, Clay England, Michela Taufer, Ryan Day, Dong H. Ahn, Barry Rountree, Zeke Morton, Jae-Seung Yeom, James Corbett, Vanessa Sochat, and William Hobbs.

LLNL's MuMMI Team:

Loïc Pottier, Konstantia Georgouli, Tim Hsu, and Timo Bremer

LLNL's IOPP Team:

Chen Wang and Kathryn Mohror

University of Tennessee, Knoxville:

Michela Taufer, Ian Lumsden, and Jack Marquez

The Massively Parallel Multiscale Machine-Learned Modeling Infrastructure (MuMMI)

- A framework for executing multiscale modeling simulations of large molecular systems
- Studies the plasma membrane and RAS-RAF-14-3-3
- Al-assisted workflow with offline training, online inference and simulation with feedback mechanisms.
- Accuracy of AI training improves the initial conditions for molecular interaction which significantly improve resolution of the workflow.

Al training segment of MuMMI.

• Training Dataset (320 GB): 600 files with 8k samples.

- Each sample has 8,691 elements.
- Each element is 8 Bytes.
- Data format NPZ files.

• PyTorch Data Loader: Map-style data loader

- With 6 worker processes per GPU
- Batch size of 256 samples

• Computation: step is .133 seconds

• Hardware (used 32 nodes)

- Corona cluster at LLNL with 8 GPUs per node
- 256 GB of RAM and 3.2 TB NVMe SSD per node
- Tools DFTracer
 - DFAnalyzer
 - Perfetto UI

- Timeline of the application
- Reading one sample results in Many I/O calls

Perfetto viewer (zoomed)

	<module>.iter</module>						
TorchDatasetgetitem							
NPZReader.read_index							
	NPZReader.open						
read r read r r r r r r re	r read - [0.401445 s] • read	r read r	r r r	read r r			
	TorchD	atasetgetitem					
	NPZReader.read_index						
	NPZReader.open						
r r re r re r read read	r r re r	rrrr	ead read read r read r r	re r re r r			
	TorchDatasetgetitem						
	NPZReader.read_index						
	NF	PZReader.open					
r re r r r r re read r	ead read read read r	r re read r	r re r re	r re r read r r r			
	TorchDatasetgetitem						
NPZReader.read_index							
NPZReader.open							
r r ead r r re r read	r r r r r r re	r read r read	id r read r r r re re re r	re re read read r			
TorchDatasetgetitem							
NPZReader.read_index							
NPZReader.open							
read r r re r read r r	read re r re r r	r r read r	. r., r r re., r	r re r			
TorchDatasetgetitem							

- Many small reads for one numpy open.
- Gaps in reading and numpy open call

		Summary						
	Allocation	Scheduler Allocation Details Nodes: 32 Processes: 1280 Thread allocations across nodes (includes dynamically create Compute: 160 I/0: 1280 Events Recorded: 18M	d threads)					
	Dataset	Description of Dataset Used						
	T/O Rehavior							
	1/0 Dellaviol							
		Total Time: 2701 sec						
Debeuden		— Overall App Level I/0: 2609.967 sec						
Benavior		— Unoverlapped App I/0: 2581.864 sec						
		— Unoverlapped App Compute: 1.199 sec						
C	ľ	Compute: 29.303 sec						
Summarv		0verall I/0: 882.836 sec						
		Unoverlapped I/0: 853.770 sec						
		Unoverlapped Compute: 0.237 sec						
		Function I count I size						
		min 25 mean median 75	max					
		— opendir 208 NA nan nan NA nan	INA I					
		xstat64 312 NA nan nan NA nan	INA I					
		— mkdir 104 NA nan nan NA nan	INA I					
		— open64 8K NA nan nan NA nan	INA I					
		read 11M INA Inan Inan INA Inan						
		\sim close 18K INA Inan Inan INA Inan						

