University of California NATURAL RESERVE SYSTEM

Mildred E. Mathias Graduate Student Research Grants 2014-15

APPLICANT INFORMATION	First applicant	Second applicant (Joint application only)
First / given name		
Middle name (if used)		
Last / family name		
e-mail address		
U.S. Postal Service mailing address		
Daytime phone number(s)		
Campus		
Department		
Advisor(s)		
Year in program		

RESEARCH PROJECT		
Title		
Time schedule		
Other funding sources		

Select each reserve where you intend to conduct your research

Angelo Coast Range Reserve Año Nuevo Island Reserve Blue Oak Ranch Reserve Bodega Marine Reserve Box Springs Reserve Boyd Deep Canyon DRC Burns Piñon Ridge Reserve Carpinteria Salt Marsh Reserve Chickering American River Reserve Coal Oil Point Natural Reserve Dawson Los Monos Reserve Elliott Chaparral Reserve Emerson Oaks Reserve Fort Ord Natural Reserve Hastings Natural History Reservation James San Jacinto Mountains Reserve Jenny Pygmy Forest Reserve Jepson Prairie Reserve Kendall-Frost Mission Bay Marsh Res. Landels-Hill Big Creek Reserve McLaughlin Natural Reserve Merced Vernal Pools & Grassland Res. Motte Rimrock Reserve Kenneth S. Norris Rancho Marino Res. Quail Ridge Reserve Sagehen Creek Field Station San Joaquin Marsh Reserve Santa Cruz Island Reserve Scripps Coastal Reserve Sedgwick Reserve SNRS – Yosemite Field Station Stebbins Cold Canyon Reserve Steele/Burnand Anza-Borrego DRC Stunt Ranch Santa Monica Mntns. Res. Sweeney Granite Mountains DRC VESR – Sierra Nevada Aquatics Res Lab VESR – Valentine Camp White Mountain Research Center Younger Lagoon Reserve

How is the use of NRS reserve(s) important to your project?

BUDGET Funding may be requested for: necessary supplies and minor equipment; reserve user fees; actual cost of food and travel to, from and at the reserve; special logistical costs; computer support; access to special analytical equipment, etc. Non-allowable categories include: travel to scholarly meetings; preparation of thesis copy; salaries and stipends; publication costs; purchase of classroom books; and purchase of computers or printers.			
The first states, First	Description	Amount	Total
Supplies & minor equipment			
Fees charged by the reserve			
Travel (please put actual cost items and mileage @ \$.50/mi on separate lines)			
Subsistence			
Other			
	Total request (cannot exceed \$3,000)		

Scaling up demography – How climate and species interactions shape the population dynamics and management of the invasive herb *Plantago lanceolata*

1. Conceptual background

Understanding population processes is critical to predicting the distribution and abundance of organisms in space and time. Recent increases in anthropogenic impacts on natural systems – encompassing global climate change, disturbance, and the introduction of exotic species – have altered population processes in many species, pushing some to extinction while facilitating explosive growth in others. Key to understanding population- and species-level changes is their dependence on the aggregation of individual responses; put another way, our ability to predict future changes rests on our understanding of the processes that alter individual performance and how these individual responses scale up to higher levels of biological organization.

Although tools to predict population growth rate (λ) from measurements of individual-level population processes have developed considerably since the 18th century (1), <u>we understand little about how spatial or temporal variation in population processes affect population dynamics</u>. Individual performance – and by extension population dynamics – depends heavily on environmental conditions that vary over both space and time, especially in sessile organisms, as they do not have the ability to migrate to more benign regions. Such variation is the rule rather than the exception in natural settings, and can manifest in complex ways when abiotic and biotic drivers of performance interact (2). Most studies of population dynamics fail to capture the full range of conditions an organism experiences; population studies in a database encompassing 932 plant species (COMPADRE 3.0) are typically short in duration (median=4.5, >90% are less than 12 years) and are poorly replicated in space (median=3.5, max=15 populations). Failure to sample demographic processes across the range of abiotic and biotic environments a species experiences not only hinders our ability to predict biological responses to ongoing anthropogenic change, but also confounds the widespread use of population models for conserving rare species (3) and managing invasives (4).

Adequate spatial and temporal replication is a colossal task for a single researcher to attempt, especially for wide-ranging invasive species. A growing movement in ecology resolves this barrier by establishing a network of globally-distributed collaborators, each contributing funding and data to meet the larger project objectives (see the International Tundra Experiment (5) and Nutrient Network (6) as examples). The distributed design also encourages both collaboration between junior and senior scientsts and participant-developed add-on projects that leverage the existing design and collaborative network to answer other important ecological questions. PlantPopNet (http://plantpopnet.wordpress.com) is a budding globally-distributed experiment that seeks to bridge gaps in our understanding of how climatic variation alters species traits and population dynamics using a widespread invasive plant as a model system. This proposal seeks to answer two questions:

- 1) How does spatially variable climate affect individual performance and population dynamics?
- 2) Do interactions with symbiotic species modulate the impacts of climate?

