
Software Deposit: What to deposit
Michael Jackson (ed.), The Software Sustainability Institute

Version 1.0

doi:10.5281/zenodo.1327325

07 August 2018

Introduction
What do we mean by a "software deposit"? What does a software deposit need to contain to enable it to
allow other researchers to inspect, replicate, reproduce and reuse the research, as manifested in the software,
in the short term and inspect the software, for the historical record, in the long term. This guide describes
what a software deposit should include, in terms of three types of deposit: a minimal deposit (with a
README, source code, copyright, licence and contributors information), a runnable deposit (with additional
user documentation and sample data) and a comprehensive deposit (providing a rich set of code, data and
documentation relating to the software).

What to deposit

About this guide

This guide is one of a series of guides on software deposit, written by The Software Sustainability Institute 1,
funded by Jisc 2. For an overview of the series, see Michael Jackson (ed.) (07 August 2018). Software

https://www.software.ac.uk
https://www.jisc.ac.uk
https://doi.org/10.5281/zenodo.1327325


Deposit: Guidance for Researchers (Version 1.0). Zenodo. doi:10.5281/zenodo.1327310. Online:
https://softwaresaved.github.io/software-deposit-guidance/SoftwareDepositGuidance.html.

Minimal deposit
At the very least, a software deposit should have the following content which allows others to access your
software and inspect it.

Simple README

Others will expect to find a plain-text README 3 file in any software bundle. Your deposit should conform
to this expectation and provide a README file providing a summary of the key facts about your software.
This should include, at the least:

Name of your software.
Brief overview of your software, what it does (for example, what research problem it was written to
solve) and what makes it novel (or different or distinct from similar software already available).
Contact: Your name, affiliation, current email address and your ORCiD identifier 4. This provides a
point of contact for others to get in touch if they have questions about your deposit and your research
more generally.
Link to live software: for ongoing projects links to your project web site and/or repository hosting
service. This allows others to easily find your current software from your deposit and to engage with
you and your project.

Copyright and licence(s)

A statement of copyright for your software makes it clear who created, and owns the rights to, your software.
A licence makes it clear to others what they can, and cannot, do with your software and any obligations upon
them.

Provide your copyright and licence in a plain-text file called LICENCE 5.

If you include third-party components, then include their licences in your LICENCE file, or as separate files
in a licences/ directory.

Authors and other contributors

It is important that everyone who authored or otherwise contributed to your software is recognised for doing
so and can get credit for their contribution. Provide a plain-text CONTRIBUTORS file which lists people
who you deem to have made a significant contribution to your software (including yourself). This can
include, for example, columns with each contributor's name, ORCiD identifier and affiliation and brief
summary of what their contribution was (for example designer, developer, tester, documentation author etc).

You should also state your funders, providing information on any grants that supported the software's
development.

Make sure that any named people have given their consent for their names, ORCiD identifiers and
affiliations to be included.

For legacy software, you might want to include statement along the lines of "We have made all efforts to
recall contributors. Please get in touch if you contributed to this software and we have forgotten you, so that
this can be rectified in future deposits."

Source code

Binaries such as executables, Docker 6 or Singularity 7 containers or virtual machine 8 can support

https://doi.org/10.5281/zenodo.1327310
https://softwaresaved.github.io/software-deposit-guidance/SoftwareDepositGuidance.html


replicability and reuse. Depending on the implementation (e.g. how configurable they are) they may also
support reproducibility. However, they do not allow others to inspect your software to understand exactly
what was run and how your results were produced. A complementary paper may provide this information but
the paper does not produce your results, the source code that you run does. Source code has a value even if it
no longer can be compiled or run, serving as a programmatic description of the research that was done.

If your source code implements or uses a third-party implementation of algorithms, or analyses that has been
published, then ensure that the code has comments with the citations for these publications.

In places where your code uses calls to third-party functions or libraries, it might not be clear to others what
these calls are doing, or how you are using them. This can be the case if, for example, a function's purpose is
not clear from its name, or it uses default values which you rely upon. Ensure they are commented to make it
clear exactly what the function is doing and how it is being used. Complement this with a link to any online
documentation for the function.

Ideally, your source code should be well-commented, formatted and indented, to ensure it is easily readable
and understandable by others, not just yourself.

Runnable deposit
A runnable deposit includes everything in a minimal deposit but also includes user documentation, some
sample data, includes files to provide a recommended citation and metadata about the deposit. A runnable
deposit should allow another researcher to build, install, configure and run your software on the sample data.

