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Abstract— A numerical method for solving the time-independent
Schrödinger equation of a particle moving freely in a three-dimen-
sional axisymmetric region is developed. The boundary of the region
is defined by an arbitrary analytic function. The method uses a
coordinate transformation and an expansion in eigenfunctions. The
effectiveness is checked and confirmed by applying the method to a
particular example, which is a prolate spheroid.
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I. INTRODUCTION

HE most frequently occurring equation in quantum me-Tchanics is the stationary Schrödinger equation, which is
an ordinary differential equation(ODE) in the case of a one
dimensional problem and a partial differential equation(PDE)
if the corresponding physical system is higher dimensional.
Unfortunately, the analytical solvability of this equation, even
in one dimension is restricted to a few classes of potentials.
Therefore, the use of numerical methods for the relevant
problem gains a lot of significance. The stationary Schrödinger
equation for a particle moving freely inside a closed region,
the so called “Quantum billiard problem” has received consid-
erable interest recently [1],[2]. Despite its simplicity, such a
problem is known to be exactly solvable only in few cases in
which the boundary of the closed region, the billiard, is con-
stant in some coordinate system. From quantum mechanical
point of view, the billiards with non-constant boundaries are
much more interesting. However, to find approximate solutions
within a reasonable degree of accuracy still remains a very
difficult task. Moreover, despite the plentiful literature about
the numerical treatment of the quantum billiard problem in
two dimensions [3]-[5], results on three dimensional case are
only few [6],[7].

The aim of this work is to propose a quite general three
dimensional quantum billiard model and to develop a method
for its numerical implementation, more precisely, to com-
pute the energy spectra of the system. Thus the paper is
organized as follows: In section II the mathematical model
of the quantum billiard and a coordinate transformation is
introduced. An eigenfunction expansion which reduces the
transformed Schrödinger equation to a system of ODEs and
its convertion to a generalized matrix eigenvalue problem are
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given in section III. The method is then applied to a particular
example, namely, a prolate spheroid in section IV, where the
numerical results are presented. The last section is devoted to
the concluding remarks.

II. MATHEMATICAL MODEL OF THE PROBLEM

We introduce a closed three dimensional axisymmetric
region (the billiard), whose boundary is defined by an analytic
function. To be specific, the billiard is described by

D = {(r, θ, φ) | 0 ≤ r ≤ f(θ), 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π}
(1)

where (r, θ, φ) are the spherical coordinates. The function f(θ)
can be identified as a shape function since it determines the
shape of the billiard under consideration. We assume that it
is an arbitrary analytic function of θ. Note that, the billiard
D in (1) is a solid of revolution obtained by rotating a two-
dimensional region in the yz-plane about the z-axis (see Fig.
1). In spherical coordinates, the Schrödinger equation for a

yx

z

Fig. 1. Three dimensional axisymmetric billiard

particle moving freely inside the region D can be written as{
∂2

∂r2
+

2
r

∂

∂r
+

1
r2

∂2

∂θ2
+

cotθ
r2

∂

∂θ

+
1

r2 sin2 θ

∂2

∂φ2
+ E

}
Ψ(r, θ, φ) = 0 (2)

where the wavefunction Ψ vanishes on the boundary, i.e.

Ψ(r, θ, φ) = 0 on ∂D (3)

and, in addition, satisfies the square integrability condition∫ ∫
D

∫
| Ψ |2 dV <∞ (4)

World Academy of Science, Engineering and Technology
International Journal of Physical and Mathematical Sciences

 Vol:1, No:5, 2007 

255International Scholarly and Scientific Research & Innovation 1(5) 2007 scholar.waset.org/1307-6892/1846

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, P

hy
si

ca
l a

nd
 M

at
he

m
at

ic
al

 S
ci

en
ce

s 
V

ol
:1

, N
o:

5,
 2

00
7 

w
as

et
.o

rg
/P

ub
lic

at
io

n/
18

46

http://waset.org/publication/An-Expansion-Method-for-Schrödinger-Equation-of-Quantum-Billiards-with-Arbitrary-Shapes/1846
http://scholar.waset.org/1307-6892/1846


arising from the fact that Ψ should belong to the Hilbert space
of square integrable functions on D ⊂ R

3.
We propose the following form for the analytic shape

function f(θ)

f(θ) = 1 +
∞∑

k=1

αk cosk θ, αk ∈ R (5)

where the αk may be regarded as the shape parameters. By
means of these flexible parameters it is possible to construct
various shapes. Observe that,

1 ≤ f(θ) ≤ ∞ (6)

should be satisfied in order to have a bounded geometric
region.