2. Study system

Plantago lanceolata (Plantaginaceae) is a short-lived perennial herb native to northern Europe that now occurs in 76 countries across every continent (7). Within California, *Plantago* has invaded 49 of 58 counties (8) and 13 of 39 UC Reserves (9). The worldwide invasion of *Plantago* places it as a model system for understanding invasion and naturalization processes. Stymied efforts to control its spread are likely in part due to its rapid maturation, prodigious seed production and dispersal, and resilience to disturbance (10).

Plantago grows across a large range of climate regimes, making it an ideal candidate species to address questions involving spatial heterogeneity. Within California, it grows over a 4.6-fold gradient in mean annual temperature and a 36.4-fold gradient in mean annual precipitation (Fig. 1). This wide range of climate regimes provides an unparalleled opportunity to test the hypothesis that spatial variation in climate alters population processes and dynamics, and to understand which processes may be the best regional targets for invasive management.

Plantago frequently interacts with root-associated arbuscular mycorrhizal fungi (AMF), a pervasive symbiosis common to >80% of all plant species and many important invasives (11). AMF symbionts generally improve host plant performance in stressful environments by provisioning nutrients and water in exchange for carbon from the host; however, the benefits of the interaction for host plants may not outweigh costs in response to other stressors or in benign environments (11). Specifically for Plantago, plants hosting AMF grow better in poor soil and have higher concentrations of anti-herbivore compounds (12), but carbon allocation to AMF slows plant regrowth after grazing (13). As such, the effect of species interactions on individual performance and population dynamics may be contingent on environmental context.

The methodology outlined here will allow for data collection at 9 *Plantago* populations across their invasive range in California and provides an avenue for my collaboration with the global PlantPopNet network. I will add to this project an experimental design - replicable anywhere that contrasts abiotic and biotic environmental drivers of Plantago population dynamics. I will use a coordinated set of UC-NRS Reserves (see letters of support) and nearby (<50km) public lands to advance these scientific and professional goals.

3.1 Demographic modeling (core *PlantPopNet objective*)

At each study population, I will mark 100 individual Plantago

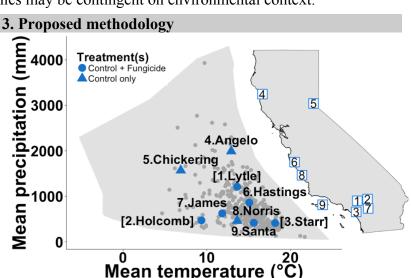


Fig. 1 (L) "Climate space" occupied by Plantago lanceolata in California expressed in mean annual temperature (°C) and precipitation (mm). Proposed study populations are shown in blue by treatment (see text for details; brackets indicate sites not requiring use of a Reserve). Plantago collection records (dark gray points) span more than 50% of the climate space of California (light gray polygon). Data sources: Climate – PRISM Climate Group; *Plantago* collections – Consortium of California Herbaria. (R) Proposed sites are shown in geographic space with numbers corresponding to L figure.

plants using small tags along a ca. 10 m long, 1 m wide transect. Where plant density is low, I will extend or replicate this transect design. I will mark transect ends using wood stakes and georeference them for precise relocation. I will measure annual rates of growth, survival, reproductive effort, and recruitment on these individuals and build integral projection models (IPMs) parameterized with the field data (14). I will use Life Table Response Experiment (LTRE) analyses – analogous to ANOVA – to understand how differences in plant performance among populations scale up to drive differences in population dynamics and link these to climatic differences among sites derived from nearby weather stations (15).

3.2 Experimental manipulation of species interactions (novel add-on)

Interactions with other species - in addition to the abiotic environment - can have profound impacts on individual performance, and by extension, population dynamics. I will explore the consequences of the close association of *Plantago* with symbiotic AMF contrasted against climatic variation by experimentally manipulating AMF colonization at a subset of study sites (Fig. 1). This component represents a novel contribution to the broader PlantPopNet collaboration that will be offered to project participants as a means to extend the inference of my research beyond California. At this early stage, one participant has already agreed to replicate this protocol at several populations near Brisbane, Australia (R. Salguero-Gómez, pers. comm.).

