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In [16], [26] and others it was shown that the Bage

Abstract—The Comparison analysis of the Wald's and Bayessequential procedures and the Wald criterion atenon in

type sequential methods for testing hypotheseffésenl. The merits
of the new sequential test are: universality whicbnsists in
optimality (with given criteria) and uniformity aflecision-making
regions for any number of hypotheses; simplicigmwenience and
uniformity of the algorithms of their realizatiomeliability of the
obtained results and an opportunity of providinge tlerrors
probabilities of desirable values. There are gitlem Computation
results of concrete examples which confirm the abstated
characteristics of the new method and charactahizeconsidered
methods in regard to each other.

Keywords—Errors of types | and I, likelihood ratio, the Besy
Type Sequential test, the Wald’s sequential testraged number of
observations.

I. INTRODUCTION

the sense of definition of optimality in these eri&, and that
under certain conditions, they coincide.

The methods of sequential analysis of the Wald'shod
and the method based on the Bayesian approach uiee g
simple, graphic and convenient for practical resdlon, but,
unfortunately, only for the case of two hypothesésr an
arbitrary number of hypotheses, the problem becomes
significantly complex, and it has not been solvedhpletely
in the sense of conventional statements of bothségriential
criterion based on the sequential probability ragist and the
minimization of the sum of the Bayesian risk cadtetl for
sequentially incoming observation results and tlest oof
obtaining the same results of the experiment.

New methods of sequential analysis for testing many
hypotheses were offered in [27]; they are basetherspecific

THE development of sequential methods was startenl afProperties of hypotheses acceptance regions intreamesd

the Second World War by Wald [1], [2] and Barnagdl [
In [4] was given a set of works dedicated to ddferaspects
of the problem of the sequential analysis. The ertigs of
optimality of the Wald criterion were investigatad[1], [2],
[5]-[12]. In [8], [9] some modifications of Wald’'snethod
were developed. In particular, in [9] a modificatiovhich

Bayesian problems of testing many hypotheses [28]-[The
aim of this work is to provide the comparison asalyof nhew
the Sequential and Wald’s methods for testing hypses.

Il. THEWALD' SMETHOD
For the statement of the problem, let us use théd¥a

guaranteed achiving the exact error probabilitiems w formalization [1], [2]. LetH, and H, be the suppositions that

developed. Sequential tests of the multidimensityjzé with
the corresponding univariate sequential tests, witiphasis
on the Gaussian setting, were compared in [13]]. [Eér

these cases the comparison of expected sample ®sze

realized in [15]. The optimal properties of the Nmn-
Pearson and Wald criteria were compared in [12kr&lwas
shown that, for providing the given probabilitiesesrors of
the first and the second kinds, in the Wald criterifrom half
to one-third as many observation results as inNegman-
Pearson criterion were needed in the case whertetted
hypotheses were close.

The Bayesian sequential procedures were descnibgd],
[16]-[26] and others. The essence of these proesdcwnsists
in the minimization of the risk, which is defined the average
cost of observations plus the average loss regultiom
erroneous decisions.
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a random variableX has the distribution densitp(x|H,) or
p(x|H,), respectively. The decision in favour of the

hypothesis must be made on the basis of the seglient
obtained observation resuksx,,.... The essence of the

Wald’s sequential test consists in the following:dompute

S

the likelihood ratio

B(X) = P(Xs Xgseees Xy | Ho )/ P(X, Xg0eees Xy | HY) for m

sequentially obtained observation results, and, if
B<B(X)<A, ()

the decision is not made, and the observation efréimdom
variable is continued. If

B(x)= A, (2)
then hypothesidd, is accepted on the basis af observation
results. If

B(x)<B, ©))
then hypothesidH, is accepted on the basis wf observation
results.

The thresholds A and B are chosen so that the

significance level and the power of the criterioe aqual to
a andl-f3, respectively.
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Finding of the exact values oA and B is a challenge.
Therefore, for practical aims, their upper and
estimations are suggested [1], [2], [31], [32] exdjvely.

A:ﬂ and B:i, (4)
a 1-a
It is proved [1] that in this case the real valoéshe errors
of types | and Il are close enough to the desiades, but on
the whole are distinguished from them.
As was mentioned above, unfortunately, the germatadin
of this method for an arbitrary number of hypottseebas not

been accomplished.

