
Upcoming New HDF5 Features

Progress on Multi-thread, Sparse Data 
Storage, and Encryption in HDF5

John Mainzer john.mainzer@lifeboat.llc
Elena Pourmal elena.pourmal@lifeboat.llc



2

Outline

§ Intro to Lifeboat, LLC
§ Multi-threaded access to data in HDF5
⁃ Approach
⁃ Progress
⁃ Bypass VOL

§ Sparse data in HDF5
§ Integrity of data in HDF5 (HDF5 encryption)

August 5, 2024 HUG 24



3

Lifeboat, LLC

§ Goal: Sustain and enhance open source HDF5
⁃ Founded in August 2021; located in Champaign, IL and Laramie, WY
⁃ www.lifeboat.llc
⁃ info@lifeboat.llc

§ Funded by DOE SBIR/STTR Program
⁃ Phase II: “Toward multi-threaded concurrency in HDF5” (started in April 2023)
⁃ Phase II: “Supporting sparse data in HDF5” (started in April 2024)
⁃ Phase I: “Protecting the confidentiality and integrity of data stored in HDF5” 

(aka“HDF5 Encryption”) (started in February 2024)

We don’t make HDF5… we make HDF5 better



4

Lifeboat, LLC (cont’d)

§ H5+ product
⁃ In near term - Collection of pluggable connectors and tools to enhance 

functionality of open-source HDF5 and tools
‣ Encryption, multi-threaded access to data, full implementation of single writer/multiple reader 

access mode, data recovery tool

⁃ In long term - Better engineered multi-threaded HDF5 library with full set of 
features along with a rich collection of connectors to enhance functionality and 
to access data on all kinds of storage systems (e.g., traditional FS, Cloud, 
Object Store)

We don’t make HDF5… we make HDF5 better



Multi-threaded access to data in HDF5

Approach

Enabling multi-threaded VOL connectors with open-source HDF5



6

HDF5 at Present
§ Fundamentally a single thread library.

§ Thread safety supported via a global mutex – only one thread active in the 
library at a time.

§ This constraint is imposed on VOL connectors, even if they can support 
multi-thread operation.

August 5, 2024 HUG 24



7

Multi-Thread HDF5
§ True multi-thread support has been requested for a long time.
⁃ Retrofitting multi-thread support to an existing large, and largely un-

documented code base is a daunting task. 
⁃ Thus little tangible progress beyond the global mutex – allowing thread safety 

but not multi-thread execution.

§ The VOL layer changes the picture.
⁃ Pushing the global mutex down a bit, would allow multiple threads of execution 

into VOL connectors that support it.
⁃ Only need to retrofit multi-thread support onto a small number of HDF5 

packages to do this – H5E (error reporting), H5I (index), H5P (property lists), 
H5CX (context), and H5VL (VOL).  

‣ Multi-thread versions of the H5S (selections) and H5FD (file driver) packages are 
desirable, but not necessary for the initial prototype.

August 5, 2024 HUG 24



8

Towards Multi-Thread VOL Support
Lifeboat is pursuing this strategy -- objectives are to:

§ Retrofit multi-thread support on the required HDF5 packages

§ Push the HDF5 global mutex down to allow multiple threads into VOL 
connectors that support it.

§ Develop the Bypass VOL to allow limited multi-thread I/O on HDF5 files.

All modifications to the HDF5 library and related documentation to be 
contributed to the HDF5 open source project.

August 5, 2024 HUG 24



Multi-threaded access to data in HDF5

Progress

Enabling multi-threaded VOL connectors with open-source HDF5



10

Current Status

§ Working prototypes for multi-thread error reporting (H5E) and index (H5I).

§ Design work for property lists (H5P) and the VOL layer (H5VL) at or near 
completion – implementation to start soon.

§ Context (H5CX) initial review and design work complete, further work on 
hold pending completion of working prototypes of H5P and H5VL due to 
dependencies on these modules.

August 5, 2024 HUG 24



11

Lessons Learned

§ Plan on multiple passes to adjust for issues and interactions that are missed, or 
whose implications are not immediately obvious.

§ Going lock free to the extent practical makes this easier.

§ Expect some existing internal and external APIs to be problematic with multi-
thread.  Best to bypass in the prototype where possible, and then negotiate re-
designs.  Sometimes, just minor semantic changes are sufficient.