I will reduce AMF colonization by applying slow-release beads containing the fungicide iprodione at 2 $g \cdot m^{-2}$ to plants in a replicate transect every 60 days during the *Plantago* growing season (at most late March-early August; 10 m x 1 m transect treated = 20 g \cdot application⁻¹). This dose and application frequency effectively reduces AMF colonization (12). Moreover, iprodione has been shown to have low soil mobility and groundwater penetration (16), low toxicity to other organisms (17), and a short half-life in soil (14-30 days; 18). Given its low impact, iprodione is registered in California for a wide variety of anti-fungal applications in landscape-scale commercial settings as well as residential use.

I will measure AMF colonization on both treated and control plants to ensure treatment efficacy. Finally, I will assess the demographic impact of interactions with AMF by building population models for fungicide-treated plants and comparing them to controls using the same methods used to build and compare population models across study sites.

4. Literature Cited

- 1. T. R. Malthus, An essay on the principle of population, as it affects the future improvement of society (J. Johnson, London, 1798).
- 2. R. M. May, Stability and complexity in model ecosystems (Princeton University Press, 1973).
- 3. W. F. Morris, D. F. Doak, Quantitative conservation biology (Sinauer, 2002).
- 4. E. R. Buhle, M. Margolis, J. L. Ruesink, Bang for buck: cost-effective control of invasive species with different life histories. Ecol Econ 52, 355-366 (2005).
- 5. S. C. Elmendorf et al., Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol Lett 15, 164-175 (2012).
- 6. E. T. Borer et al., Finding generality in ecology: a model for globally distributed experiments. Meth Ecol Evol 5, 65-73 (2014).
- 7. GBIF, The Global Biodiversity Information Facility: GBIF Backbone Taxonomy (2013) (available at http://www.gbif.org/species/3189736).
- 8. USDA, NRCS, The PLANTS Database (2014) (available at http://plants.usda.gov).
- 9. B. P. Haggerty, S. J. Mazer, Flora of the University of 17. C. MacBean, The Pesticide Manual (British Crop California Natural Reserve System (University of California Natural Reserve System, 2014).
- 10. Cal-IPC, California Invasive Plant Inventory (California Invasive Plant Council, 2006; http://www.cal-ipc.org).
- 11. S. E. Smith, D. J. Read, Mycorrhizal Symbiosis

(Academic Press, 2010).

- 12. A. C. Gange, A. G. West, Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytol 128, 79-87 (1994).
- 13. G. B. De Deyn, A. Biere, W. H. van der Putten, R. Wagenaar, J. N. Klironomos, Chemical defense, mycorrhizal colonization and growth responses in Plantago lanceolata L. Oecologia 160, 433-442 (2009).
- 14. S. P. Ellner, M. Rees, Integral projection models for species with complex demography. Am Nat 167, 410-428 (2006).
- 15. J. Fieberg, S. P. Ellner, Stochastic matrix models for conservation and management: a comparative review of methods. Ecol Lett 4, 244-266 (2001).
- 16. R. D. Wauchope, T. M. Buttler, A. G. Hornsby, P. W. M. Augustijn-Beckers, J. P. Burt, in Reviews of Environmental Contamination and Toxicology, Reviews of Environmental Contamination and Toxicology. G. W. Ware, Ed. (Springer New York, New York, NY, 1992), vol. 123, pp. 1-155.
- Protection, 2012).
- 18. US EPA, Reregistration Eligibility Decisions (REDs) Database on iprodione (36734-19-7) (US Environmental Protection Agency, 1998; http://www.epa.gov/oppsrrd1/REDs/2335.pdf), pp. 1-289.

William K. Petry

Department of Ecology	Education	
& Evolutionary Biology	2010-	Ph.D. candidate, University of California at Irvine,
321 Steinhaus Hall		Ecology & Evolutionary Biology (Advisor: Kailen
University of California		Mooney; advanced to candidacy November 2012)
Irvine, California 92697- 2525 USA	2006-2010	B.Sc. Biology (with minor in Mathematical Biology), <i>summa cum laude</i> , Truman State University, Kirksville,
- & -		Missouri
The Rocky Mountain		
Biological Laboratory Research Appointments		oointments
Gothic, Colorado USA	2013-	Graduate Affiliate, Center for Global Peace & Conflict
$W_{1} + 1.040.924.7140$		Studies, University of California at Irvine
W: +1.949.824.6140 C: +1.636.489.9884	2007-2010	Undergraduate researcher, Truman State University
wpetry@uci.edu	2009	NSF-REU Fellow, Rocky Mountain Biological
wpeny@uei.edu		Laboratory
Updated:	2007	Resource Science field technician, Missouri Department
October 2014		of Conservation
	2005	Fisheries field technician, Missouri Department of
		Conservation

Publications (*undergraduate coauthor, n = 7)