1. A NEwWMETHOD OFSEQUENTIAL ANALYSIS

In [33] new forms of the Bayesian statement of hipses
testing were introduced. Instead of the unconstchiproblem
of minimization of the average risk caused by thers of
types | and Il, it was offered to solve the corised
optimization problem. In this case, restrictions Bmposed on
the errors of one type and the errors of the sedygpd are
minimized. Depending on the type of restrictiortsere are
considered different constrained optimization peotd [28],
[33]: 1. The Restriction on the averaged probabildf
acceptance of true hypothesis; 2. The Restrictiams
conditional probabilities of acceptance of each etru
hypothesis; 3. Restrictions on the posterior prditigls of
acceptance of each true hypothesis; 4. The Restrion the
averaged probability of rejection of true hypotlesd.
Restrictions on the probabilities of rejection ddick true
hypothesis; 6. Restrictions on the posteriori philiiges of
rejection of each true hypothesis; 7 Restrictionsaweraged
probabilities of rejected true hypotheses. To becHig, let us
consider the task of imposing the restriction oa #veraged
probability of rejection of true hypotheses, whibas the
following statement

Py p(Hi)Jr

subject to
P p(Hi)ZjS:szi Irj p(x|H)dx<a.

The Solution of this problem is

p(x| H;)dx= max,

) ©)

(6)

r :{x: p(H,)p(X|H ) > AT, p(Hi)p(XlHi)}’

i=1..S. ()

Here S is the number of tested hypotheses; (i = 1...,S)
is the tested hypothesid;, is the region of acceptance of
hypothesidd,; p(H,) is the a priori probability ofH,
hypothesis;p(x | H,) is the conditional distribution density of &
the observation vectord is defined so that equality was
fulfilled in (6).

The results of investigation of hypotheses accejgtan
regions (7) show that the decision-making spacetagas
hypotheses acceptance regions and a no-decisianri&s],
[29]. This property is used for the introduction afnew
sequential method of statistical hypotheses testifige
essence of the method is in the following [27].
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Let us designatel " is the acceptance region o,
hypotheses (7) on the basis ofi sequentially obtained
repeated observation resulf®; is the decision-making space
in the sequential methodn is the dimensionality of the
observation vector;l" is the population of sub-regions of

intersections of acceptance regions of hypotheldes "

(i=1....5), with the regions of acceptance of other
hypothesesH,, j=1...S, j#i; Ef=R,-U4M" is the
population of regions of spad®, which do not belong to any

of hypotheses acceptance regions.
The hypotheses acceptance regions in the sequerihbd
are:

Ry ="M, i=1..S; (8)
the no-decision region is:
Riea = (U1 Ep, (©)
where the acceptance region of tHe hypotheses
MM ={x:p(x|H;) > A P [H)}, (10)

where0< A, <+, /= 1 ,S.

I
the suitable restrictions.

These methods, obtained for all possible constdaine
optimization problems (see above), are catleel sequential
methods of Bayesian tyf&7]. To be specific, further we will
consider the task with restrictions on the averggetability
of acceptance of true hypotheses.

Coefficients A, = are defined from the equality in

IV. COMPARISONANALYSIS

Let us investigate the ratio among the errors pésyl and
Il in the Walds’s and sequential Bayesian-type méshwhen
the number of hypotheses is two. For simplicity, s omit
the indexes where this does not cause misundenstarfeor
two hypotheses regions (10) takes the forms

p(H,) 1 p(Hy)
Mo ={x:B(x)>A——=} andl, ={x: B(x)< ——1 (11)
(H,) p(H,)
in the considered task with restrictions on the raged
probability of acceptance of true hypotheses, thalecision

region is: p( P(Ho) g B(x) <A p(H o)} when 4 PH) o4
(Hl) p(H 1) p(Hl)
q 4 PH o)< B <+ 1 p(HO)} at 1 PHo) (see (28],

p(H,) A p(Hy) p(H,)
[33)).
It is evident that, for the Wald's test, the errofgype | and

Il are

= p(B(x)>AlH,), (12)
and
A" = p(B(x) <B|H,). (13)
Similar characteristics of the sequential Bagedipe

methods are:
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a® = p(B(x)>A|H,), (14)
and
B° = p(B(x) <B'|H,), (15)
where
A':/] p(HO) and B':l p(HO) , (16)
p(H,) A p(Hy)
or
a=1PHo) e P(HY)
A p(H,) p(H,)

P(H,)
p(H,)

It is obvious that, in the general case, theseadieristics
for considered methods are different. Let us irigag the
ratio among these probabilities. In particular, Wist show in
which conditions the inequalities

depending on the value of

a®<a" and g° <" (17)
are fulfilled.
It is clear that atd M >1 when
1
/] > p(Hl) 1_ﬁ and£< p(Hl) ﬁ , (18)
p(Ho) a A p(Ho)l_a
conditions (17) are fulfilled; a# <1 when

A p(Hy) a
conditions (17) are fulfilled.
It was proved in [27] that for the given level i6) (at
increasing divergence between the

p(Ho) 1-a

Let us considep(H,)=09, p(H,)=01, a= 005,

£ =005. Then from (18) it follows that if the divergence

between the tested hypotheses is such that the@mie A
in the sequential Bayesian-type method is greatam 211,

a® <a" takes place, and, il >171 both inequalities in (4)
are fulfilled.