§ Maintain separation of concerns, and simplify where possible.

§ Complex API’s make multi-thread testing much harder.  To partially mitigate this:
⁃ Collect extensive statistics.
⁃ Throw assertion failures as soon as errors are detected. 

August 5, 2024 HUG 24



Multi-threaded access to data in HDF5

Bypass VOL

Enabling multi-threaded VOL connectors with open-source HDF5



13

Bypass VOL Objectives

§ Offer significant I/O performance improvements relative to straight HDF5.

§ Serve as an initial use and test case for multi-thread VOL support.



14
HDF5 API

Multi-threaded VOL layer (H5VL package)

TS special case*? Get shared lockYesNoGet exclusive lock

Multi-threaded bypass VOL  
connector

Multi-threaded VFD layer

HDF5 File

HDF5 native VOL 
connector

not thread-safe 
guarded by global mutex

Query native VOL connector
for location of data

Construct and issue I/O requests
for thread-safe VFD layer

Hits global
mutex

Bypasses 
global mutex

Hits global mutex

* Initial prototype version: I/O on a dataset with contiguous or 
chunked storage and numeric datatype; no data filtering

Bypass VOL Concept
• Query HDF5 library for the 

location of raw data
• Execute raw data I/O in parallel 

in multiple threads

Basic concept has been 
implemented outside the HDF5 
library with good results

Can’t implement fully until support 
for multi-thread VOLS is available, 
but a prototype single thread 
version with thread pool to 
accelerate large reads has been 
implemented.

Plan to develop this version as far 
as practical, and then convert to 
multi-thread as an initial test case 
for multi-thread VOL support 

August 5, 2024 HUG 24



15Proof of concept: Digitally Reconstructed Neurons 
Blue Brain Project https://www.epfl.ch/research/domains/bluebrain/

{
"0000": {

"points”: np.empty((9610, 3), np.float32),
“offsets": np.empty(21, np.uint64)

},
"0001": {

"points": np.empty((14983, 3), np.float32),
"offsets": np.empty(48, np.uint64)

},
...

}

Synthetic Data Presented:
Datasets: 500 000
Total size: 640 GB
File Space Strategy: Paged allocation
Page size: 64 kB (not a default value!)

1k - 100M 
neurons

Slide courtesy of Luc Grosheintz, Blue Brain Project, EPFL 
Blue
Brain
Project

System:
l Cray EX (Perlmutter @NERSC)

l 512 GB memory per node
l 2 x AMD EPYC 7763 CPUs per 

node
l 64 cores per CPU

August 5, 2024 HUG 24



16

Benchmark results
§ Presented experimental setup:

l 8 Threads
l 3 measurements for each run
l HDF5 1.10.1

§ HDF5: Plain HDF5 with 512 MB page buffer, 75% 
reserved for raw data; paged allocation 64KB 
pages

§ Direct / Page-Aware: The two variants of the 
prototype:

l Left: Read metadata for the file using HDF5
l Right: Read metadata from pre-computed JSON 

file
l Page-Aware: Pages of HDF5 file are brought into 

memory and threads read raw data from memory
l We see ~5x speedup when using 8 threads; 2x 

speedup when using 2 threads

August 5, 2024 HUG 24



17Using bypass VOL connector with single-threaded 
application (preliminary results)
§ Benchmark:
⁃ Read contiguous or chunked dataset by 4 hyperslabs with
‣ Thread-safe HDF5 library
‣ Thread-safe HDF5 library with bypass VOL connector and thread thread pool; each thread 

reads 1MB of data
‣ C program using Pthreads; each thread reads 1MB of data
‣ Compare performance

§ Systems
⁃ Linux box 
⁃ Cray EX node (Perlmutter @NERSC)
⁃ macOS

§ 1.6x to  3x scaling is achieved on Linux and Cray systems
⁃ Note: no scaling on macOS; need to investigate and document

§ We are looking for applications to test the connector!

August 5, 2024 HUG 24



18

Linux box results (64GB dataset)

August 5, 2024 HUG 24



19

Perlmutter results (64GB dataset)

August 5, 2024 HUG 24



20

Perlmutter results (640GB dataset)

August 5, 2024 HUG 24



Sparse Data Storage in HDF5
New storage paradigm for sparse and variable-length data



22

New Storage Paradigm: Structured Chunk
Chunked dataset Chunked storage: all chunk elements are stored 

0 0 0 0 0 0 0 0 0 0 0 0 66 69 72 0 0 96 99 96 102

0 may represent a value that is not-defined

Structured Chunk storage for sparse data: 
Locations and values of defined elements 
(specified by the “hyperslab” selection)
are stored in different sections of the chunk

Section 0
Section 1

Encoded selection
66 69 72 96 99 96 102                       

If we write a shown sub-array using 
hyperslab selection how the chunk will 
be stored in the file?