Please note that the suggested content for both runnable and comprehensive deposits are just that,
suggestions. There is no reason why you can't prepare a deposit that includes some recommended content
from a runnable deposit and some from a comprehensive deposit. In our view, the more content, the richer,
and more useful, the deposit.

Comprehensive README

Extend your README by including:

Version number of your software.
Copyright statement.
Name of your licence and third-party licences.
User documentation. If not too verbose. If it is verbose, then state where in your deposit this can be
found.
Summary of the other contents of the deposit (e.g. source code, sample data, user documentation,
recommended citation, metadata) with information on where in the deposit these can be found.

User documentation

If you want others to run or reuse your software, you need to document how they can do this. You need to
provide user documentation. Documentation for users can include: how to build, install, configure and run
the software; how to run the software on any sample data sets; and, how to interpret and use the outputs of
running your software.

Dependencies documentation

An important part of documentation is your software's dependencies: the environment without which your
software cannot be built, installed, configured or run. Even a 10 line script has a dependency on the language
used to implement it and the operating systems it runs under. Dependencies should be explicitly documented
and not implicitly buried within your source code. It is waste of a someone else's time to build, deploy and
run your software only to have it fail an hour later due to a missing library or data set or database.

Documenting your dependencies enable others to understand, and try to get, everything that is needed to run



your software and, so help other researchers to replicate, reproduce and reuse your research, as manifested in
your software.

Your dependencies can include: operating systems (ones your software run on, others it is known to run on);
programming languages; interpreters and compilers; packages, libraries, frameworks, or other tools;
browsers; databases; web or other online services and resources; file formats, standards and specifications;
data formats, standards and specifications; communications protocols; and, hardware (e.g. 32- or 64-bit
platforms, specialised high-performance computing resources, or cloud infrastructures).

For each dependency it can be useful to document the following: name; purpose (i.e. what you use it for);
whether it is mandatory or optional; origin (for example, a web site URL, a persistent digital identifier such
as a DOI 9 or an ARK 10, the author's email address); copyright and licence; whether it is free or needs
payment of a fee; version information (for example, version number, repository commit identifier, date
received, date accessed, for an online service, or a persistent digital identifier).

Version information is important. Different versions of dependencies could differ in terms of syntax,
behaviour or content. Software written to use one version might not be compatible with earlier or later
versions. For example, Python code with the statement "print 'hello'" will not run under Python 3, but code
with the statement "print('hello')" will run under both Python 2 and 3.

If you have dependencies that you include in your deposit, for example, if you include copies of source code
or data files, then document these too. If you have made any changes, then provide a summary of these. It is
a common obligation when redistributing or modifying third-party software that you acknowledge its use,
document its inclusion and provide its licence in your deposit.

If you are using a dependency management tool, then some of your dependencies may also be expressed in a
programmatic form. For example, a Python pip 11 requirements.txt file; a Maven 12 pom.xml file; a
RubyGems 13 Gemfile; an R DESCRIPTION 14 file; an Ansible 15 playbook, or a Vagrant 16 script.

Sample input and output data

Including sample data can be valuable for those who use your software deposit. These provide users with
sample inputs to use with your software and the expected outputs against which they can compare their
outputs when running your software. This can help them to determine whether they have managed to build,
install and run your software correctly. However, data files can also increase the size of your deposit. The
data you provide does not have to be comprehensive, or exercise every feature of your software in every
condition, a few sample data sets would suffice.

If you have published, or intend to publish, results based on your data files then consider following the FAIR
17 principles for research data management and deposit them into a digital repository as a citable research
object too. You can then use the metadata that describes your software and data deposits to link them
together 18.

Changes in dependencies can cause both subtle and not so subtle, changes in outputs for sample input data 19.
Document what you consider to be acceptable output for your sample inputs, what you would consider to be
"close enough" (for example, whether you consider equality to within 3 decimal places to be "close
enough"), error margins or tolerances, or other ways of evaluating the outputs, for cases where someone else
does not get identical outputs when using your sample data.

Recommended citation

In the same way that it is expected that others cite your papers if they have used them within their research,
you can request that others cite your software. This helps you to get credit for your research as manifested in
your software. You can search for these citations in papers, publications, other software, documentation, web
pages and blog posts and so gather information relating to impact of your software. This can help you to
demonstrate the impact of your software and its contribution to research to your employers, your community
and your funders.



Provide a CITATION.cff file with your citation expressed in the Citation File Format (CFF) 20 21. CFF is a
structured format for citation files, which allows such files to serve as both a human- and machine-readable
description of your recommended citation.

