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al. 2018). On the other hand, decarbonisation is inevitable 
in order to limit global warming within the next 30 years to 
a peak warming of 2 °C (Iyer et al. 2022; Meinshausen et al. 
2022). A nature-based solution to decarbonisation is peat-
land protection and rewetting, known to limit or, in some 
cases, stop or reverse radiative forcing due to the prevention 
of high carbon dioxide (CO2) emissions by waterlogging 
(Günther et al. 2020).

Though knowledge on greenhouse gas (GHG) emission 
factors (EF) for drained, rewetted, and pristine peatlands is 
fragmented, data exist with an increasing abundance. Con-
trary to this, there is a lack of disaggregated knowledge 
regarding emission dynamics for wet or rewetted peatlands 
under paludiculture practices (Bianchi et al. 2021). The 
main drivers of variation regarding CO2 emissions from 
peatlands are well known, being mainly dependent on the 
dynamics of water table depth (WTD), biomass growth, and 
biogeochemical stabilisation of soil organic matter (Moore 
and Dalva 1993; Skinner 2008; Wang et al. 2021; Kalisz et 
al. 2021). However, the determination of explicit drivers is 

Introduction

Development regarding the cultivation of flooding-tolerant 
crops on wet or rewetted peatlands, known as ‘paludicul-
ture’ (Tanneberger et al. 2021), was recently highlighted 
to play a major role as a key priority in mitigating climate 
change (Evans et al. 2021). This is due to a conflict in global 
needs in which the first aspect is societal dependence on 
arable land in times of a growing world population but the 
simultaneous need for ecological conservation (Mehrabi et 
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Abstract
The cultivation of flooding-tolerant grasses on wet or rewetted peatlands is a priority in climate change mitigation, 
balancing the trade-off between atmospheric decarbonisation and biomass production. However, effects of management 
intensities on greenhouse gas (GHG) emissions and the global warming potential (GWP) are widely unknown. This study 
assessed whether intensities of two and five annual harvest occurrences at fertilisation rates of 200 kg nitrogen ha− 1 yr− 1 
affects GHG exchange dynamics compared to a ‘nature scenario’ with neither harvest nor fertilisation. Fluxes of carbon 
dioxide (CO2), methane (CH4), and nitrous oxide (N2O), using opaque and transparent chambers, were measured on a 
wet fen peatland with a mean water table depth of -10 cm below soil surface. Overall, no treatment effect was found on 
biomass yields and GHG emissions. Annual cumulative CH4 emissions were low, ranging between 0.3 and 0.5 t CO2-C 
eq ha− 1 yr− 1. Contrary to this, emissions of N2O were high, ranging between 1.1 and 1.5 t CO2-C eq ha− 1 yr− 1. For mag-
nitudes of CH4 and N2O, soil moisture conditions and electrical peat properties were critical proxies. Atmospheric uptake 
of CO2 by net ecosystem exchange was higher for the treatments with management. However, this benefit was offset by 
the export of carbon in biomass compared to the treatment without management. In conclusion, the results highlighted a 
near-equal GWP in the range of 10.5–11.5 t CO2-C eq t ha− 1 yr− 1 for all treatments irrespectively of management. In a 
climate context, a restoration scenario but also intensive paludiculture practices were equal land-use options.
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even more complex for emissions of methane (CH4), where 
pivotal processes still are under debate. Considering the 
dynamics of anaerobic soil biogeochemistry, the selection 
of species for paludiculture was highlighted as essential 
(Noyce and Megonigal 2021). Typical semi-aquatic wetland 
plants, such as Typha spp. or Phragmites spp., are known 
to potentially contribute to increased CH4 emissions by 
allowing CH4 to bypass possible oxidation processes within 
the soil by aerenchymatous transport (Minke et al. 2016; 
Vroom et al. 2022). Contrary to this, bryophyte-dominated 
(i.e., Sphagnum spp.) peatlands are frequently associated 
with methanotrophic (i.e., methane-consuming) activity 
(Larmola et al. 2010; Kolton et al. 2022). However, no such 
direct association between vegetation composition and CH4 
emissions exists for perennial grasses.

Phalaris arundinacea, or reed canary grass (RCG), is a 
bunchgrass species with a wide array of potential habitats. It 
is cultivated on dry mineral soils but also naturally invades 
floodplains and wetlands (Ustak et al. 2019). So far, the cul-
tivation and biomass utilisation of RCG has been mainly 
for forage or as a bioenergy crop, while it recently gained 
attention as a feedstock in green protein biorefinery (Utama 
et al. 2018; Nielsen et al. 2021a; Næss et al. 2023). Fur-
thermore, its versatility in various environmental conditions 
led to unique anatomical features, particularly in their culm 
and rhizomes, thereby distinguishing RCG from other Poa-
ceae species and placing it structurally between mineral-
soil adapted and semi-aquatic plants (Zhang et al. 2017). 
However, while the potential for cultivation of RCG on wet 
peatlands has been demonstrated, an assessment of associ-
ated GHG emissions is still lacking for management options 
beyond the commonly applied annual harvest in winter 
months or an experimental two-cut management (Kukk et 
al. 2010; Heinsoo et al. 2011; Järveoja et al. 2016; Karki et 
al. 2019). Therefore, the determination of a potential effect 
of different management intensities on annual GHG bal-
ances for RCG cultivation on wet or rewetted peatlands is 
critical in order to promote the development of knowledge 
to efficiently balance the needs for atmospheric decarboni-
sation and agricultural production (Mehrabi et al. 2018; 
Evans et al. 2021; Bianchi et al. 2021).