For computational purposes, we deal with a truncated power
series representation of the shape function, say F (η),

F (η) = 1 +
K∑

k=1

αkη
k, (7)

which is a polynomial of degree K in the new variable η,

η = cos θ, η ∈ [−1, 1] (8)

where K is large enough. Furthermore, if we apply the unusual
substitution

ξ =
r

F (η)
, ξ ∈ [0, 1] (9)

the billiard in (1) with an arbitrary shape reduces to a unit ball

Du = {(ξ, η, φ) | 0 ≤ ξ ≤ 1, −1 ≤ η ≤ 1, 0 ≤ φ ≤ 2π}
(10)

in the (ξ, η, φ) coordinate system.
Unfortunately, this standardization has been accomplished

at the cost of transforming the Schrödinger equation (2) into
a quite complicated form

{
G1

∂2

∂ξ2
+ [2G1 +G2 −G3]

1
ξ

∂

∂ξ
+

1
ξ2
G0T

− 1
ξη

(1 − η2)G2
∂2

∂ξ∂η
+ EG2

0

}
Ψ(ξ, η, φ) = 0 (11)

where T is the second order differential operator in η

T = (1 − η2)
∂2

∂η2
− 2η

∂

∂η
− 1

1 − η2

∂2

∂φ2
, (12)

and the Gi denote the polynomials of degree 2K in η

G0 := [F (η)]2 G1 := [F (η)]2 + (1 − η2) [F ′(η)]2

G2 := 2ηF ′(η)F (η) G3 := (1 − η2)F ′′(η)F (η)
(13)

introduced for the sake of brevity.

III. EXPANSION IN EIGENFUNCTIONS AND
TRANSFORMATION TO A MATRIX EIGENVALUE

PROBLEM

The transformed square integrability condition which now
reads∫ 2π

0

∫ 1

−1

∫ 1

0

| Ψ(ξ, η, φ) |2 ξ2[F (η)]3dξdηdφ <∞ (14)

suggests that the integral

∫ 2π

0

∫ 1

−1

| Ψ(ξ, η, φ) |2 dηdφ <∞ (15)

is also bounded for all fixed ξ ∈ (0, 1]. In what follows,
the wavefunction Ψ(ξ, η, φ) can also be regarded as a square
integrable function over the region [−1, 1] × [0, 2π] with the
unit weight for a fixed ξ. In fact, such a region is simply a
sphere of radius ξ.

On the other hand, observe that the eigenfunctions of the
operator T in (12) are the spherical harmonics

Y n
m(η, φ) = P |n|

m (η)einφ, 0 ≤ m ≤ ∞, −m ≤ n ≤ m
(16)

corresponding to the eigenvalues −m(m + 1), in which the
Pn

m stands for the associated Legendre functions. It is well
known that the spherical harmonics form an orthogonal basis
for the space of the square integrable functions over a sphere
[8]. Therefore, we may propose an expansion in spherical
harmonics for the transformed wavefunction Ψ(ξ, η, φ) in the
form

Ψ(ξ, η, φ) =
∞∑

m=0

m∑
n=0

[Φn
m(ξ) cosnφ+ ψn

m(ξ) sinnφ]Pn
m(η)

(17)
where the Φn

m and ψn
m are the Fourier coefficients, for which

the superscript n is used merely as a notation in accordance
with that of P n

m so that it does not mean the power. Note that
the axial symmetry of the region allows a separation of (17)
into two parts containing even and odd eigenfunctions in φ.
Hereafter, we consider only the even eigenfunctions, that is,
we deal with the expansion

Ψe(ξ, η, φ) =
∞∑

m=0

m∑
n=0

Φn
m(ξ)Pn

m(η) cosnφ. (18)

Substituting Ψe into (11), and using the orthogonality of the
cosine functions over φ ∈ (0, 2π), we obtain

