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Abstract—In an interval graph G = (V, E) the distance between
two vertices u, v is de£ned as the smallest number of edges in a
path joining u and v. The eccentricity of a vertex v is the maximum
among distances from all other vertices of V . The diameter (δ) and
radius (ρ) of the graph G is respectively the maximum and minimum
among all the eccentricities of G. The center of the graph G is the
set C(G) of vertices with eccentricity ρ. In this context our aim is to
establish the relation ρ =

⌈
δ
2

⌉
for an interval graph and to determine

the center of it.
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I. INTRODUCTION

AN undirected graph G = (V,E) is an interval graph if
the vertex set V can be put into one-to-one correspon-

dence with a set of intervals I on the real line R such that two
vertices are adjacent in G if and only if their corresponding
intervals have non-empty intersection. The set I is called
an interval representation of G and G is referred to as the
intersection graph of I [5]. Let I = {i1, i2, . . . , in}, where
ic = [ac, bc] for 1 ≤ c ≤ n, be the interval representation of
the graph G, ac is the left endpoint and bc is the right end
point of the interval ic. Without any loss of generality assumed
the following:

(a) an interval contains both its endpoints and that no
two intervals share a common endpoint [5],

(b) intervals and vertices of an interval graph are one
and the same thing,

(c) the graph G is connected, and the list of sorted
endpoints is given and

(d) the intervals in I are indexed by increasing right
endpoints, that is, b1 < b2 < · · · < bn.
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Fig. 1. An interval graph G = (V, E)
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Fig. 2. An interval representation of Figure 1

An interval graph and its interval representation are shown
in Figure 1 and Figure 2 respectively.

Interval graphs arise in the process of modeling real life
situations, specially involving time dependencies or other
restrictions that are linear in nature. This graph and various
subclass thereof arise in diverse areas such as archeology,
molecular biology, sociology, genetics, traf£c planning, VLSI
design, circuit routing, psychology, scheduling, transportation
and others. Recently, interval graphs have found applications
in protein sequencing [7], macro substitution [2], circuit rou-
tine [8], £le organization [1], job scheduling [1], routing of
two points nets [6] and many others. An extensive discussion
of interval graphs also appears in [5]. Thus interval graphs
have been studied intensely from both the theoretical and
algorithmic point of view.

The notion of a center in a graph is motivated by a large
class of problems collectively referred to as the facility-
location problems where one is interested in identifying a
subset of the vertices of the graph at which certain facilities
are to be located in such a way that for every vertex in the
graph, the distance to the nearest facility is minimum.

For a connected graph G = (V,E), the distance d(u, v)
between vertices u and v is the smallest number of edges in
a path joining u and v.

The eccentricity of a vertex v ∈ V , is denoted by e(v) and
is de£ned by

e(v) = max{d(u, v) : u ∈ V }.
The diameter δ(G) (or simply δ), radius ρ(G) (or simply

ρ) and the center C(G) of a graph G are de£ned as follows:

δ(G) = max{e(v) : v ∈ V },
ρ(G) = min{e(v) : v ∈ V },

and C(G) = {v ∈ V : e(v) = ρ(G)}.
The center of a graph may be a single vertex or more than

one vertex. This shows in the following £gure. The graph in
Figure 3(a) has only one center with center node 2 while the
graph in Figure 3(b) has two centers and the center nodes are
3 and 4.

A. Survey of related works

It is both well-known and easy to observe that the center
of an arbitrary graph G = (V,E) can be computed by the
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Fig. 3. (a) The center with one vertex; (b) The center with two vertices.

following brute force approach: perform breadth-£rst search of
G starting in turn, at every vertex of G. Clearly, this procedure
takes O(|V | × |E|) time.

