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The Massively 
Parallel Multiscale 
Machine-Learned 
Modeling 
Infrastructure 
(MuMMI)

 A framework for executing multiscale modeling 
simulations of large molecular systems

 Studies the plasma membrane and RAS-RAF-14-3-3

 AI-assisted workflow with offline training, online 
inference and simulation with feedback mechanisms.

 Accuracy of AI training improves the initial conditions 
for molecular interaction which significantly improve 
resolution of the workflow.
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AI training 
segment of 
MuMMI.

 Training Dataset (320 GB): 600 files with 8k samples.
 Each sample has 8,691 elements.

 Each element is 8 Bytes.

 Data format NPZ files.
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 PyTorch Data Loader: Map-style data loader
 With 6 worker processes per GPU

 Batch size of 256 samples

 Computation: step is .133 seconds

 Hardware (used 32 nodes)
 Corona cluster at LLNL with 8 GPUs per node

 256 GB of RAM and 3.2 TB NVMe SSD per node

 Tools DFTracer
 DFAnalyzer

 Perfetto UI



Perfetto
viewer
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- Timeline of the application 
- Reading one sample results in Many I/O calls



Perfetto
viewer
(zoomed)

6

- Many small reads for one numpy open.
- Gaps in reading and numpy open call



Behavior
Summary
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POSIX I/O 
Time, BW, 
and 
Transfer 
Size
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- Average transfer 
transfer size per 
time step is good 
but many read 
calls.

- Average BW is 2.2 
GB/s



Optimization 1
Switch NPZ to HDF5



Perfetto
viewer
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- Faster execution time
- The reading a batch is much more efficient.



Perfetto
viewer
(zoomed)
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- Large single read calls



Behavior
Summary

12



POSIX I/O 
Time and 
BW
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- Larger size improves bandwidth from Lustre to 8GB /s.
- The I/O time is optimized by almost 30x.
- Overall the timeline is reduced from 390 to 29 seconds 13.4x faster runtime.



Optimization 2
Utilizing DYAD for node-local caching
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Node-local storage enables 
faster I/O and publication

RDMA transfer 
enables faster 

data availability
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Producer: the first AI worker which 
accessed the file would store it in cache.

Consumer: the AI worker which 
accessed the cached file



Behavior
Summary
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POSIX I/O 
Time and 
BW
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- Faster storage to share data further improves bandwidth to 62GB/s.
- The I/O time is further optimized by 7.5x.
- Overall the timeline is reduced from 29 to 15 seconds 1.9x faster runtime.



Key Learnings

 Format has a significant effect on I/O Performance.

 Large Data accesses do not require explicit chunking.
 Adding explicit chunking hurt performance by 1.8x

 Prefetching policy of PyTorch is not aggressive. 
 Typically it would wait for a cache miss to do next rounds of 

prefetching.

 Utilizing node-local storage with RDMA for inter-node data 
movement can speed up AI training.

 Interacting with domain scientists to explain data format intricates 
is fun. 
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Conclusions

1. Using Numpy Array APIs lead to many small accesses and large 
number of metadata calls.
 Most due to the buffering and decompression schemes within the format.

2. HDF5 format for large simulation samples are efficient to share data. 
 Some apps use shared and other use one sample per file.

 This leads to 30x faster performance than Numpy Array

3. Utilizing node-local storage with DYAD can optimize AI training by 
almost 7.5x as compared to HDF5 with PFS.
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