The results of given elementary computations cpoed
completely to the logical judgment. Particularlyetsmaller is
the a priori probability of the hypothesis, the Heg is the
probability of its incorrect rejection (error of py 1).
Analogously, the bigger is the a priori probability the
hypothesis the higher is the probability of its dmect
acceptance (error of type Il).

Let us present the computation results of some pheso
confirm in practice the abovementioned considenatio

Example 1. Tested  hypothesel; : 8 =16, =1;

162 =4,02=4. A priori probabilities of the hypotheses:
H,:62 =4,67 =4. A priori probabilities of the hypoth

p(H,) =05, p(H,)=05. The significance level of the

criterion in the constrained Bayesian taskadss 005. The
above-considered tests were applied to the seglignti
incoming observation results generated as two-dsoeal
normally distributed random vectors with the mathéoal
expectation 0=(44) and the covariance

10 4 3 10 5 20 15
e W= E E ,
(o 1) (3 4) (5 10) (15 20]

30 25
e :
(25 30)

matrices

This means that five samples of normally distrildute

tested hypothesendom vectors with different covariance matricegrev

coefficient A in (16) decreases and, in the limit, tends to .zerprocessed by both tests.

It was proved also that for the given level in §)decreasing
divergence between the tested hypotheses coeffidietends
to the constant which is determined by a prioribaitalities of
tested hypotheses, and, when these probabilitegantical,
it is equal to the number of tested hypotheses snime.

Hence it follows that there always exists such aitp@
value of the divergence between the hypotheses ithtte
divergence between the tested hypotheses is mare that
value, the method of sequential analysis of thgeBian type
rigorously surpasses the criterion with the ermirghe first
and the second kinds equaldo and (3, respectively.

Let us suppose thatp(H,)= p(H,)=05, a =005,

The Kullback's divergence [34]
hypotheses for different samples changes depending
covariance matrices and are equal to 0.5721, 0,71LD954,
1.6036 and 4.2426, respectively. In Fig. 1 the ddpaces of
the averaged numbers of observations necessargndtiing
the decision in the Wald's and Bayes-type sequemisis
depending on the divergences between the hypothases
given. In Fig. 2 the dependences of the type | Bnefrors
probabilities on the divergence for
observations equal to the averaged values for wiétisions
are made in the Bayes-type sequential test areemiexs In
Fig. 2, for each divergence the appropriate valogghe
number of averaged observations are shown. The galues,

B=005. From the first and the second conditions of (4}, the suitable sequence, for the Wald's test 8r6,115.6, 8.2,
follows that A=171 and B= 211, respectively. Then from 2.71 and 1.66, respectively. Form here it is sdwt the

(18) it follows that, if the divergence between ttested
hypotheses is such that the appropriade in sequential
Bayesian type method is greater tha®, i.e. A >19 then
there takes place (17).

Let us nowp(H,) =01, p(H,) =09, a =005, = 005.
Then from (18) follows that if divergence betweesstéd
hypotheses is such that the appropridtein the sequential
Bayesian- type method is greater thahl, S° <pB" takes
place, and, ifA >171 both inequalities in (4) are fulfilled.
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Bayes-type sequential test needs in average lestberuof
observations than the Wald'’s test for making theisien for
the considered example. The discrepancy between
averaged values is bigger the smaller is divergembeugh,
the type Il error probability for the Bayes-typeggential test
is bigger than the analogous characteristic forvitadd’s test.
The Bayes-type sequential test becomes more powtbidn
the Wald's test by both types of errors for the dthyeses with
the divergence greater than 4 (see Fig. 2).
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— The Wald’s test

---- The Bayes type
sequential test

20.00000-

15.00000-

10.00000-

5.000007]

Averaged numbers of observations

0.000007

T T T T T
57210 71710 1.09540 1.60360 4.24260

Divergence between hypotheses

Fig. 1 The dependences of the averaged numbeissefations
necessary for making decision in the Wald’s andBhages type
sequential tests depending on the divergences bettygpotheses

— Errorll
0.5 === Errorl

n=9.6

Type | and Il errors probabilities

T T T T
57210 71710 1.09540 1.60360

Devergence

Fig. 2 The dependences of the type | and |l epoobabilities on the
divergence for the numbers of observations equéld@veraged
values for which decisions are made in the Baygs sequential test

V. CONCLUSION

On the basis of above-given results, we can coecthet
the new sequential Bayes-type method is a good fmol
testing any number of hypotheses. The method igetsal,
convenient and reliable for testing any number ygdtheses
without additional investigations. The working pesfles of
the test and the quality of the obtained resultshixy test are
investigated by their comparison with the Wald'sttior two
multivariate hypotheses. The comparison allowedoumfer
that, for making the decision, the new method neids
average a smaller number of observations and, mergtor
some values of divergence between the tested hgpesh it
gives more powerful decisions than the Wald’s tests. It is
beyond question that, in contradistinction to thalté test,
this test is optimum, convenient and simply defirffed any
number of hypotheses.
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