For some particular classes of graphs, such as for trees
[4], outerplaner graphs [3] etc., linear time algorithms can be
devised to compute the center. For the interval graph with n
vertices and m edges. Olariu [9] has presented an O(n+m)
time sequential algorithm where the input is an adjacency
list that takes O(n + m) space. In [9], all maximal cliques
are used as input. But the generation of all maximal cliques
is slightly complicated. In [10], Olariu et al. have presented
an O(log n) time and O(n) processor parallel algorithm to
£nd the center of an interval graph if the endpoints list is
given. But Pal et. al. [14] have designed optimal algorithm
to compute center and diameter of an interval graph, which
was an improvement over Olariu’s algorithm, since with same
input Olariu’s algorithm takes O(n + m) time. Also Pal et
al. have presented some properties on interval graphs and some
properties of diameter and center, but no relation between
radius and diameter has been established.

Based on the proposed sequential algorithms two O(n/P +
log n) time parallel algorithms have been designed for the
same problems using P processors and O(n) space on the
EREWPRAM if the sorted endpoints list is given. It is
improvement over the algorithm of [10], because, if the sorted
endpoints list is given as an input, then the complexity of the
algorithm of [10] remains unchange.

In this paper we have established the relation between the
radius and the diameter of the interval graph.

II. INTERVAL TREE AND ITS PROPERTIES

Let G = (V,E), V = {1, 2, . . . , n}, |V | = n, |E| = m be
a connected interval graph in which the vertices are given
in the sorted order of the right endpoints of the interval
representation of the graph. Intervals are labeled according to
increasing order of their endpoints. This labeling is referred to
as IG ordering. Let (u, v) or (v, u) denote the existence of an
adjacency relation between two vertices u, v. It is assumed that
(u, u) is always true i.e. (u, u) ∈ E. If [au, bu] and [av, bv]
are two end points of the vertices u and v respectively then
u, v are adjacent if at least one of the following conditions

hold:
(i) av < au < bv ,

(ii) av < bu < bv ,
(iii) au < av < bu,
(iv) au < bv < bu.
The following lemma is true for a given interval graph, G =
(V,E).

Lemma 1 ([15]): If the vertices u, v, w ∈ V be such that
u < v < w in the IG-ordering and u is adjacent to w then v
is also adjacent to w.
For each vertex v ∈ V let H(v) represent the highest
numbered adjacent vertices of v. If no adjacent vertex of v
exists with higher IG number than v then H(v) is assumed to
be v.

In other words, H(v) = max{u : (v, u) ∈ E, u ≥ v}.
For a given interval graph G, let a tree T (G) = (V,E′)

be de£ned such that E ′ = {(u,H(u)) : u ∈ V, u �= n}, n be
the root of T (G). This tree is called the interval tree IT . The
various properties of interval tree are available in [11], [12],
[14]. The most important property is as follows:

Lemma 2 ([13]): For a connected interval graph there ex-
ists a unique interval tree T (G).
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Fig. 4. The interval tree of the interval graph of Figure 2

For each vertex v of interval tree, de£ne level(v) to be the
distance of v from the vertex n in the tree.

Let Nl be the set of vertices which are at a distance l from
the vertex n. Thus Nl = {u : d(u, n) = l} where d(u, n) is
the distance between u and n in the interval tree and N0 is the
singleton set {n}. If u ∈ Nl then d(u, n) = l and the vertex u
is at level l of the interval tree. Thus, the vertices at level l of
the interval tree are the vertices of Nl. It follows from Lemma
1, that the vertices of Nl are consecutive integers. Hence the
path starting from the vertex 1 and ending at the vertex n in
T (G) is called the main path. The main path is represented
by dotted lines in Figure 4.

De£ne the height h of the tree T (G) by

h = max{level(v) : v ∈ V }.
The distance between any two vertices of G can be deter-

mined from the following result.
Lemma 3 ([14]): Given u, v ∈ V, v �= n, let w be the vertex

at level(v) + 1 on the path from u to n and w
′
= H(w). If

level(u) > level(v), then

d(u, v) =

⎧⎪⎪⎨
⎪⎪⎩

level(u) − level(v), if (w, v) ∈ E
level(u) − level(v) + 1, if (w, v) /∈ E

and (w
′
, v) ∈ E

level(u) − level(v) + 2, otherwise.