August 5, 2024

• Structured chunk may have more than 2 sections
• New way of storing variable-length data in HDF5

• 3 sections when storing sparse variable-length data
• Each section can be compressed with its own compression 

(or filter pipeline)
• No changes to the programming model
• A few new APIs including H5Pset_filter to solve argument 

passing issue for the compression filters
HUG 24



23

Sparse Storage Implementation Status
§ Design documents can be found in Lifeboat GitHub repo(see References 
slide)
‣ Programming model and APIs
‣ File Format extensions
‣ Shared chunk cache
‣ Better performing chunk cache including multi-threaded implementation
‣ Improved I/O pipeline in HDF5 library

§ Current status
‣ File Format is finalized (subject to change until implementation is completed)
‣ Started implementation of APIs and command-line tools to support sparse storage
‣ White paper with benchmark results that motivate structured chunk compression 

https://github.com/LifeboatLLC/SparseHDF5/blob/main/benchmarks/Sparse-VL-Benchmarks-2024-01-16.pdf

‣ Designs for shared chunk cache and I/O pipeline are under development
§ Prototype release in Spring 2025 

August 5, 2024 HUG 24



Integrity of Data in HDF5
HDF5 Encryption



25

Native Encryption in HDF5
Why?
§ Long standing feature request that will enhance HDF5 data security and integrity.

How?
§ Use VFD layer to convert all HDF5 file I/O to paged I/O and then encrypt / decrypt as required.
§ This allows random access to an encrypted file – transparent to the HDF5 library proper.  
§ Concept can be applied to parallel using the sub-filing infrastructure.

Status – currently in Phase I:
§ Serial only proof of concept version near completion – currently in test and debug. 
§ Linux only for now.  Supports AES and Two Fish using gcrypt library.
§ Will be delivered as a pair of built in VFDs in HDF5 1.14.3
§ Looking for reviewers – in particular, comments / suggestions on the API and key distribution.
§ If this is something you need, please consider writing a letter of support for the Phase II 

proposal.

August 5, 2024 HUG 24



26

Native Encryption in HDF5
Plans for Phase II
§ Finalize API / key distribution design as required.
§ Write production versions of VFDs developed in Phase I:
⁃ Implement production API, key management, etc.
⁃ Make VFDs as encryption library and algorithm agnostic as practical
⁃ Performance enhancements – vector I/O support, thread pools.
‣ Multi-thread and possibly selection I/O needed for parallel.
⁃ Make VFDs plug-able

§ Finish and/or extend the HDF5 plug-able VFD support as needed.
§ Finish out sub-filing as required for encryption in parallel – must
⁃ Retro-fit multi-thread support on VFD layer
⁃ Update sub-filing VFD to support at least vector I/O
⁃ Update I/O concentrators to use the VFD layer

August 5, 2024 HUG 24



27

References
§ Documentation and code for multithreaded project are available from

https://github.com/LifeboatLLC/MT-HDF5/tree/main/design_docs
https://github.com/LifeboatLLC/Experimental/ “1_14_2_multithread” branch

§ Documentation for sparse projects is available from
https://github.com/LifeboatLLC/SparseHDF5/tree/main/design_docs
https://gamma.hdfgroup.org/ftp/pub/outgoing/vchoi/SPARSE/H5.format.html#Cha
ngesForStructChunk (in-progress)

August 5, 2024 HUG 24



28

Acknowledgement
This work is supported by the U.S. Department of Energy, Office of Science 
under award number:

§ DE-SC0023583 for Phase II SBIR project "Toward multi-threaded 
concurrency in HDF5”

§ DE-SC0023583 for Phase II SBIR project “Supporting Sparse Data in 
HDF5”

§ DE-SC0024823 for Phase I SBIR project “Protecting the confidentiality 
and integrity of data stored in HDF5"

August 5, 2024 HUG 24



29

Thank you!

Questions?

August 5, 2024 HUG 24