Thus, manipulation of the grass stand age is likely to be 
related to different magnitudes of ecosystem-atmosphere 
exchanges of GHG. In a previous study, variations in har-
vest intensities were found to affect root growth signifi-
cantly and, therewith, the potential for instant belowground 
accumulation of carbon (C), with lesser harvests leading to 
increased C storage (Nielsen et al. 2021b). However, more 
frequent harvest occurrences have the potential to efficiently 
mitigate N2O emissions in summer months, where oxic con-
ditions might occur due to reduced WTD. A dropdown in 
WTD has the potential to result in increased nitrogen (N) 

mineralisation, particularly in nutrient-rich fen peatlands 
(Minkkinen et al. 2020). There, regrowth of aboveground 
biomass (AGB) following harvest will not be delayed by N 
scarcity and the optimal partitioning mechanisms of plant 
growth, prioritising the development of plant organs critical 
to provide the most limiting resource (Fraser et al. 2015; 
Yang et al. 2018). Further, regrowth of juvenile plant mate-
rial is associated with enhanced uptake of atmospheric CO2, 
due to enhanced photosynthetic activity, and N (Walker et 
al. 2014; Tejera et al. 2022).

Therefore, it was hypothesised that different intensities of 
harvest and fertilisation frequencies of RCG cultivated on a 
wet fen peatland will affect annual GHG emissions and the 
resulting global warming potential (GWP). In this context, 
the aim was to assess whether intensities of two and five 
annual harvest occurrences at fertilisation rates of 200 kg N 
and K per ha− 1 yr− 1 will lead to differing carbon balances 
and gas exchange dynamics as compared to a ‘nature sce-
nario’ with neither harvest nor fertilisation.

Methods

Study Site and Biomass Harvest

We determined GHG emissions on four plots, cultivated 
with Phalaris arundinacea, cultivar: Lipaula, on a ripar-
ian fen peatland in Vejrumbro, Denmark (56°26’15.3"N, 
9°32’44.1"E). The Vejrumbro field site has previously 
been used in various studies, e.g., regarding biomass pro-
ductivity (Nielsen et al. 2021a) and the effects of flooding 
(Malinowski et al. 2015). The climate is temperate, with 
a long-term annual average temperature of 8.3 °C and an 
annual average precipitation of 675 mm for 1991–2022 
(Aarhus University Viborg, Meteorological Station, Fou-
lum). The Vejrumbro field site has been established in 2018 
with various flood-tolerant perennial grass species as part of 
a biomass study. In the last decades, the site was classified 
as grassland and mainly used for grazing due to its wetness 
despite the establishment of drainage systems in the form 
of ditches and tile drains around the 1950s. Frequent flood-
ing events on the study site and the relative distances of the 
GHG measurement plots to the Nørre Å river and drainage 
ditches created spatial heterogeneity of varying organic car-
bon (OC) contents and other environmental variables across 
the four plots (Table 1).

The four plots used for GHG measurements were subdi-
vided into six subplots (Fig. 1) with differing management 
intensities represented by annual frequencies of harvest 
and fertilisation. Of these, treatments of zero (0-cut), two 
(2-cut) and five (5-cut) annual cuts were chosen for this 
study. The treatments with two and five annual cuts received 
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Wetlands

(WTD), with screens between– 100 cm to -5 cm below 
ground surface. In addition, dipwells (perforated PVC 
tubes) of 100 cm in length were installed within the col-
lar area and equipped with a water depth logger (Levelog-
ger5; Solinst Canada Ltd., Ontario, Canada), measuring 
automatically every hour. Atmospheric pressure correction 
was based on barometric loggers of the same manufacturer. 
For all components, negative signs denote depths below the 
ground surface and vice versa.

Greenhouse Gas Sampling and Analysis from 
Opaque Chamber Measurements

White opaque PVC chambers (60 cm x 60 cm x 41 cm) were 
used for gas flux measurements of CO2, CH4, and N2O. 
Sampling campaigns were held every second week from 
the 5th of May 2020 to the 4th of May 2021. The cham-
bers were equipped with a fan to mix headspace air, a vent 
to ensure pressure equilibrium, and a temperature probe 
measuring air temperature inside the chamber. During all 
GHG sampling campaigns, chambers were placed on sepa-
rate middle pieces (60 cm x 60 cm x 41 cm), which were 
pre-positioned 30 min prior to sampling on the permanently 
installed soil collars. This procedure was in order to avoid 
methane ebullition as well as to make space for biomass. 
Five gas samples (11mL) were withdrawn at 0, 5, 10, 25, 
and 50 min after chamber closure, using a syringe (20 mL) 
connected to the chamber sampling port by a polypropylene 
tube of 1.2 m and 4 mm inner diameter. The sampling port 
inside the chamber had three air inlets, additionally ensuring 
the withdrawal of well-mixed air. After discarding 16 mL of 
dead air volume from the tube system, air from the syringe 
was transferred to pre-evacuated 6 mL glass exetainers 
(Labco Limited, UK). Those were stored dark until analysis 
on an Agilent 7890 gas chromatograph, equipped with an 

split-fertiliser applications of in total 200 kg N and K ha− 1 
yr− 1. Details on cultivation and seeding, as well as fertilisa-
tion and harvest occurrences, were described by Nielsen et 
al. (2021a). For this study, the subplots were equipped with 
permanently installed soil collars (55 cm x 55 cm), board-
walks, and relevant instrumentation for determining sub-
plot-specific environmental parameters, as described below. 
The installation was performed in February and March 
2020, and first test measurements started in April 2020. Bio-
mass within the collars was harvested with a handheld grass 
trimmer (Makita, Anjō, Japan) in calendar weeks 24 and 36 
(2-cut treatment), as well as 20, 24, 32, 36, and 42 (5-cut 
treatment). Harvested biomass was weighed, chopped, and 
oven-dried at 60 °C before further determination of organic 
carbon (OC) content on a Vario MAX CN (Elementar Anal-
ysesysteme GmbH, Hanau, Germany).