The vertex at level l on main path is denoted by v∗l , l
represents the level number and ∗ means it is on the main
path.
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Fig. 5. The partitions of N2 of the graph shown in Figure 4

III. DIAMETER

In this section the relation between radius and diameter for
the Interval Graph G = (V,E) has been established. In this
regarding we recall lemmas 4 to 5.1 was stated in [14].

Lemma 4 ([14]): Let v∗1 ∈ N1 be the vertex on the main
path. If all v1 ∈ N1 are adjacent to v∗1 in G then δ(G) = h
otherwise δ(G) = h+ 1

If the diameter of the graph G is h+1, h > 1 then consider
one more set of vertices N−1 de£ned by

N−1 = {u : u ∈ N1, (u, v∗1) /∈ E, where v∗1 ∈ N1}
It is clear that for a vertex u ∈ N−1 if v∗1 ∈ N1 is the vertex on
the main path then the distance between v∗1 and u is 2, since
there exists only one path from v∗1 to u that passes through
the vertex n ∈ N0.

Let vl be any vertex at level l and v∗l+1 be the vertex at
level l+1 on the main path. We recall two parameters d1 and
d−1 from [14]. They are de£ned as

d1 =

⎧⎨
⎩

h− l, if (vl, v∗l+1) ∈ E
h− l + 1, if (vl, v∗l+1) /∈ E, (vl, v∗l ) ∈ E
h− l + 2, otherwise

and

d−1 =

⎧⎨
⎩
l + 1, if (vl, v2) /∈ E and (v∗1 , v1) /∈ E for all

v1 ∈ N1, v2 ∈ N2 on the path from vl to n
l, otherwise ,

=
{
l + 1, if N−1 �= Φ
l, if N−1 = Φ.

Lemma 5 ([14]): Let vl be a vertex at level l and v∗l be
the vertex at the same level on the main path. The maximum
distance dmax(vl) is given by

dmax(vl) = max{d(u, vl) : u ∈ V } = max(d1, d−1).

The center of the graph G is denoted by C(G). An explicit
form to compare center of G is given below.

Corollary 5.1 ([14]): If dmax(vl) = ρ then vl ∈ C(G).
Now let us partition the vertices at level l of the interval

tree T (G) into three disjoint subsets N (1)
l , N

(2)
l and N (3)

l as
the following way:

N
(1)
l = {vl : (vl, v∗l+1) ∈ E}

N
(2)
l = {vl : (vl, v∗l+1) /∈ E, (vl, v∗l ) ∈ E}

N
(3)
l = {vl : (vl, v∗l+1) /∈ E, (vl, v∗l ) /∈ E}.

Then,

d1 =

⎧⎪⎨
⎪⎩

h− l, if vl ∈ N
(1)
l

h− l + 1, if vl ∈ N
(2)
l

h− l + 2, if vl ∈ N
(3)
l

Therefore the eccentricity of the vertex, radius, diameter and
center of the graph can be given by the following manner:

e(vl) = max{d(u, vl) : ∀u ∈ V }
= dmax(vl) = max(d1, d−1),

ρ(G) = min{e(v) : v ∈ V },
δ(G) = max{e(v) : v ∈ V }

=
{
h, if N−1 = Φ
h+ 1, if N−1 �= Φ,

C(G) = {v : e(v) = ρ, v ∈ V }
= {vl : dmax(vl) = ρ}.
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Fig. 6. An arbitrary graph GA = (VA, EA) in which ρ �= � δ
2
�

TABLE I
DISTANCES BETWEEN VERTICES FOR THE GRAPH OF FIGURE 6

vA 1 2 3 4 5 6 7
1 0 1 2 1 2 1 2
2 1 0 1 1 2 2 2
3 2 1 0 1 2 1 1
4 1 1 1 0 1 1 2
5 2 2 2 1 0 1 1
6 1 2 1 1 1 0 1
7 2 2 1 2 1 1 0

TABLE II
ECCENTRICITIES OF THE VERTICES FOR THE GRAPH OF FIGURE 6

vA 1 2 3 4 5 6 7
e(vA) 2 2 2 2 2 2 2

Next we investigate the relation between radius and diam-
eter of an interval graph. In general, the relation ρ = � δ2	 is
not valid for an arbitrary graph. We argue this statement by
considering a counter example. For this purpose we consider
the graph shown in Figure 6. Then we compute the shortest
distances and eccentricities and put them in the following two
tables Table I and Table II respectively for all the vertices of
graph of Figure 6.