Metadata

Metadata is information about your software. This can include programming language, operating systems,
software type, authors, funders, licence and related research objects to name but a few. Metadata can both
help digital repository managers categorise and index your software deposit and to help other researchers
find your software according to criteria of relevance to them. However, some digital repositories are limited
in the metadata they record, via their submission forms or APIs. Repository hosting services can also be
limited in terms of the metadata they provide, which can limit the effectiveness of software deposit tools such
as the figshare-GitHub integration 22 or Zenodo-GitHub integration 23.

Provide a codeMeta.json file with your metadata expressed in the CodeMeta schema 24. CodeMeta is a
structured format for software-related metadata and is both human- and machine-readable.

Comprehensive deposit
A comprehensive deposit includes everything in a minimal and runnable deposit but provides a richer set of
documentation and includes test code and additional test and other sample data. A comprehensive deposit
allows other researchers to reuse, customise and modify your software and provides documentation allowing
them to understand, in detail, both how your software implements your research and where it sits in its wider
software ecosystem.

Developer documentation

If you want others to customise your software, you need to document how they can do this. You need to
provide developer documentation. Documentation for developers can include: how to set up a development
environment to build, test, modify and extend the software; how to run any tests; step-by-step lists of how to
run any manual tests and how to interpret the outputs; information on any application programming
interfaces (API) 25 supported by your software; descriptions and diagrams of the design of your software; and
the rationale as to why it is as it is.

Narratives of what the code does and how it does it

It can help others if you complement your source code with a pseudo-code 26 narrative of what it does and
how it does it. This narrative can bridge the gap between your research in the abstract, as, for example,
described in papers, and your research as concretely implemented in your source code. It can help others
understand how you implemented your research without needing to understand the specific programming
language in which you implemented it. As for source code, a pseudo-code narrative can include citations for
publications describing algorithms or analyses that have been implemented, or used, by you.

Narratives of the software's ecosystem

Research software does not exist in a vacuum, but forms a part of an ecosystem, which includes the sources –
hand-crafted data, processes, services, software, databases – from which the data it consumes originates and
the sinks to which the data it produces is destined. It can help others to understand how your software
contributes to research and what it does, if you provide information on this ecosystem.

You can use an English language narrative to describe this ecosystem. In addition to this, Research Object
ontology 27, Common Workflow Language (CWL) 28, GA4GH Task Execution Schema (TES) 29, Workflow
Description Language (WDL) 30 and YAWL (Yet Another Workflow Language) 31 all offer ways to more
formally represent software, processes, parameters, inputs, outputs and the relationships between these.



Test code

Source code for test cases can be a valuable complement for your source code, as these provide concrete
examples of how your functions and components are used and the expected outputs for your test inputs.

Additional sample or test data

In a comprehensive deposit, you might want to include a richer set of sample input and output data that
exercises a wider range of features of your software, or demonstrates its behaviour under a greater range of
conditions.

Find out more
Related Software deposit guides:

Michael Jackson (ed.) (07 August 2018). Software Deposit: What not to deposit (Version 1.0). Zenodo.
doi:10.5281/zenodo.1327323. Online: https://softwaresaved.github.io/software-deposit-
guidance/WhatNotToDeposit.html.
Michael Jackson (ed.) (07 August 2018). Software Deposit: How to describe a software deposit
(Version 1.0). Zenodo. doi:10.5281/zenodo.1327321. Online: https://softwaresaved.github.io/software-
deposit-guidance/HowToDescribeSoftwareDeposit.html.
Michael Jackson (ed.) (07 August 2018). Software Deposit: How to choose a software licence (Version
1.0). Zenodo. doi:10.5281/zenodo.1327316. Online: https://softwaresaved.github.io/software-deposit-
guidance/HowToChooseSoftwareLicence.html.

Deposits:

Beals, M.H., Jones, C., Palmer, G., Jackson, M., Wilde, H., Hammersley, J., Grose, D., Long, R.,
Panescu, A-T. and Whitaker, K. (2018) "Sharing reproducible research - minimum requirements and
desirable features", The Software Sustainability Institute blog, 22 May 2018,
https://www.software.ac.uk/blog/2018-05-22-sharing-reproducible-research-minimum-requirements-
and-desirable-features. A blog post which significantly influenced this guidance.

Comments, readability and documentation:

Jackson, M. (2012) "Writing readable source code", The Software Sustainability Institute, December
2012. https://software.ac.uk/resources/guides/writing-readable-source-code
Pawlik, A. (2012) "Five tops tips on documentation", The Software Sustainability Institute, 3 May
2012. https://software.ac.uk/blog/2012-05-03-five-tops-tips-documentation

Copyright and licences:

Software Data Package Exchange (SPDX) License List, https://spdx.org/licenses/, a list of popular
licences used in free and open source software, including standardised identifiers, full licence texts and
common exceptions to licence clauses.