Meteorological and Hydrological Parameters

The meteorological station of Aarhus University Viborg, 
approximately 7 km from the study site, continuously mea-
sured photosynthetically active radiation (PAR), air tem-
perature, and precipitation. In addition, each subplot was 
equipped with a soil temperature (Tsoil) logger at -5 cm 
depth, logging soil temperature every hour. Further, for 
each GHG sampling occasion and subplot, measurements 
of Tsoil at -2 cm, -5 cm, and − 10 cm were taken manually 
with a digital thermometer (Weber Inc., IL, USA). The 
volumetric water content (θ, cm3 cm− 3) was measured dur-
ing GHG sampling campaigns using a time domain reflec-
tometry (TDR) system (Thomsen 2006). Further, subplots 
were equipped with electrodes for measurements of redox 
conditions (Eh) at -5 cm and − 25 cm depth, as well as one 
piezometer for manual measurements of water table depth 

Fig. 1 Drone picture of the 
Vejrumbro field site in the Nørre 
Å river valley. Plots used for 
the field trial are highlighted in 
red, with plot numbers indicated 
within the plots. A close-up 
shows a schematic illustration of 
the split-plot design, including 
infrastructure for greenhouse gas 
measurements. Drone pictures 
were taken by Jens Kjeldsen
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Wetlands

Li-Cor Inc., Lincoln, USA), (4) as well as an H2O sensor– 
later used to correct CO2 for water vapour concentrations 
according to Webb et al. (1980). More details on the design 
for transparent chambers were described by Elsgaard et al. 
(2012).

To cover different ranges of naturally occurring PAR, arti-
ficial PAR blocking was applied by shrouding the chambers 
with meshes. For each collar placement, first, net ecosystem 
exchange (NEE) measurements were conducted without 
shrouding at natural PAR, followed by 50% PAR-blocking 
and 75% PAR-blocking. Finally, one set of Reco measure-
ments was conducted by blocking 100% PAR. Before each 
PAR-blocked measurement, plants were given 2 min to 
adapt photosynthesis rates. This procedure resulted in four 
measurements per collar placement. In addition, the order 
of transparent chamber measurements was randomised for 
each sampling campaign.

Annual Carbon Balances

Based on the flux calculation, hourly fluxes for Reco and 
gross primary production (GPP) were determined by gap-
filling for each plot and treatment. Here, a Tier 2 method, 
as described by Liu et al. (2022), including vegetation 
height (GH) but using soil temperature (Ft), was applied. 
This resulted in the following Lloyd and Taylor Arrhenius-
type models for Reco (Eq. 2) and a Michaelis-Menten-based 
equation for GPP (Eq. 3).

Reco = Rref ∗ e
E0∗( 1

TRef−T0
− 1

T−T0
)
+ (a ∗GH) (2)

GPP =
GPPmax ∗GH ∗ α ∗ PAR

(GPPmax ∗GH) + α ∗ PAR
∗ Ft  (3)

Values for GH were interpolated between manual measure-
ment campaigns at each GHG sampling occasion, with a cut 
set to the stubble height of 7 cm after each harvest occur-
rence. In those equations, TRef is the reference temperature 
of 283 K, and T0 is the temperature constant of 227 K, indi-
cating the start of biological processes. Rref denotes respira-
tion at TRef, while E0 are estimated values for the activation 
energy. GPPmax is the maximum rate of carbon fixation at 
a PAR of 2000 expressed in mg CO2-C m− 2 h− 1, whereas 
alpha (α) denotes the light use efficiency. Both equations 
were previously described in detail by Liu et al. (2022) and 
Oestmann et al. (2022) and are commonly applied. NEE val-
ues for each hour were derived by summing Reco and GPP.

Following the approach of Liu et al. (2022) and Hoff-
mann et al. (2015), the fitted models were controlled for 
performance using the comparison between modelled and 
measured values by hands on a variety of performance 

automatic injection system (CTC CombiPAL, Agilent A/S, 
Nærum, Denmark). Gas fluxes were calculated in R (R core 
team (2021), version 4.1.2 “Bird Hippie”), using the ‘gas-
fluxes’ package (Fuss et al., 2020), and a combination of 
linear and non-linear models for flux estimation with model 
selection based on the kappa.max technique for reduction 
of bias and uncertainty as in detail described by Hüppi et al. 
(2018), considering the GC system-specific precision limit 
(Petersen et al. 2012) and defining the minimum detectable 
fluxes to 3.5 g CO2 m− 2 h− 1, 3.2 µg CH4 m− 2 h− 1, and 1.9 
µg N2O m− 2 h− 1. From a total of 341 fluxes, 83%, 89%, and 
95% of CO2, CH4, and N2O fluxes were calculated using 
the robust linear model. 12 fluxes of CO2 and one flux of 
N2O were ‘NA’ while the remaining fluxes were determined 
using the HMR.fit method.

Aggregated annual fluxes of CH4 were calculated based 
on daily dependences with soil temperature using the R 
package flux (Jurasinski et al. 2014; version 0.3-0), using 
a similar approach as for CO2 (Eq. 1), while N2O emis-
sions were aggregated to annual cumulative values using 
linear interpolation (Fuß et al., 2020). Fluxes of CO2 were 
only determined and calculated as a quality check (leak 
test) for CH4 and N2O and were not included in any further 
calculations.

