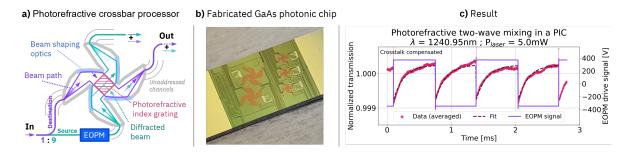
The Demonstration of Photorefractive Synaptic Connections for an Integrated Photonic Crossbar Array

Elger A. Vlieg¹, Folkert Horst¹, Roger Dangel^{1†}, Bert J. Offrein¹

1. IBM Research—Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland


† Previously employed at 1.

For the past decade, the progress in artificial intelligence (AI) has been requiring an exponential size increase of artificial neural networks (ANN), at a rate close to 10 times that of Moore's law [1]. Consequently, the signal processing in ANNs is fueling a compute demand that is unsustainable for general-purpose computers, both in terms of energy and hardware requirements [1,2].

The analog crossbar array is an application-specific accelerator for matrix-vector multiplications (MVM), and can compute the synaptic signal transfer between fully-connected layers in ANNs [3,4]. The signal propagation between densely connected layers generates a multiply-accumulate (MAC) workload that scales quadratically with network width. Interestingly, the analog crossbar array can perform it with linear scaling on power and latency.

We have proposed a programmable integrated photonic crossbar array architecture [3,5], based on the photorefractive effect [6], and super-imposed refractive index gratings that act as Bragg-mirrors. This architecture is of interest, since it supports all matrix operations for ANN backpropagation training.

Previously, we reported on the fabrication of photorefractive thin-film GaAs substrates, and the realization of photonic integrated circuits (PIC) therein [3]. Now, we report on the successful writing of a photorefractive synaptic connection in our prototype crossbar processor (Fig. 1).

Fig. 1 The experimental demonstration of a photorefractive synaptic connection in a photonic integrated circuit by two-wave mixing [6]. **a**) A schematic of the prototype crossbar circuit. **b**) The fabricated circuit in photorefractive GaAs waveguides. **c**) The periodic writing of a synaptic connection between the destination and source channel.

Fig. 1 c) illustrates the analog writing of a synaptic connection between two optical signals, achieved by their interference in a photorefractive integrated optic structure. The moment that the source beam is π phase-shifted by the electro-optic phase modulator (EOPM) (purple), the diffracted signal interferes destructively with the measured destination beam (red), until the photorefractive index grating is rewritten by an exponential saturation process [3].

In conclusion, to our knowledge this work constitutes the first demonstration of the photorefractive optical effect in a PIC for neuromorphic computing. Thereby, we validated the basic operational principle of our photore-fractive crossbar array design. To extend this work into a fully functional crossbar array, programmable I/O circuits need to be added to the prototype design, so that multiple I/O waveguides can addressed in parallel and individually (Fig. 1 **a**)) [3]. Future work includes: the design optimization for attenuated crosstalk, the fabrication of a programmable multi-coefficient crossbar array device, and the demonstration of all the relevant signal processing.

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement number 828841 (ChipAI) and 860360 (Post-Digital). We thank the Binnig and Rohrer Nanotechnology Center (BRNC).

References

- [1] D. Narayanan et al. "Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM," SC '21 58, 1-15 (2021).
- [2] E. Strubell et al. "Energy and Policy Considerations for Modern Deep Learning Research," AAAI, 34(09), 13693-13696 (2020).
- [3] E. A. Vlieg et al. "An Integrated Photorefractive Analog Matrix-Vector Multiplier for Machine Learning," Appl. Sci. 12(09), 4226 (2022).
- [4] A. Sebastian et al. "Memory devices and applications for in-memory computing," Nat. Nanotechnol. **15**, 529–544 (2020).
- [5] Y. Owechko, and B.H. Soffer. "Holographic Neurocomputer Utilizing Laser Diode Light Source," Proc. SPIE 2565, 12–19 (1995).
- [6] P. Yeh. "Two-Wave Mixing in Nonlinear Media," IEEE J. Quantum Electron. 25(3), 484-519 (1989).