CodeMeta and codeMeta.json files:

The CodeMeta Project, https://codemeta.github.io/. A machine-readable approach to documenting
software metadata. Specific CodeMeta terms are listed at https://codemeta.github.io/terms/.

Software citation and CITATION.cff files:

Citation File Format (CFF), https://citation-file-format.github.io/. A machine-readable approach to
specifying the citation that others should use when citing your software.
Smith A.M., Katz D.S., Niemeyer K.E., FORCE11 Software Citation Working Group. (2016)
"Software Citation Principles". PeerJ Computer Science 2:e86. doi:https://doi.org/10.7717/peerj-cs.86.
https://www.force11.org/software-citation-principles. Why software citation is important and how to

https://doi.org/10.5281/zenodo.1327323
https://softwaresaved.github.io/software-deposit-guidance/WhatNotToDeposit.html
https://doi.org/10.5281/zenodo.1327321
https://softwaresaved.github.io/software-deposit-guidance/HowToDescribeSoftwareDeposit.html
https://doi.org/10.5281/zenodo.1327316
https://softwaresaved.github.io/software-deposit-guidance/HowToChooseSoftwareLicence.html
https://www.software.ac.uk/blog/2018-05-22-sharing-reproducible-research-minimum-requirements-and-desirable-features
https://software.ac.uk/resources/guides/writing-readable-source-code
https://software.ac.uk/blog/2012-05-03-five-tops-tips-documentation
https://spdx.org/licenses/
https://codemeta.github.io/
https://codemeta.github.io/terms/
https://citation-file-format.github.io/
https://doi.org/10.7717/peerj-cs.86
https://www.force11.org/software-citation-principles


cite research software.

Depositing research data:

DCC (2014). "Five steps to decide what data to keep: a checklist for appraising research data v.1".
Edinburgh: Digital Curation Centre. Available online: http://www.dcc.ac.uk/resources/how-
guides/five-steps-decide-what-data-keep
Whyte, A. (2015). "Where to keep research data: DCC checklist for evaluating data repositories" v.1.1
Edinburgh: Digital Curation Centre. Available online: http://www.dcc.ac.uk/resources/how-guides-
checklists/where-keep-research-data/where-keep-research-data

Cite this guide
Please cite as: Michael Jackson (ed.) (07 August 2018). Software Deposit: What to deposit (Version 1.0).
Zenodo. doi:10.5281/zenodo.1327325. Online: https://softwaresaved.github.io/software-deposit-
guidance/WhatToDeposit.html.

 This work is published under a Creative Commons Attribution 4.0 International License
(CC BY 4.0), https://creativecommons.org/licenses/by/4.0/.

http://www.dcc.ac.uk/resources/how-guides/five-steps-decide-what-data-keep
http://www.dcc.ac.uk/resources/how-guides-checklists/where-keep-research-data/where-keep-research-data
https://creativecommons.org/licenses/by/4.0/


Deposit contents checklist

Deposit content Done
Minimal deposit
Simple README
Copyright and licence(s) (LICENCE, licences/)
Authors and other contributors (CONTRIBUTORS)
Source code
Runnable deposit
Comprehensive README
User documentation
Dependencies documentation
Sample input and output data
Recommended citation (CITATION.cff)
Metadata (codeMeta.json)
Comprehensive deposit
Developer documentation
Narratives of what the code does and how it does it
Narratives of the software's ecosystem
Test code
Additional sample or test data

1. The Software Sustainability Institute, https://www.software.ac.uk.↩

2. Jisc, https://www.jisc.ac.uk.↩

3. "README", Wikipedia, https://en.wikipedia.org/wiki/README.↩

4. ORCiD, https://orcid.org/.↩

5. Or LICENCE, LICENCE.txt, LICENSE.txt, LICENCE.md or LICENSE.md.↩

6. Docker, https://www.docker.com/.↩

7. Singularity, http://singularity.lbl.gov/.↩

8. "Virtual machine", Wikipedia, https://en.wikipedia.org/wiki/Virtual_machine.↩

9. Digital Object Identifier (DOI), https://www.doi.org/.↩

10. Archival Resource Key (ARK), J. Kunze and R. Rogers (2008) The ARK Identifier Scheme, California Digital Library and
US National Library of Medicine, May 2008. https://escholarship.org/uc/item/9p9863nc.↩