 (1)

In which RCH4 is the flux of CH4, Ϙ1 is the base respiration 
rate at 10℃, Ϙ2 is the bias coefficient, and Temp is the mea-
sured hourly soil temperature at -5 cm.

Measurements of Carbon Dioxide Using Transparent 
Chambers

In the same period from the 5th of May 2020 to the 4th of 
May 20,201, CO2 fluxes were measured in biweekly inter-
vals using transparent chambers of the same size, includ-
ing transparent middle pieces, as described for the opaque 
chambers in the section above. Ideally, measurements were 
performed the day following the opaque chamber mea-
surements. However, this rhythm was subject to minor 
alterations of ± two days to ensure that measurements 
were performed in sampling windows (between 10:00 and 
15:00) without precipitation. CO2 concentrations were mea-
sured using a Li-Cor 840 A infrared gas analyser (Li-Cor 
Inc., Lincoln, USA) connected to an automatic datalogger 
(Campbell CR850; Campbell Scientific Inc., Logan, USA), 
over chamber closure times of 120 s. The chambers were 
equipped with (1) air-temperature sensors, measuring tem-
perature in- and outside the chamber, (2) a temperature 
control unit, starting automatically when temperature dif-
ferences exceeded 1 °C, (3) a PAR sensor (Li-Cor 190-SA; 
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Results

Meteorological and Hydrological Conditions

The study year 2020/2021 had an annual average of 8.6 °C 
and a total precipitation of 593 mm and was, therefore, 
warmer (+ 0.2 °C) and dryer (-82 mm) than the long-term 
average over the past 30 years. The annual average WTD 
for the site was − 0.10±-0.03 m, with no distinct differences 
between plots. However, from late May to October, WTD 
dropped to values below − 20 cm, dipping down to more 
than − 40 cm in August 2020. From November to February, 
all plots were inundated (Fig. 2a). θ varied on an annual basis 
between 59.9 ± 2.2% (plot 12, treatment 2) to 66.7 ± 1.8% 
(plot 13, treatment 5), with a site average of 64.1 ± 1.9%. 
The pH-corrected redox conditions in both depths (-5 cm 
and − 25 cm) differed among plots and subplots without a 
link to a potential treatment effect. For instance, redox con-
ditions at -5 cm ranged between 227.8 ± 11.2 (plot 13) to 
291.7 ± 17.7 (plot 12) Eh, with no distinct treatment-specific 
differences (Table 1).

Biomass Yields and Carbon Content

Mean harvested biomass yields were similar for the treat-
ments with two (10.6 ± 1.1 t DM ha− 1 yr− 1) and five annual 
cuts (9.4 ± 1.0 t DM ha− 1 yr− 1), resulting in the export of 
4.7 ± 0.5 and 4.2 ± 0.5 t of C, and 0.25 ± 0.03 and 0.29 ± 0.03 
t of N by biomass harvest (Table 2).

Carbon Dioxide

NEE for all treatments was positive on an annual basis, rang-
ing between 3.8 ± 3.2 (2-cut) to 9.6 ± 2.2 (0-cut) t CO2-C 
ha− 1 yr− 1 with no statistical difference between the annual 
values (Table 3). However, the treatments with two and 
five annual cuts were both characterised by negative (net 
uptake) NEE during the early growing season in April-June 
(Fig. 3). This observation was absent for the 0-cut treatment. 
A similar pattern was observed for GPP, which was higher 
for the treatments subject to harvest. Here the 2-cut treat-
ment showed the highest GPP, with peaks prior to harvest 
seen on a plot basis (Figure S1). Reco, however, was similar 
for all treatments, averaging 21.5 ± 2.7 t CO2-C ha− 1 yr− 1.

Methane Emissions

Methane emissions were low for all treatments (Table 3), 
with any significant difference. However, the highest value 
of cumulative emissions was found for the 2-cut treatment 
(0.5 ± 0.13 t CO2-C eq ha− 1 yr− 1) compared to the 0- and 
5-cut treatments (0.3 ± 0.09 and 0.3 ± 0.05 t CO2-C eq ha− 1 

indicators: Mean absolute error (MAE), observations stan-
dard error (RSR) based on root mean square error, coeffi-
cient of determination (R2), modified index of agreement 
(md), per cent bias (PBIAS), and Nash-Sutcliff’s model 
efficiency (NSE). Thresholds for performance ratings were 
adapted from Hoffmann et al. (2015). Models were accepted 
if 5 out of 6 performance indicators were at least “satisfac-
tory” and two indicators outweighed the “unsatisfactory” 
performance with a “good” performance rating. Uncertain-
ties for all GHGs and annual balances were determined 
using a combined bootstrap and Monte Carlo jackknife 
method with 1000 iterations. Details on this method were 
previously described by, e.g., Köhler et al. (2012), Beetz et 
al. (2013), and Günther et al. (2015). To calculate the GWP 
of CH4 and N2O in terms of CO2eq, we applied conversion 
factors of 28 and 265 (Myhre et al. 2013), also adopted by 
the United Nations Framework Convention on Climate 
Change (UNFCCC) in 2021. For all GHGs and balances, 
the atmospheric sign convention was applied where nega-
tive values indicate uptake and positive values emissions.

In terms of global warming potential (GWP), annual 
GHG balances (Eq. 4) for each treatment and plot were 
calculated considering the export of C by biomass harvest 
(CExport):

GWP = NEE + CExport + 28 ∗ CH4 + 265 ∗N2O  (4)

For better comparability, all annual balances were expressed 
as CO2-C eq.

