
 

 

  
Abstract—The aim of this paper is to present a comparative 

study on two different methods for the evaluation of the equilibrium 
point of a ship, core issue for designing an On Board Stability System 
(OBSS) module that, starting from geometry information of a ship 
hull, described by a discrete model in a standard format, and the 
distribution of all weights onboard calculates the ship floating 
conditions (in draught, heel and trim). 
 

Keywords—Algorithms, Computer applications, Equilibrium, 
Marine applications, Stability System.  

I. INTRODUCTION 
HE Ships are still vital to the economy of many countries 
and they still carry some 95 per cent of world trade. In 

1998 the world’s cargo fleet totalled some 775 million tonnes 
deadweight and was increasing by 2 per cent a year [1]. The 
average deadweight was about 17000. Although aircraft have 
displaced the transatlantic liner, ships still carry large numbers 
of people on pleasure cruises and on the multiplicity of ferries 
in all areas of the globe. Ships, and other marine structures, 
are needed to exploit the riches of the deep. Although one of 
the oldest forms of transport, ships, their equipment and their 
function, are subject to constant evolution.  

Changes are driven by changing patterns of world trade, by 
social pressures, by technological improvements in materials, 
construction techniques and control systems, and by pressure 
of economics. As an example, technology now provides the 
ability to build much larger, faster ships and these are adopted 
to gain the economic advantages those features can confer [2]. 
A crucial information for a naval operator is the current 
floating conditions (in draught, heel and trim) of the ship 
related to the actual loading condition but more interesting is 
the possibility to evaluate the new floating conditions 
corresponding to a different load distribution and its reserve of 
stability. An intuitive, qualitative understanding of stability 
and of the risks of insufficient stability must have existed for 
millennia. The foundations for scientific physical explanation 
and for a quantitative assessment of hydrostatic stability were 
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laid by Archimedes in antiquity. Yet despite many important 
contributions and partially successful attempts by scientists in 
early modern era like Stevin, Huygens and Hoste among 
others it took until almost the mid-eighteenth century before a 
mature scientific theory of ship hydrostatic stability was 
formulated and published. Pierre Bouguer and Leonard Euler 
were the founders of modern ship stability theory, who quite 
independently and almost simultaneously arrived at their 
landmark result for hydrostatic stability criteria. The full 
implementation of computational methods for evaluating these 
criteria and their acceptance by practitioners took even several 
decades longer. A beautiful excursus of the history can be 
found in [3]. The availability of computer systems on board 
provides the possibility to simulate in real time the effect of a 
change in load condition and its influence in the new stability 
condition. In every case the core of all stability systems is the 
framework that evaluates the ship equilibrium point in terms 
of draft, heel and trim angle related to a particular load 
conditions. In this paper the authors focus on a comparative 
study of two different approaches to achieve this framework: 
sectional approach and mesh approach. 

The skill to evaluate the equilibrium point by numerical 
procedure gives the ability of a well structured code to 
perform the righting arms calculations when the ship is “free 
to trim” as required by the newest regulations from 90 years 
(SOLAS ‘92). 

This paper is organized as follows: in section 2 it is reported 
the mathematical approach to the problem and the 
simplifications needed; in section 3 and section 4 are 
presented the sectional approach and the mesh approach 
respectively; in section 5 two test cases obtained with the two 
approaches are presented and, in section 6, some conclusions 
and future work are inserted. 

II.  PROBLEM FORMULATION 
The ship is a complex structure and it is, not in physical 

sense, a rigid body. However, for the purpose of studying its 
stability it is permissible so to regard it. Throughout this paper 
the ship will be regarded as a rigid body in calm water and not 
underway. For the ship in waves or underway there are 
hydrodynamic forces acting on it which may affect the 
buoyancy forces. This problem is well described in [4], [5]. 

Nevertheless, for stability purposes, it is usual to ignore 
hydrodynamic forces except for high-speed craft, including 
hydrofoils. For planning hull the hydrodynamic forces prevail 
in assessing stability [6]-[8]. 

 From the statics of rigid bodies follows that necessary and 
sufficient condition so that a body is in equilibrium are 
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Fig. 3 Sectional approach flow chart. 