- Moriera, X., K.A. Mooney, S. Rasmann, W.K. Petry, A. Carrillo-Gavilán, R. Zas, & L. Sampedro. 2014. Trade-offs between constitutive and induced defences drive geographical and climatic clines in pine chemical defences. <u>Ecology Letters</u> 17:537-546
- Petry, W.K., K.I. Perry*, A. Fremgen*, S.K. Rudeen*, M. Lopez*, J. Dryburgh*, & K.A. Mooney (2013) Mechanisms underlying plant sexual dimorphism in multi-trophic arthropod communities. <u>Ecology</u> 94: 2055-2065.
- Mooney, K.A., A. Fremgen*, & W.K. Petry (2012) Plant sex and induced responses independently influence herbivore performance, natural enemies and aphid-tending ants. <u>Arthropod-Plant Interactions</u> 6: 553-560.
- Petry, W.K., K.I. Perry*, & K.A. Mooney (2012) Influence of macronutrient imbalance on native ant interactions with aphids, aphid enemies, and host plant flowers in the field. <u>Ecological Entomology</u> 37: 175-183.
- Petry, W.K., S.A. Foré, L.J. Fielden, & H-J. Kim (2010) A quantitative comparison of two sample methods for collecting *Amblyomma americanum* and *Dermacentor variabilis* (Acari: Ixodidae) in Missouri. <u>Experimental and Applied Acarology</u> 52: 427-438.

Fellowships & Grants

2014	Doctoral Dissertation Improvement Grant (DDIG), National Science
	Foundation
2011-2014	Graduate Research Fellowship (GRFP), National Science Foundation (awarded
	2010)
2014	Research Grant, American Alpine Club
2014	Grant in Aid of Research (GIAR), Sigma Xi
2014	Graduate Student Grant, Rocky Mountain Biological Laboratory
2013	Travel Grant, Ecological Society of America Plant Population Ecology section

2013	School of Biological Sciences Graduate Fellowship, University of California
	Irvine
2013	John W. Marr Fund Research Grant, Colorado Native Plant Society
2013	Graduate Student Grant, Rocky Mountain Biological Laboratory
2012	Travel Grant, Ecological Society of America Plant Population Ecology section
2012	Research Grant, American Alpine Club
2012	Graduate Student Grant, Rocky Mountain Biological Laboratory
2011	Kingsdale Graduate Grant, Rocky Mountain Biological Laboratory
2011	Hendry Bequest, Alpine Garden Society
2010	Graduate Dean Recruitment Award, University of California Irvine
2010	NSF-IGERT Comparative Genomics Fellowship, University of Arizona (award
	declined)
2009	NSF-REU fellowship, Rocky Mountain Biological Laboratory

Conference Presentations

2014	Evolutionary Demography Society Meeting (Palo Alto, CA) – Sexually
	dimorphic responses to climate variation: Demographic causes and
	consequences of climate-skewed sex ratios
2013	Ecological Society of America (Minneapolis, MN), oral paper – Historical
	demography along a climatic gradient: Generating predictions of population
	responses to climate change in the montane dioecious herb Valeriana edulis
2013	Gordon Research Conference – Plant Herbivore Interaction (Ventura, CA),
	poster - Valeriana edulis, a system for studying the mechanisms of plant genetic
	effects on arthropod communities in the context of climate change
2012	Ecological Society of America (Portland, OR), oral paper – Warming up to
	changing trait frequencies: Rapid, climate change-induced shifts in population
	sex ratios along an elevation gradient
2011	Ecological Society of America (Austin, TX), oral paper – Sex-biased and
	variable herbivory parallel clinal variation in plant sex ratios along an elevational
	gradient
2010	Ecological Society of America (Pittsburgh, PA), oral paper – Ant-aphid
	interactions are mediated by host plant sex and ant colony nutritional status
2008	Society for Vector Ecology (Ft. Collins, CO), poster

Undergraduate Mentoring (N=10; *co-author [2]; ‡NSF-REU [3]; in graduate school [1])

University of California, Irvine

Kaitlyn Shimizu (2012-2014), Allen Phan (2012-2013), Lawrence Liu (2012), Alvis Lee (2011), Thao Dao (2011)

Rocky Mountain Biological Laboratory

John Dryburgh* (2011, Susquehanna University), Sarah Rudeen*‡ (2011, Southern Oregon University), Alec Williams‡ (2012, San Bernardino Valley College), Guadalupe Flores‡ (2013, San Bernardino Valley College), Ana Chicas-Mosier‡ (Oklahoma State University)

Community Outreach

PlantShift, directed citizen science initiative focused on my Ph.D. research, 2013-present National Lab Network, STEM Professional volunteer, 2011-present Irvine Unified School District, Science Fair mentor, 2010-present