From these two tables it is easily seen that δ(GA) =
max{e(vA) : vA ∈ VA} = 2 and ρ(GA) = min{e(vA) :

vA ∈ VA} = 2, and then ρ(GA) �=
⌈
δ(GA)

2

⌉
.

Lemma 6: For a given interval graph G, ρ =
⌈
δ
2

⌉
and the

center C(G) of the graph G is given by
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(i) when δ > 1 then

C(G) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{
v : v ∈ N

(1)
l , l =

⌈
h−1
2

⌉
or
⌊
h−1
2

⌋}
,

if h is odd and N−1 �= Φ{
v : v ∈ N

(1)
l ∪N (2)

l , l =
⌈
h
2

⌉
or
⌊
h−1
2

⌋}
,

if h is even and N−1 �= Φ{
v : v ∈ N

(1)
l , l =

⌈
h
2

⌉
or
⌊
h
2

⌋}
,

if h is even and N−1 = Φ{
v : v ∈ N

(1)
l ∪N (2)

l , l =
⌈
h+1
2

⌉
or
⌊
h
2

⌋}
,

if h is odd and N−1 = Φ,

(ii) when δ = 1 then C(G) = V .
Proof. (i) Suppose N−1 �= Φ. Then d−1 = l + 1 (by Lemma
4) and we have the following three cases:
Case 1: If v ∈ N

(1)
l , d1 = h− l. Then,

e(v) = max{h− l, l + 1}
=
{
h− l, for l ≤ ⌊h−12 ⌋
l + 1, for l ≥ ⌈h−12 ⌉ .

Therefore, e1 = min{e(v) : v ∈ N
(1)
l } =

⌈
h+1
2

⌉
, for l =⌊

h−1
2

⌋
or
⌈
h−1
2

⌉
.

Case 2: If v ∈ N
(2)
l , d1 = h− l + 1. Then,

e(v) = max{h− l + 1, l + 1}
=
{
h− l + 1, for l ≤ ⌊h2 ⌋
l + 1, for l ≥ ⌈h2 ⌉ .

Therefore, e2 = min{e(v) : v ∈ N
(2)
l } ⌈h+22 ⌉ , for l =⌊

h
2

⌋
or
⌈
h
2

⌉
.

Case 3: If v ∈ N
(3)
l , d1 = h− l + 2. Then,

e(v) = max{h− l + 2, l + 1}
=
{
h− l + 2, for l ≤ ⌊h+12 ⌋
l + 1, for l ≥ ⌈h+12 ⌉ .

Therefore, e3 = min{e(v) : v ∈ N
(3)
l } ⌈h+32 ⌉ , for l =⌊

h+1
2

⌋
or
⌈
h+1
2

⌉
.

Hence combining above three cases we have,

min{e(v) : v ∈ Nl} = min{e1, e2, e3}
= min

{⌈
h+1
2

⌉
,
⌈
h+2
2

⌉
,
⌈
h+3
2

⌉}
= min

{⌈
h+1
2

⌉
,
⌈
h+2
2

⌉}

=

⎧⎪⎪⎨
⎪⎪⎩

⌈
h+1
2

⌉
, for v ∈ N

(1)
l , l =

⌊
h−1
2

⌋
or
⌈
h−1
2

⌉
and h is odd⌈

h+1
2

⌉
, for v ∈ N

(2)
l , l =

⌈
h
2

⌉
or
⌊
h−1
2

⌋
and h is even.