Statistics

For all parameters and values, observations are reported as 
means with standard errors (n = 4) to present the data distri-
bution. The significance of differences between means was 
tested by one-way ANOVA with post-hoc Tukey’s HSD at 
a confidence level of 95%. Effects of co-variates on CH4 
and N2O fluxes were assessed using generalised additive 
models (GAMs) in the package mgcv (Wood, Version 1.8–
39,2022) in R (R Core Team (2020) Version 4.1.2– “Bird 
Hippie”), capable of accounting for linear and non-linear 
relationships (Marra and Wood 2011; Wood 2011; Wood et 
al.,2016). Effects of co-variables and categorical treatments 
on the annual cumulative emissions of NEE, CH4, N2O and 
the resulting GWP were derived using ANOVA-evaluated 
linear regression models.
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detected on neither N2O fluxes per measurement campaign 
nor annual cumulative emissions (Tables S1, S2). Inconsis-
tent directions of treatment effects of harvest and fertilisa-
tion frequency also depicted this lack of correlation. Here, 
for instance, N2O emissions increased with management 
intensification in plot 19, while the opposite was observed 
in plot 12 (Fig. 4).

Annual Greenhouse Gas Balances

The annual GHG balances of all treatments were dominated 
by NEE and the export of harvested C in biomass, together 
accounting for 81% (2-cut) to 88% (5-cut) of the GWP. NEE 
alone accounted for 84% of the GWP for the 0-cut treatment. 

yr− 1, respectively). Across plots and treatments, the highest 
CH4 emissions were observed at low Eh values, typically 
following increases in θ (Figure S2). In addition, while CH4 
fluxes per measurement campaign correlated with soil tem-
perature and GH, no effects on annual cumulative values 
were found (Tables S1, S2).

Nitrous Oxide

Both fluxes and annual cumulative emissions of N2O were 
high for all treatments, with no significant difference, 
despite 0.4 less N2O (in t CO2-C eq ha− 1 yr− 1) emitted 
from the treatment with five annual cuts (Table 3). In this 
context, no effect of harvest and fertilisation frequency was 

Fig. 2 Redox conditions, 
expressed as the for pH corrected 
redox potential (Eh), in the soil 
layer of -5 cm to -25 cm depth 
(left y axis) over the course of 
the study period for (a) each plot, 
and (b) each treatment. Blue lines 
indicate the volumetric water 
content (θ) in % (right y axis), 
while black lines show the fluctu-
ation of water table depth (WTD) 
at cm soil depth (left y axis). For 
illustration, the green line shows 
interpolated emissions of CH4(in 
1/100 µg m-2h-1, left y axis). Red 
dashed lines indicate zero
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GWP of the three treatments, all of which ranged around 
approximately 11 t CO2-C eq ha− 1 yr− 1 (Fig. 4).

Discussion

Management Intensity did not Affect the Global 
Warming Potential

In this study, the magnitudes of annual GHG emissions for 
RCG cultivation on a wet fen peatland under different inten-
sities of harvest and fertilisation, with either zero, two, or 
five annual cuts, were assessed. Annual biomass production 
for the treatments including harvests was similar and within 
the range of previously reported yields for RCG in a temper-
ate climate (Tilvikiene et al. 2016) but lower compared to a 
study in the same area and similar WTD (Karki et al. 2019). 
The similarity in biomass yields was also depicted by near-
equal Reco emissions for all treatments, both aspects previ-
ously being correlated by Liu (2022). Given that gap-filled 
annual Reco on both the 0-cut and 2-cut treatment were equal 
(both 21.4 t CO2-C ha− 1 yr− 1), we estimated that aboveg-
round biomass production on the 0-cut treatment also must 
have been similar. This assumption is supported by the pre-
viously reported yield of 8.3 t DM ha− 1 yr− 1 for RCG in the 
same study area, with one annual summer cut (Nielsen et al. 
2021a). However, despite similar biomass growth and Reco, 
we found differing CO2 dynamics for partitioned fluxes of 
GPP and, subsequently, NEE. Here, the treatment with two 
annual cuts resulted in the smallest annual CO2 emissions of 
3.8 t CO2-C ha− 1 yr− 1, which is in line with the IPCC 2013 
EF for shallow-drained temperate grassland on nutrient-rich 
peat (IPCC 2014), but high in comparison to other stud-
ies. For instance, Schrier-Uijl et al. (2014) found an annual 
cumulative NEE of 1.1 t CO2-C ha− 1 yr− 1 for intensively 
and extensively managed sites in the Netherlands with simi-
lar drops in WTD over summer months as on our study site. 
However, a point of discussion in this context is the appli-
cability of the annual mean WTD for comparisons between 
sites. For instance, according to Wilson et al. (2016a) and 
the IPCC (2014), our study site would be classified as rewet-
ted due to the annual average WTD of -10 cm. Nevertheless, 
it is a site with an existing shallow drain system and reduced 
WTD during summer months. Another point of discussion 
is whether emissions or net carbon balances are reported. 
For instance, we found NEE emissions in the range of 
3.8–9.6 t CO2-C ha− 1 yr− 1, depending on management, 
therewith being similar to the range of EFs for drained crop-
land or deeply-drained intensively used grassland (Wilson 
et al. 2016a; Weideveld et al. 2021). If also accounting for 
the export of biomass, known as the net ecosystem carbon 
balance (NECB), nowadays commonly applied following 