IV.  MESH APPROACH 
The Mesh Approach assumes as input the 3D hull model 

and the distribution of all weights onboard. The 3D hull model 
input file describes the ship hull geometry. It is a mesh file 
described by a collection of facets, each of them composed by 
three vertices in the geometric reference system.  

 

 
Fig. 4  An example of mesh used for modelling the hull. 

 
Consider the ship in a particular floating condition 

established by the draft, heel and trim parameters. The 
calculation of the submerged volume of the ship is obtained as 
the summation of the volume of all tetrahedrons having a 
common vertex on cutting plane and bases equal to the 
submerged part of each facet of the hull model, while the 
centre of buoyancy, representing the geometric centre of the 
submerged part of the ship, is calculated referring always to 
the submerged part of the facet using geometric algorithm. 

In the calculation, the exact contribution of the facets is 
determined. In Fig. 5 an example of partially immersed 
triangular facet is showed. Such facet will contribute in the 
calculation only for the polygon represented by the vertex 

(N1, N2, V2, V3) as shown in Fig. 5 (b) and can be 
decomposed as set of triangular facets (N1, N2, V2) and (V3, 
N1, V2) as shown in Fig. 5 (c): 

 

Fig. 5 Triangular facet (a), submerged (b), rebuilt as sum of 
triangular facets 

The algorithm for this calculus comes from gaming 
programming [9]. In fact, rigid body simulation brings many 
new capabilities and challenges. In many action games, for 
example, the player can jump on a body in the water and 
expects it to float in a believable manner. For this to happen, 
the game must simulate buoyancy realistically. The Mesh 
Approach implements an efficient method to compute 
buoyancy on rigid bodies (see [10]-[12], through algorithms 
based on a FEA-like method (Finite Elements Analysis).  

 

 
Fig. 6  Mesh Approach: Flow chart for the calculation of submerged 

volume and Centre of Buoyancy. 
 

Starting from the loading conditions given as input, the 
displacement and the location of the center of gravity are 
calculated. The output of the calculus is the triple of 
parameters that defines the floating condition, i.e. the draft 
(ܶ), the heel (ԂT) and the trim (ԂL) angles. The calculations 
take into account the following constraints: the nonnegative 
property of the mean draft, and that the heel angle and trim 
angle lie in the interval of [-π/2, π/2].  
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Hydrostatic analysis generally involves iterations; then 
attention has been paid to the optimization of the iteration 
numbers trying to perform one shot analysis to determine the 
exact contribution of total weight force, buoyancy force, 
waterline area, inertia, etc.  

For obtaining the floating condition while the ship freely 
floats in the still water (i.e. the draft, heel angle and trim angle 
to balance the displacement and the total weight so that the 
perpendicular distance between the acting lines of the 
buoyancy and weight, i.e. the global righting lever, to be zero) 
a Newton-like iteration method has been used. The diagram 
flow of the Mesh Approach is reported in Fig. 6. A detailed 
explanation can be found on [13]. 

V.  CASE STUDY 
To compare the two previous approaches, the authors 

present two different loading conditions on the same ship. 
Among the possible systems of coordinates the paper follows 
the DIN 81209-1 standard as shown in Fig. 7. 

 

 
Fig. 7 System of coordinates according to DIN 81209-1 standard 
 
The x-axis runs along the ship and is positive forwards, the 

y-axis is transversal and positive to port, and the z-axis is 
vertical and positive upwards. The origin of coordinates lies at 
the intersection of the centreline plane with the transversal 
plane that contains the aft perpendicular. The system of 
coordinates used for the hull surface is also employed for the 
location of weights. By its very nature, the system in which 
the hull is defined is fixed in the ship and moves with it. To 
define the various floating conditions related to the position 
assumed by the ship (as reported in [14]), it is necessary to use 
another system, fixed in space defined in ISO 7463 as x0, y0, 
z0.  

Let this system initially coincident to the system x, y, z. A 
vertical translation of the system x, y, z with respect to the 
space-fixed system x0, y0, z0 produces a draught change. If 
the ship-fixed z-axis is vertical, it say that the ship floats in an 
upright condition. A rotation of the ship-fixed system around 
an axis parallel to the x-axis is called heel (Fig. 8) if it is 
temporary, and list if it is permanent. The heel can be 
produced by lateral wind, by the centrifugal force developed 
in turning, or by the temporary, transverse displacement of 
weights. The list can result from incorrect loading or from 
flooding. 