Thus, in this case ρ =
⌈
δ
2

⌉
where,

C(G) =

⎡
⎢⎢⎢⎢⎣

{
v : v ∈ N

(1)
l

}
, for l =

⌊
h−1
2

⌋
or
⌈
h−1
2

⌉
and h is odd{

v : v ∈ N
(1)
l ∪N (2)

l

}
, for l =

⌈
h
2

⌉
or
⌊
h−1
2

⌋
and h is even.

Next when N−1 = Φ. Then d−1(v) = l (by Lemma 4). Again

there are three cases.
Case 1: If v ∈ N

(1)
l , d1 = h− l. Then,

e(v) = max{h− l, l}
=
{
h− l, for l ≤ ⌊h2 ⌋
l, for l ≥ ⌈h2 ⌉ .

Therefore, e′1 = min{e(v) : v ∈ N
(1)
l } ⌈h2 ⌉ , for l =⌊

h
2

⌋
or
⌈
h
2

⌉
.

Case 2: If v ∈ N
(2)
l , dl(v) = h− l + 1. Then,

e(v) = max{h− l + 1, l}
=
{
h− l + 1, for l ≤ ⌊h+12 ⌋
l, for l ≥ ⌈h+12 ⌉ .

Therefore, e′2 = min{e(v) : v ∈ N
(2)
l } ⌈h+12 ⌉ , for l =⌊

h+1
2

⌋
or
⌈
h+1
2

⌉
.

Case 3: If v ∈ N
(3)
l , dl(v) = h− l + 2. Then,

e(v) = max{h− l + 2, l}
=
{
h− l + 2, for l ≤ ⌊h+22 ⌋
l, for l ≥ ⌈h+22 ⌉ .

Therefore, e′3 = min{e(v) : v ∈ N
(3)
l } ⌈h+22 ⌉ , for l =⌊

h+2
2

⌋
or
⌈
h+2
2

⌉
.

Combining these three cases we have,

min{e(v) : v ∈ Nl} = min{e′1, e′2, e′3}
= min

{⌈
h
2

⌉
,
⌈
h+1
2

⌉
,
⌈
h+2
2

⌉}

=

⎧⎪⎪⎨
⎪⎪⎩

⌈
h
2

⌉
, for v ∈ N

(1)
l , l =

⌊
h
2

⌋
or
⌈
h
2

⌉
and h is even⌈

h
2

⌉
, for v ∈ N

(2)
l , l =

⌈
h+1
2

⌉
or
⌊
h
2

⌋
and h is odd.

Thus, in this case ρ =
⌈
δ
2

⌉
where,

C(G) =

⎡
⎢⎢⎢⎢⎣

{
v : v ∈ N

(1)
l

}
, for l =

⌊
h
2

⌋
or
⌈
h
2

⌉
and h is even{

v : v ∈ N
(1)
l ∪N (2)

l

}
, for l =

⌈
h+1
2

⌉
or
⌊
h
2

⌋
and h is odd.

Hence whatever the case may be, ρ =
⌈
δ
2

⌉
and center of the

graph be

C(G) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{
v : v ∈ N

(1)
l , l =

⌈
h−1
2

⌉
or
⌊
h−1
2

⌋}
,

if h is odd and N−1 �= Φ{
v : v ∈ N

(1)
l ∪N (2)

l , l =
⌈
h
2

⌉
or
⌊
h−1
2

⌋}
,

if h is even and N−1 �= Φ{
v : v ∈ N

(1)
l , l =

⌈
h
2

⌉
or
⌊
h
2

⌋}
,

if h is even and N−1 = Φ{
v : v ∈ N

(1)
l ∪N (2)

l , l =
⌈
h+1
2

⌉
or
⌊
h
2

⌋}
,

if h is odd and N−1 = Φ,

(ii) It is clear that if δ = 1 then there are atmost two vertices
in G. So, C(G) = V. Then ρ = 1 = �12	 = � δ2	. Hence the
lemma.
Also the center of the graph is given by the following result
without use of ρ.
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Lemma 7: The center of a connected interval graph G =
(V,E) is given by

C(G) =

⎡
⎣
{
v : v ∈ N

(1)
l ∪N (1)

r+1 ∪N (2)
r+1

}
, if δ is odd{

v : v ∈ N
(1)
l

}
, if δ is even

where,

r =
{ ⌊

δ
2

⌋
, if N−1 = Φ⌊

δ
2

⌋− 1, if N−1 �= Φ.