For the treatment with five annual cuts, this resulted in the 
highest GWP of all treatments (11.5 ± 2.61 t CO2-C eq ha− 1 
yr− 1), despite the lowest contribution of N2O and CH4. 
However, there was no significant difference regarding the 

Table 2 Mean dry matter (DM) biomass yields, as well as carbon 
(C) and nitrogen (N) exports with SE (n = 4) in brackets per harvest 
occurrence as indicated by calendar week and as total annual sum 
per hectare. For the 0-cut treatment, no biomass was harvested. For 
the treatment with two annual cuts, yields from week 24 in 2020 are 
shown for comparison but not included in any calculations
Treatment Year Week t DM ha− 1 t C ha− 1 t N ha− 1

0 cut NA NA NA
(2020 24 4.90 (± 0.40) 2.21 (± 0.18) 0.11 

(± 0.01))
2 cut 2020 36 6.28 (± 0.59) 2.79 (± 0.27) 0.16 

(± 0.02)
2021 24 4.28 (± 0.52) 1.95 (± 0.23) 0.09 

(± 0.01)
Sum 2020–

2021
10.55 
(± 1.09)

4.74 (± 0.49) 0.25 
(± 0.03)

5 cut 2020 24 1.91 (± 0.27) 0.86 (± 0.12) 0.06 
(± 0.01)

2020 32 3.55 (± 0.66) 1.60 (± 0.31) 0.08 
(± 0.01)

2020 36 1.25 (± 0.20) 0.56 (± 0.09) 0.05 
(± 0.01)

2020 42 1.67 (± 0.07) 0.74 (± 0.03) 0.07 
(< 0.01)

2021 20 0.99 (± 0.24) 0.45 (± 0.11) 0.03 
(± 0.01)

Sum 2020–
2021

9.37 (± 1.02) 4.21 (± 0.46) 0.29 
(± 0.03)

Table 3 Annual average greenhouse gas balances per treatment with 
SE given in brackets. Letters indicate the significance between means

Treatment 0 Treatment 2 Treatment 5
Biomass C 
export (t C 
ha− 1 yr− 1)

NA 4.7 (± 0.49)a 4.2 (± 0.46)
a

Reco (t 
CO2-C ha− 1 
yr− 1)

21.4 (± 2.46)a 21.4 (± 3.11)a 21.8 
(± 2.46)a

GPP (t 
CO2-C ha− 1 
yr− 1)

-11.8 (± 0.46)a -17.6 (± 1.35)b -15.8 
(± 0.46)ab

NEE (t 
CO2-C ha− 1 
yr− 1)

9.6 (± 2.15)a 3.8 (± 3.17)a 5.9 (± 2.24)
a

CH4 (t 
CO2-C eq 
ha− 1 yr− 1)

0.3 (± 0.09)a 0.5 (± 0.13)a 0.3 (± 0.05)
a

N2O (t 
CO2-C eq 
ha− 1 yr− 1)

1.5 (± 0.31)a 1.5 (± 0.13)a 1.1 (± 0.25)
a

GWP (t 
CO2-C eq 
ha− 1 yr− 1)

11.4 (± 2.11)a 10.5 (± 2.69)a 11.5 
(± 2.61)a
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close to equal among different management intensities. For 
instance, annual CH4 emissions were 0.3 t CO2-C eq ha− 1 
yr− 1 for both extremes of assessed treatments: no harvest 
and fertilisation, as well as intensive management with five 
annual cuts. In the case of the 0-cut treatment, this might 
be explained by a combination of enhanced root growth 
(Nielsen et al. 2021b) in combination with potential CH4 
oxidation by aerenchymatous oxygen transport to the root 
zone. However, an explanation the other way around is 
more likely: that dry soil in periods with enhanced soil 
temperature led to increased CH4 oxidation over the entire 
study area, disregarding of treatment. In addition, in cases 
of high captured CH4 fluxes, mainly on the 2-cut treatment, 
a lag-time effect has been observed– meaning that higher 
CH4 fluxes were detected delayed with regard to the occur-
rence of optimal conditions of θ and soil temperature. This 

the IPCC guidelines (IPCC 2014), all our treatments were 
similar with regard to CO2 emissions, having a NECB of 
8.5 (2-cut) to 10.1 (5-cut) t CO2-C ha− 1 yr− 1. However, the 
results were far above the recently defined EF for German 
peatlands, which were within the range of 0–4 t CO2-C ha− 1 
yr− 1 for the same average WTD as on our study site (Tie-
meyer et al. 2020). Thus, defining a universal range of CO2 
emissions for wet peatlands under the land use of permanent 
grass or paludiculture is not a straightforward task due to the 
dependence on biomass yields as a response to soil nutrient 
and mineral status.

The observation of near-equal emission magnitudes 
for all management intensities did not change when also 
including annual emissions of CH4 and N2O. CH4 emis-
sions were very low, while N2O emissions were unexpect-
edly high. However, annual emissions for both gases were 

Fig. 4 Cumulative annual values 
for methane (CH4), nitrous oxide 
(N2O), net ecosystem exchange 
(NEE) and the global warming 
potential (GWP). Values are 
given as means per treatment 
(bars) and individual values per 
plot (coloured dots), including 
the standard error (n = 4) of the 
mean. Red dashed lines indicate 
zero

 