 
Fig. 8 Heel and Trim 

 
If the transverse inclination is the result of ship motions, it 

is time-varying and it call it roll. When the ship-fixed x-axis is 
parallel to the space-fixed x0-axis, it says that the ship floats 
on even keel. A static inclination of the ship-fixed system 
around an axis parallel to the ship-fixed y-axis is called trim. 
If the inclination is dynamic, that is a function of time 
resulting from ship motions, it is called pitch. A graphic 
explanation of the term trim is given in Fig. 8. The trim is 
measured as the difference between the forward and the aft 
draught, so it is measured in metres. Trim is positive if the 
ship is trimmed by the head.  

The main dimensions of the hull used into the two test are 
reported in Table. 

 
 

TABLE I 
MAIN DIMENSIONS OF THE HULL USED IN TEST CASES. 

Length Between Perpendiculars (LBP) 126.5 m 
Breadth (B) 21.6 m 
Depth (D) 10.23 m 

 

 
To verify the correctness of given results of the two 

approaches, the same loading condition are inserted on a 
COTS software named AVEVA Marine [15]. 

A. First Test Case: Lightweight 
The first test case considers the ship completely empty. No 

other information is required in addition to the lightweight as 
reported in TABLE . 

In  
TABLE  the comparison results are reported, where the trim 

is evaluate by the stern, and the positive heel is in port side 
direction. It’s very nice to see the goodness of the two 
different approaches. 

 
TABLE II 

FIRST TEST CASE: LOADING CONDITION. 

Title Weight LCG1 TCG1 VCG1 
Lightweight 5000.0 t 60.52 m 0.05 m 7.92 m 

 

 
 
 
 

 

 
1 (LCG, TCG, VCG) = Longitudinal, Transversal and Vertical component 

of Centre of gravity. 
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TABLE III 
FIRST TEST CASE: COMPARISON RESULTS 

Title AVEVA 
Marine 

Sectional 
Approach 

Mesh 
Approach 

Mean draft at 
midship 4.411 m 4,4222 m 4.418 m 

Heel 2.68 ° 2.6901° 2.621° 
Trim 2.551 m 2.5265 m 2.559 m 

 

B. Second Test case: Deep Loading 
The second test case considers the ship in deep condition. 

All loads are reported in TABLE and the comparison results in 
TABLE . It’s very nice to see the goodness of the two different 
approaches. 

TABLE IV 
SECOND TEST CASE: LOADING CONDITION. 

Title Weight LCG TCG VCG 
Lightweight 5000 t 60.52 m 0.05 m 7.92 m 

Fuel Oil 1000 t 62.50 m 0.01 m 1.50 m 

Fresh Water 120 t 61.50 m 0.00 m 3.00 m 
Crew and 

Effects 60 t 66 m 0.00 m 7.00 m 

Other Effects 1200 t 68 m -0.02 m 8.20 m 
 

 
TABLE V 

SECOND TEST CASE: COMPARISON RESULTS. 

Title AVEVA 
Marine 

Sectional 
Approach 

Mesh 
Approach 

Mean draft at 
midship  5.796 m 5,801 m 5.802 m 

Heel 1.23 ° 1.2103 ° 1.205 ° 
Trim 1.493 m 1.4840 m 1.501 m 

 

VI. CONCLUSION 
In this paper, we have presented the logical and functional 

architecture of the equilibrium condition component of the 
OBSS module. Two different approaches are described 
showing their equivalence. The increase in computer 
performance over time continues to be exponential growth in 
not only the performance of supercomputers but also that of 
personal micro-computers. What is also interesting is the 
application of Graphics Processing Units (GPUs) rather than 
CPUs to solving CFD flows ([16]). In fact, using the GPUs, 
through the NVIDIA's CUDA (Compute Unified Device 
Architecture) programming model it’s possible to harness the 
massive parallelism of the GPU based systems optimised for 
floating-point calculations and matrix inversion much more 
than CPUs (which are required to perform a much broader 
range of operations), reaching elevate speedup (over 10×). 
This observation give sense to next research that will be 
addressed to realize the equilibrium condition component of 
the OBSS via GPU to reduce the elaboration time.  An 
example of the speedup that can be reach by CUDA in  very 
different fields than gaming or graphics can be found in [17]. 
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