∞∑
m=n

{
G1P

n
m

d2

dξ2

+
[
(2G1 −mG2 −G3)Pn

m +
1
η
(m− n+ 1)G2P

n
m+1

]
1
ξ

d
dξ

−m(m+ 1)G0P
n
m

1
ξ2

+ EG2
0P

n
m

}
Φn

m(ξ) = 0

(19)
for n ≥ 0.
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An eigenfunction expansion of type (18) makes it possible
to reduce the PDE to a system of ODEs in the Fourier coeffi-
cients Φn

m(ξ) [9]. To this end, first note that the polynomials
Gi in (19) may be written as

Gi =
2K∑
k=0

gi,kη
k, i = 0, 1, 2, 3 (20)

where the coefficients gi,k can easily be calculated in terms
of the shape parameters αk. On the other hand,

[G0]2 =
4K∑
k=0

g4,kη
k, (21)

where the g4,k are certain combinations of g0,k.
Thus, it is shown that the η-dependency of equation (19)

comprises solely the products ηkPn
j (η) with j = m and j =

m + 1. Then we expand the ηkPn
j (η) into a series of the

associated Legendre functions

ηkPn
j (η) =

∞∑
l=n

γn
ljkP

n
l (η) (22)

in which the coefficients γn
ljk

γn
ljk =

∫ 1

−1

ηkPn
l (η)Pn

j (η)dη, γn
ljk = γn

jlk (23)

can be evaluated exactly using the truly nice identities of the
associated Legendre functions [10].

Next we define the matrices An, Bn, Cn and Dn whose
entries are

an
lm =

2K∑
k=0

g1,kγ
n
lmk (24)

bnlm =
2K∑
k=0

(2g1,k −mg2,k − g3,k)γn
lmk

+(m− n+ 1)
2K−1∑
k=0

g2,k+1γ
n
l(m+1)k (25)

and

cnlm =
2K∑
k=0

g0,kγ
n
lmk, dn

lm =
4K∑
k=0

g4,kγ
n
lmk (26)

respectively. Using these definitions and the orthogonality
of the associated Legendre functions, we end up with the
infinite system of coupled ODEs for the determination of the
Fourier coefficients Φn

m(ξ). In matrix-vector form, this system
is written as(

Anξ2
d2

dξ2
+ Bnξ

d
dξ

+ ΛCn + Eξ2Dn

)
Φn = 0 (27)

where Λ := diag{−m(m+1)} is a diagonal matrix containing
the eigenvalues of the operator T . Clearly, Φn stands for the
unknown vector-valued function

Φn =
[
Φn

n(ξ),Φn
n+1(ξ),Φ

n
n+2(ξ), . . .

]T
(28)

whose entries are the Fourier coefficients.

For a complete reformulation of the problem, the boundary
and square integrability conditions should be reconsidered in
accordance with the vector differential equation just obtained.
With the expansion (18) the boundary condition (3) is altered
to

Φn(1) = 0, n = 0, 1, . . . . (29)

Similarly, the square integrability condition requires the
boundedness of the integral∫ 1

0

ξ2 ‖ Φn(ξ) ‖2 dξ <∞. (30)

In practice, we seek approximate solutions of the system in
(27) over finite-dimensional subspaces, for l = n, n+1, . . . , N
and n = 0, 1, . . . , N , where N is a sufficiently large positive
integer.

It can be shown that the coefficient matrices An and Dn are
positive definite. In addition, the matrix Bn has a special struc-
ture. The positive definiteness of An suggests the Cholesky
decomposition An = LLT, where L is a lower triangular
matrix with positive diagonal entries. Hence, we may introduce
a new vector-valued function Zn(ξ) = [Zn

n (ξ), Zn
n+1(ξ), . . .]

T

of the form
Zn(ξ) = LTΦn(ξ) (31)

and transform (27) to

LnZn(ξ) = Eξ2TnZn(ξ) (32)

where

Ln := −Iξ2
d2

dξ2
− Qnξ

d
dξ

+ Rn (33)

where the matrices Qn, Rn and Tn are defined by

Qn = L−1BnL−T, Rn = −L−1ΛCnL−T,
Tn = L−1DnL−T.

(34)

Clearly, the transformed variable Zn(ξ) satisfies the same
conditions as Φn(ξ). Next we transform the entries of Zn(ξ)
from Zn

l (ξ) to Xn
l (ξ), where

Zn
l (ξ) = ξµn

l Xn
l (ξ) (35)

and
µn

l =
1
2

(1 − qn
ll) , l = n, n+ 1, . . . , N. (36)

Then the highest order term Ln
llZ

n
l (ξ) on the left hand side of

each equation of the system (33) takes the form

Ln
llZ

n
l (ξ) = −ξµn

l

[
ξ2

d2

dξ2
+ ξ

d
dξ

− (µn
l )2 − rn

ll

]
Xn

l (ξ).