11. PyPA pip, https://pip.pypa.io/en/stable/.↩

12. Apache Maven, https://maven.apache.org.↩

13. RubyGems, https://rubygems.org/.↩

14. "1.1.1 The DESCRIPTION file", Writing R Extensions, version 3.5.0 (2018-04-23), https://cran.r-project.org/doc/manuals/r-
release/R-exts.html#The-DESCRIPTION-file.↩

15. Ansible, https://www.ansible.com/.↩

16. Vagrant, https://www.vagrantup.com/.↩

17. "The FAIR Data Principles", FORCE 11, https://www.force11.org/group/fairgroup/fairprinciples.↩

18. For example, CodeMeta, https://codemeta.github.io/terms/, provides a "supportingData" term; figshare, https://figshare.com/,

https://www.software.ac.uk
https://www.jisc.ac.uk
https://en.wikipedia.org/wiki/README
https://orcid.org/
https://www.docker.com/
http://singularity.lbl.gov/
https://en.wikipedia.org/wiki/Virtual_machine
https://www.doi.org/
https://escholarship.org/uc/item/9p9863nc
https://pip.pypa.io/en/stable/
https://maven.apache.org
https://rubygems.org/
https://cran.r-project.org/doc/manuals/r-release/R-exts.html#The-DESCRIPTION-file
https://www.ansible.com/
https://www.vagrantup.com/
https://www.force11.org/group/fairgroup/fairprinciples
https://codemeta.github.io/terms/
https://figshare.com/


provides a "references" field; and, Zenodo, https://zenodo.org, provides a "relatedIdentifiers" property.↩

19. For example, in a number of versions of Python, 0.1 + 0.2 gives the result 0.30000000000000004!↩

20. Citation File Format (CFF), https://citation-file-format.github.io/. A machine-readable approach to specifying the citation that
others should use when citing your software.↩

21. Smith A.M., Katz D.S., Niemeyer K.E., FORCE11 Software Citation Working Group. (2016) "Software Citation Principles".
PeerJ Computer Science 2:e86. doi:https://doi.org/10.7717/peerj-cs.86. https://www.force11.org/software-citation-principles.↩

22. "How to connect figshare with your GitHub account", figshare knowledge, https://knowledge.figshare.com/articles/item/how-
to-connect-figshare-with-your-github-account-1.↩

23. "Making your code citable", GitHub Guides, https://guides.github.com/activities/citable-code/.↩

24. The CodeMeta Project, https://codemeta.github.io/. A machine-readable approach to documenting software metadata. Specific
CodeMeta terms are listed at https://codemeta.github.io/terms/.↩

25. "Application programming interface", Wikipedia, https://en.wikipedia.org/wiki/Application_programming_interface.↩

26. "Pseudo-code", Wikipedia, https://en.wikipedia.org/wiki/Pseudocode.↩

27. Soiland-Reyes, S. and Bechhofer, S. (eds.) (2016) "Research Object ontology", 1.0.0-SNAPSHOT, 28 January 2016,
http://wf4ever.github.io/ro/2016-01-28/.↩

28. Common Workflow Language (CWL), http://www.commonwl.org.↩

29. GA4GH Task Execution Schema (TES), https://github.com/ga4gh/task-execution-schemas.↩

30. Workflow Description Language (WDL), https://software.broadinstitute.org/wdl/.↩

31. YAWL: Tet Another Workflow Language, http://yawlfoundation.org/.↩

https://zenodo.org
https://citation-file-format.github.io/
https://doi.org/10.7717/peerj-cs.86
https://www.force11.org/software-citation-principles
https://knowledge.figshare.com/articles/item/how-to-connect-figshare-with-your-github-account-1
https://guides.github.com/activities/citable-code/
https://codemeta.github.io/
https://codemeta.github.io/terms/
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Pseudocode
http://wf4ever.github.io/ro/2016-01-28/
http://www.commonwl.org
https://github.com/ga4gh/task-execution-schemas
https://software.broadinstitute.org/wdl/
http://yawlfoundation.org/

	Software Deposit: What to deposit
	Michael Jackson (ed.), The Software Sustainability Institute
	07 August 2018

	Introduction
	About this guide
	Minimal deposit
	Simple README
	Copyright and licence(s)
	Authors and other contributors
	Source code

	Runnable deposit
	Comprehensive README
	User documentation
	Dependencies documentation
	Sample input and output data
	Recommended citation
	Metadata

	Comprehensive deposit
	Developer documentation
	Narratives of what the code does and how it does it
	Narratives of the software's ecosystem
	Test code
	Additional sample or test data

	Find out more
	Cite this guide
	Deposit contents checklist