Fig. 3 Averaged gap filled daily 
carbon (C) fluxes, partitioned 
into gross primary productivity 
(GPP), net ecosystem exchange 
(NEE), and ecosystem respiration 
(Reco), per treatment as indicated 
by the number of annual biomass 
cuts (0, 2, 5) throughout the study 
period from May 2020– May 
2021
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Dooling et al. (2018) found that annual cumulative emis-
sions for CH4 are underestimated if only based on daytime 
measurements, even if this might be an artefact resulting 
from nocturnal stratification (Stieger et al. 2015). Further, 
due to the bi-weekly measurement campaigns, it is with-
out much doubt that we have not adequately captured hot 
moments of CH4 and N2O emissions, which contributed to 
140 and 45% of mean annual fluxes in a study by Anthony 
and Silver (2021). In addition, also modelled daily values 
of CO2 fluxes, including their partitioning, are likely to not 
be flawless due to artificially derived PAR reduction by 
shrouding. Even though plants were given time to acclimate 
their photosynthesis rates to the reduced light levels before 
measurements were started, we could not capture fluxes 
under different temperature levels. Instead, a diurnal sam-
pling campaign approach over naturally occurring levels of 
PAR and temperature would have been of benefit.

Water Table Depth is Only One Potential Proxy

For both main aspects related to this study, (1) biomass 
yields, including their accumulation of C and N, as well as 
(2) GHG emissions in dependence on management inten-
sity, we did not find a treatment effect. However, we found 
intra-site variations that were distinct on a plot basis. First, 
in dependence on the distance to the adjacent Nørre Å river, 
organic carbon contents between plots with differences of 
up to 20% OC. This plot-specific difference was also found 
for pH and redox conditions. The most pronounced inter- 
and intra-plot specific differences were observed when 
relating the hydrological conditions of WTD, θ, and Eh to 
GHG fluxes. Typically, mean WTD levels are used as prox-
ies for annual emission rates and are proposed to be utilised 
in national inventory reports (Tiemeyer et al. 2020). How-
ever, WTD is only one proxy, not necessarily being strictly 
correlated to two other critical hydrological aspects: the 
capillary fringe intensity (Gnatowski et al. 2002; Macrae et 
al. 2013) and the soil’s water holding capacity, which are 
also affected by precipitation rates (Irfan et al. 2020; Dai et 
al. 2022). As also observed in a study by Estop-Aragonés et 
al. (2012), soil moisture contents for our plots were not con-
tinuously developing parallel to changes in WTD. With both 
θ and Eh being related to suitable conditions for fluxes of 
CH4 and N2O (van den Pol-van Dasselaar et al. 1998; Wang 
et al., 2018b; Zhao et al. 2019; Korkiakoski et al. 2022), we 
found that soil-moisture related differences between plots 
explained the variation of observed emission magnitudes, 
irrespectively of treatment. Säurich et al. (2019) found the 
highest N2O production rates from denitrification at a water-
filled pore space of 80–95%, which is similar to the aver-
age measured volumetric water contents of 60–67% during 
summer months for our site, but with distinct differences 

lag-time effect has also been observed in a study by Yuan 
et al. (2021), who found that methanogenic bacteria are 
unable to utilise C substrate availability immediately after 
optimal soil moisture conditions are reached. According to a 
review by Abdalla et al. (2016) on CH4 emission in northern 
peatlands of different stages of naturalness, our observed 
CH4 emissions were way below values reported for natural 
fens (1.77 t CH4 in CO2-C eq t ha− 1 yr− 1), but above CH4 
dynamics from drained fen peatlands (0.05 t CH4 in CO2-C 
eq t ha− 1 yr− 1). Thus, for all treatments, it was found that 
annual cumulative emissions of CH4 that were more within 
the range of dynamics for natural bog peatlands (0.1–1.0 t 
CH4 in CO2-C eq t ha− 1 yr− 1), usually associated with high 
rates of methanotrophy (Kolton et al. 2022). However, com-
pared to a compilation of annual CH4 emissions for German 
grasslands (Tiemeyer et al. 2020), our observed values from 
a wet fen peatland with an annual WTD of -10 cm were 
higher than values reported for a similar mean WTD (0.05 
t CH4 in CO2-C eq t ha− 1 yr− 1), as well as across all WTDs 
and under grassland-use (0.007 t CH4 in CO2-C eq t ha− 1 
yr− 1).

Even regarding emissions of N2O, we did not find sig-
nificant differences between treatments. This, however, is 
curious since the 0-cut treatment did not receive any N fer-
tiliser application– and yet, emissions were equal to those 
from the 2-cut treatment, having received 200 kg of N h− 1 
yr− 1. In other words, fertilisation did not result in higher 
N2O emissions for the 2-cut and 5-cut treatments. Over-
all, N2O emissions were high and with 1.1 (5-cut) and 1.5 
(0-cut, 2-cut) t CO2-C eq t ha− 1 yr− 1 within the range of 
emissions for drained peatlands under the land-use of fertil-
ised cropland (Wilson et al. 2016a). Considering the IPCC 
default EF (IPCC 2019) for direct N2O emissions from 
agricultural soil, a fixed percentage of approximately 1% of 
fertiliser-N applied, as well as priors of approximately 7.9 
and 4.6 kg N2O-N ha− 1 yr− 1 for fertilised and unfertilised 
organic soils, respectively (Tiemeyer et al. 2020; Mathiva-
nan et al. 2021), our results were exceeding average EFs. In 
detail, it was observed that the treatments with two and five 
annual cuts emitted 7.5% and 5.5% of the N applied. In the 
case of the 0-cut treatment without fertiliser application, the 
observed high emissions of N2O exceeded expectable prior 
emissions by 30% and were likely caused by N minerali-
sation during summer months with low WTD (Minkkinen 
et al. 2020). Considering the large observed N2O emis-
sions from the prior on the unfertilised plots, the harvest of 
biomass is likely to have mitigated potentially higher N2O 
emissions for the fertilisation treatments due to plant rejuve-
nation (Walker et al. 2014; Tejera et al. 2022).