(37)
If νn

l denotes a positive parameter defined by

νn
l =

√
(µn

l )2 + rn
ll (38)

the (37) suggests the consideration of the eigenvalue problem
which consists of the Bessel equation

−
[
ξ2

d2

dξ2
+ ξ

d
dξ

− (νn
l )2

]
y = λ2ξ2y (39)
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with accompanying appropriate conditions. To be more spe-
cific, the sequence {Jνn

l
(λl,jξ)}∞j=1 of the Bessel functions of

the first kind is available as the square integrable eigensolu-
tions of (39) over (0, 1) relative to the weight ξ, where the λ l,j

stand for the positive zeros of Jνn
l
(z) = 0. In what follows,

we expand each function X n
l (ξ) into a Fourier-Bessel series

Xn
l (ξ) = lim

M→∞

M∑
j=1

xn
l,jJνn

l
(λl,jξ), l = n, n+ 1, . . . , N.

(40)
Substituting these expansions into the system, after a long
but straightforward computation we end up with a generalized
matrix eigenvalue problem

HnX n = EWnX n (41)

where Hn and Wn are block matrices of order M(N − n+
1)×M(N−n+1) and X n is a block vector of order M(N−
n+1)×1. Here the entries of the matrices Hn and Wn contain
integrals of the type

Iν,σ(ρ, α, β) =
∫ 1

0

ξρJν(αξ)Jσ(βξ)dξ (42)

the computation of which is the most difficult and expensive
part of the method.

Thus, in summary, we have transformed the eigenvalue
problem (2)-(4) into a matrix eigenvalue problem.

IV. AN EXAMPLE: PROLATE SPHEROID

As an application of the method, we consider the so-called
prolate spheroid which in Cartesian coordinates can be written
as

D =
{

(x, y, z) | x
2 + y2

a2
+
z2

b2
≤ 1

}
(43)

where b2 > a2. For this particular example the function F (η)
is obtained as

F (η) = a+ 2a
K∑

k=1

βk

4k

Γ(2k)
Γ(k)Γ(k − 1)

η2k (44)

where β = 1 − a2

b2 .
The numerical implementation of the problem has been

performed by using two types of software, MATHEMATICA
for finding zeros of Bessel functions and FORTRAN for
the rest of computations. It must be pointed out that, the
generalized eigenvalue problem (41) has been solved for all
values of n from 0 to N . We treated the cases of a prolate
spheroid with a = 1 and b = 1.01 and a = 1 and b = 1.5. The
first case is obviously a slight perturbation of the sphere. The
calculated eigenvalues are given in Tables I and II respectively.
For comparison, we have obtained approximate eigenvalues
of the same problem using an alternative method proposed
by Moszkowski[11]. In both tables E (1) denotes eigenvalues
obtained using our method, and E (2) denotes eigenvalues
obtained by the method of Moszkowski.

TABLE I
FIRST 10 EIGENVALUES FOR A PROLATE SPHEROID

WITH a = 1 AND b = 1.01

n E
(1)
n E

(2)
n

1 9.8047447 9.8047447
2 32.867762 32.867761
3 32.936688 32.936688
4 33.123826 33.123826
5 39.225609 39.225609
6 66.278007 66.278005
7 66.313557 66.313555
8 66.419504 66.419503
9 66.593947 66.593946
10 66.834143 66.834142

TABLE II
FIRST 10 EIGENVALUES FOR A PROLATE SPHEROID

WITH a = 1 AND b = 1.5

n E
(1)
n E

(2)
n

1 7.9953 7.9953
2 20.394 20.393
3 24.986 24.986
4 30.410 30.410
5 34.893 34.893
6 39.909 39.905
7 44.098 44.097
8 49.663 49.662
9 55.982 55.980
10 56.121 56.121

V. CONCLUSION

Although the method presented here seems to be a standard
expansion technique, it has two very significant properties.
First, it employs an unusual coordinate transformation which
standardizes the region. Second, it deals with an expansion in
the Bessel functions with real orders which is interesting from
a mathematical point of view.
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