POSIX I/O Time, BW, and Transfer Size

Optimization 1

Switch NPZ to HDF5

Perfetto viewer

<module>.</module>	iter <module>.yield</module>	< <u>mod</u>	<mo< th=""><th><mo< th=""><th><mo< th=""><th><m< th=""><th><m< th=""><th><m< th=""><th><m< th=""><th><mo< th=""><th><</th></mo<></th></m<></th></m<></th></m<></th></m<></th></mo<></th></mo<></th></mo<>	<mo< th=""><th><mo< th=""><th><m< th=""><th><m< th=""><th><m< th=""><th><m< th=""><th><mo< th=""><th><</th></mo<></th></m<></th></m<></th></m<></th></m<></th></mo<></th></mo<>	<mo< th=""><th><m< th=""><th><m< th=""><th><m< th=""><th><m< th=""><th><mo< th=""><th><</th></mo<></th></m<></th></m<></th></m<></th></m<></th></mo<>	<m< th=""><th><m< th=""><th><m< th=""><th><m< th=""><th><mo< th=""><th><</th></mo<></th></m<></th></m<></th></m<></th></m<>	<m< th=""><th><m< th=""><th><m< th=""><th><mo< th=""><th><</th></mo<></th></m<></th></m<></th></m<>	<m< th=""><th><m< th=""><th><mo< th=""><th><</th></mo<></th></m<></th></m<>	<m< th=""><th><mo< th=""><th><</th></mo<></th></m<>	<mo< th=""><th><</th></mo<>	<
T		Torc HDF5 H H _ P	Torc HDF5 H P C	Torc HDF5 H H P	Torch HDF5R H H P C	T H	T Tor H HDF H P	Tor HDF H	To HD H	Torch HDF5R H H	Tor HDF H p
T Torc HDF5 H H p		T To H HD	Tor HDF H	Torc HDF5 H H P	Torch HDF5R HDF pre	Torch HDF5R H HD pr	T To H HD H	Tor HDF H	То HD H р	Tor HDF HD	To HD H H
T Torch HDF5R H H P		TorchDa HDF5Rea HDF5R pread	To HD H H	Tor HDF HD	Torc HDF5 H <mark>H</mark> P	Tor HDF H	Torch HDF5R H C	T To H HD H H P _	To HD H	Tor HDF HD	T H H
Torch HDF5R H HD pr		Torc HDF5 H H p C	T H	To HD HD	Tor HDF H	Tor HDF H H	Torc HDF5 H C	Tor HDF H P	To HD H H p C	To HD H H P	
Torc HDF5 HD <mark>H</mark> P		Torc HDF5 H p	Torch HDF5R H H p c	Torch HDF5R H H p c	То HD H	Tor HDF H p	Torc HDF5 H H P	Torch HDF5R H P	Torc HDF5 HDF pre	T H	T
Torc		Torc	Torc	Torch	TorchD	Т То	Tor	Torc	Torc	Tor	Tor

- Faster execution time
- The reading a batch is much more efficient.

Perfetto viewer (zoomed)

- Large single read calls

POSIX I/O Time and BW

- Larger size improves bandwidth from Lustre to 8GB /s.
- The I/O time is optimized by almost **30x**.
- Overall the timeline is reduced from 390 to 29 seconds **13.4x** faster runtime.

Optimization 2

Utilizing DYAD for node-local caching

Producer: the first AI worker which accessed the file would store it in cache.

I. Lumsden, H. Devarajan, J. Marquez, S. Brink, D. Boehme, O. Pearce, J.S. Yeom, and M. Taufer. 2024. Empirical Study of Molecular Dynamics Workflow Data Movement: DYAD vs Traditional I/O Systems. In Proceedings of the 2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).

Behavior Summary

- Faster storage to share data further improves bandwidth to 62GB/s.
- The I/O time is further optimized by **7.5x**. _

BW

Overall the timeline is reduced from 29 to 15 seconds **1.9x** faster runtime. _

Key Learnings

- Format has a significant effect on I/O Performance.
- Large Data accesses do not require explicit chunking.
 - Adding explicit chunking hurt performance by 1.8x
- Prefetching policy of PyTorch is not aggressive.
 - Typically it would wait for a cache miss to do next rounds of prefetching.
- Utilizing node-local storage with RDMA for inter-node data movement can speed up AI training.
- Interacting with domain scientists to explain data format intricates is fun.

Conclusions

- 1. Using Numpy Array APIs lead to many small accesses and large number of metadata calls.
 - Most due to the buffering and decompression schemes within the format.
- 2. HDF5 format for large simulation samples are efficient to share data.
 - Some apps use shared and other use one sample per file.
 - This leads to **30x** faster performance than Numpy Array
- 3. Utilizing node-local storage with DYAD can optimize AI training by almost **7.5x** as compared to HDF5 with PFS.

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.