Proof. The center of the graph G obtained by lemma 6 is

C(G) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{
v : v ∈ N

(1)
l , l =

⌈
h−1
2

⌉
or
⌊
h−1
2

⌋}
,

if h is odd and N−1 �= Φ{
v : v ∈ N

(1)
l ∪N (2)

l , l =
⌈
h
2

⌉
or
⌊
h−1
2

⌋}
,

if h is even and N−1 �= Φ{
v : v ∈ N

(1)
l , l =

⌈
h
2

⌉
or
⌊
h
2

⌋}
,

if h is even and N−1 = Φ{
v : v ∈ N

(1)
l ∪N (2)

l , l =
⌈
h+1
2

⌉
or
⌊
h
2

⌋}
,

if h is odd and N−1 = Φ,

Let

r =
{ ⌊

δ
2

⌋
, if N−1 = Φ⌊

δ
2

⌋− 1, if N−1 �= Φ.

Then we have two cases:
Case 1: The case when N−1 �= Φ, then δ = h+ 1.
Therefore,

l =
⌈
h−1
2

⌉
or
⌊
h−1
2

⌋
=
⌈
δ−2
2

⌉
or
⌊
δ−2
2

⌋
=
⌈
δ
2

⌉− 1 or
⌊
δ
2

⌋− 1

=
{ ⌊

δ
2

⌋− 1 or
⌊
δ
2

⌋− 1, if δ is even⌊
δ
2

⌋
or
⌊
δ
2

⌋− 1, if δ is odd

=
{ ⌊

δ
2

⌋− 1, if δ is even⌊
δ
2

⌋
or
⌊
δ
2

⌋− 1, if δ is odd

=
{
r, if δ is even
r or r + 1, if δ is odd.

Therefore,

v ∈
{

N
(1)
r ∪N (1)

r+1, if δ is odd

N
(1)
r , if δ is even.

Thus it is clear that when h is even, δ is odd. Then,

l =
⌈
h
2

⌉
=
⌈
δ−1
2

⌉
=
⌈
δ
2

⌉
= r + 1.

Therefore, v ∈ N
(2)
r+1, if δ is odd. Hence,

C(G) =

⎡
⎣
{
v : v ∈ N

(1)
l ∪N (1)

r+1 ∪N (2)
r+1

}
, if δ is odd{

v : v ∈ N
(1)
l

}
, if δ is even.

Case 2: The case when N−1 = Φ, then δ = h. Therefore,

l =
⌈
h
2

⌉
or
⌊
h
2

⌋
=
⌈
δ
2

⌉
or
⌊
δ
2

⌋
=
⌈
δ
2

⌉− 1 or
⌊
δ
2

⌋− 1

=
{ ⌊

δ
2

⌋
or
⌊
δ
2

⌋
+ 1, if δ is even⌊

δ
2

⌋
or
⌊
δ
2

⌋
, if δ is odd

=
{
r, if δ is even
r or r + 1, if δ is odd.

Therefore,

v ∈
{

N
(1)
r ∪N (1)

r+1, if δ is odd

N
(1)
r , if δ is even.

Now it is clear that when h is odd, δ is odd. Then,

l =
⌈
h+1
2

⌉
=
⌈
δ+1
2

⌉
=
⌈
δ
2

⌉
+ 1

= r + 1.

Therefore, v ∈ N
(2)
r+1, if δ is odd. Hence,

C(G) =

⎡
⎣
{
v : v ∈ N

(1)
l ∪N (1)

r+1 ∪N (2)
r+1

}
, if δ is odd{

v : v ∈ N
(1)
l

}
, if δ is even.

IV. CONCLUSION

In this paper some properties of an interval graph are
introduced. We have worked to prove a relation ρ = � δ2	. Also,
the center of an interval graph has been calculated without use
of ρ. We think it will enrich all most all researchers.
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