Although our methods effectively determined treatment 
effects, the sampling procedure may not represent actual 
GHG budgets due to its temporal constraints. For instance, 
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data and under hydrological conditions with a clear poten-
tial for improvements in WTD and its stability. Considering 
that peatlands have shown the potential for sudden develop-
ments regarding their C sink function (Roulet et al. 2007; 
Wilson et al. 2016b), our results only represent a snapshot in 
time regarding the effect of management intensities on the 
GWP for wet or rewetted fen peatlands.

Conclusion

This study aimed to assess whether intensities of two and 
five annual harvest occurrences at fertilisation rates of 
200 kg N and K per ha− 1 yr− 1 will lead to differing carbon 
balances and gas exchange dynamics compared to a ‘nature 
scenario’ with neither harvest nor fertilisation.

First, CH4 emissions were low for a wet fen with a mean 
WTD of -10 cm but characterised by a drop in WTD in 
August of down to -40 cm. This was found for all plots and 
treatments due to soil moisture conditions and the associ-
ated redox potential, providing pathways for CH4 oxidation 
in the upper 25 cm of the peat layer when WTD was low 
and temperatures optimal. Contrary to the low emissions of 
CH4, we found substantially high flux rates of N2O, translat-
ing to EFs in the range of agricultural cropland. Here also, 
the unfertilised treatment was characterised by unforeseen 
high fluxes, which was interpreted as prior emissions from 
N mineralisation and denitrification during summer months, 
characterised by low WTD and an Eh of between + 300 and 
+ 500 mV. Overall, it was found that peat Eh and θ condi-
tions were better proxies explaining the variation in GHG 
dynamics than WTD.

Second, fertilisation and harvest did in no case of man-
agement intensity result in higher cumulative emissions 
of N2O due to the rejuvenescence of biomass. In addition, 
biomass yields, and their composition, were equal for both 
harvest intensities. Thus, while GPP was higher and NEE 
lower for the treatments with harvest occurrences, these C 
benefits were offset by the export of C in biomass as com-
pared to the treatment without management. Based on these 
observations, our results highlighted a near-equal GWP in 
the range of 10.5–11.5 t CO2-C eq t ha− 1 yr− 1 for all sce-
narios irrespectively of management. In a climate context, 
our findings supported that both extremes, a restoration sce-
nario but also intensive paludiculture practices, were similar 
land-use options regarding their climate impact. Finally, this 
indicates that site-specific hydrological and electrical peat 
properties are more critical regarding their climate impact 
than paludiculture management practices.

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s13157-
024-01830-7.

between sub-plots. Nonetheless, Jungkunst et al. (2008) and 
Tiemeyer et al. (2016) also found high N2O emissions of up 
to 12 kg N2O-N ha− 1 yr− 1 on sites with a similarly inter-
mediate WTD of around − 20 cm to -10 cm. Furthermore, 
Berendt et al. (2022) concluded their study on the influence 
of peatland rewetting on N2O fluxes by stating that emis-
sions were highly variable across states of soil wetness and 
related to hot moments and hot spots. In addition, the assess-
ment of peat Eh revealed how quickly the border between 
aerated (Eh > + 400 mV, pH 7) and anaerobic (Eh < + 350 
mV, pH 7) was fluctuating in the top 25 cm of soil depth, 
even in periods with low WTD. In our study, measurements 
of peat Eh supported the findings of both dynamics: high 
N2O flux rates and low CH4 emissions due to the lack of 
extended anaerobic conditions of Eh< -150 mV (pH 7). 
Thus, in accordance with previous studies (e.g.Masscheleyn 
et al. 1993; Pezeshki and DeLaune 2012; Wang et al. 2018 
a,b; Zhang and Furman 2021), we found that peat Eh condi-
tions were a better proxy explaining the variation in GHG 
dynamics than WTD.

To Harvest or Not to Harvest?

Our results showed that irrespective of management: (1) 
with and without fertilisation and (2) under different intensi-
ties of harvest, the GWP for all scenarios was similar. In the 
first instance, this implies that both extremes, a restoration 
scenario and intensive paludiculture practices were similarly 
climate-affecting land-use options. In areas where arable 
land is not a restricted resource, rewetting and restoration 
is likely to be the most cost-efficient option for atmospheric 
decarbonisation and ecological restoration (Mehrabi et al. 
2018; Evans et al. 2021; Bianchi et al. 2021). In addition, 
previous research on belowground biomass (BGB) develop-
ment under different harvest intensities showed significantly 
higher root biomass development for non-harvested RCG 
stands (Nielsen et al. 2021b). Therewith, direct C inputs 
from BGB, and long-term storage under water-logged con-
ditions, are likely to be higher in non-harvested areas in the 
long run. However, in areas under pressure regarding issues 
of concurrent production and sustainable peatland manage-
ment, intensive paludiculture practices might offer a solu-
tion to socioeconomically and environmentally responsible 
peatland agriculture (Wijedasa et al. 2016). Various options 
exist for paludiculture, ranging from the production of bio-
energy plants to forage and protein concentrates for livestock 
feed (Damborg et al., 2019; Nielsen et al. 2021a; Martens et 
al. 2021). In this context, a frequent harvest of paludiculture 
biomass might add the benefit of nutrient removal and thus 
to the long-term biological restoration of peat environments 
(Hinzke et al. 2021; Vroom et al. 2022; Zak and McInnes 
2022). However, our results are only based on one year of 
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