
Software Deposit: Guidance for Researchers
Michael Jackson (ed.), The Software Sustainability Institute

Version 1.0

doi:10.5281/zenodo.1327310

07 August 2018

Introduction
Research software is an integral part of the modern research ecosystem. Taken together, research software,
alongside data, facilities, equipment and an overarching research question can be viewed as a research
activity or experiment, worthy to be published. Conversely, a publication can be considered as a narrative
that describes how the research objects are used together to reply to the research question.

Depositing research software into a digital repository can offer significant benefits. By depositing not just
papers, but software, and data sets, as well, researchers can store a more complete record of this ecosystem
for future use to both the researchers who undertook the research and also the wider research community.
Making research software available allows other researchers to inspect, replicate, reproduce and reuse the
research, as manifested in the software, in the short term and to inspect, for the historical record, in the long
term. It allows research software to remain available beyond the lifetime of any current project, or a
researcher's current employment at a specific institution. Digital repositories can also provide unique
persistent digital identifiers for software which can be cited and help researchers to get attribution and credit
for their research software when it is used by others.

The Software Sustainability Institute 1, funded by Jisc 2 have developed a set of complementary guides
covering the main aspects of depositing software into digital repositories. These guides are intended for
researchers, principal investigators and research leaders and research data and digital repository managers.
This document provides an overview of the content covered by the guides.

What is research software?
The Software Sustainability Institute takes the view that research software is any software used in research
and does not differentiate between what are often termed scripts, written in scripting languages such as bash
shell or Python or R, and programs, written in "traditional" programming languages such as C, C++, Fortran
or Java. In the view of the Institute a 50 line bash shell script for manipulating and filtering files, a collection
of 50 line R scripts for running a bioinformatics analysis, 10,000 lines of Java for medical image analysis or
100,000 lines of Fortran using MPI for computational fluid dynamics are all examples of research software
and may be suitable candidates for deposit into a digital repository. It is this view of research software that is
assumed throughout the guides.

Guiding principles
The guiding principles that motivated the form and content of the guides were as follows.

Mandate little, recommend lots, focus not on "best practice" but "good enough, or better than at
present, practice". This was motivated by Beals et al. (2018) in particular the observation that "Incremental
progress is still progress."

https://www.software.ac.uk
https://www.jisc.ac.uk
https://doi.org/10.5281/zenodo.1327310


Emphasise the importance of deposits to allow others to inspect, replicate, reproduce and reuse in the
short term and inspect, for the historical record, in the long term. This was motivated by Brown (2017)'s
argument that "[I]t is at least plausible to argue that we don't really care about our ability to exactly re-run a
decade old computational analysis. What we do care about is our ability to figure out what was run and what
the important decisions were - something that Yolanda Gil refers to as 'inspectability.' ... exact repeatability
has a short shelf-life.".

Take no position on whether or not to deposit binaries, containers or virtual machines. Whether these
provide solutions to issues around replicability, reproducibility and reuse of research software or spawn a
different set of problems is very much an open question (compare, for example, Haines and Jay (2016)
versus Brown (2017)). The guides do not mandate or suggest depositing such artefacts but nor do they
preclude them.

Provide lists of key points or things to do, only a few pages long, with minimal rationale. Direct
researchers to other resources for further information. This was motivated by a recommendation in
Brown et al. (2018) that guidance "for stakeholders e.g. researchers, research data managers, institutions and
publishers, needs to speak their respective languages, not require significant time or effort to apply and be
free of developer jargon."

Consider deposits of software as attachments or ancillary files submitted alongside publications to
publishers to be out-of-scope. Instead, software is considered as a first class research object, worthy of
deposit as an object in its own right. However, much of the guidance in these guides (especially what to
deposit and how to describe such deposits) would apply to depositing software in this scenario too.

Guides for software deposit
The guides and their target audiences are shown in the following table. Each guide, plus this overview
document, has been published via Zenodo 3 and the DOIs are shown below. The guides are also available
online 4 and this online resource will also, in time, host resources that complement the guides including links
to examples of what are considered to be good software deposits and good research software generally
supported with commentary on why these are considered to be good.

Guide Researchers Principal
Investigators

Research Data
Managers DOI

Why deposit software ✔ ✔ 10.5281/zenodo.1327333
When to deposit software ✔ ✔ 10.5281/zenodo.1327331
Where to deposit
software ✔ ✔ 10.5281/zenodo.1327329

How to deposit software ✔ 10.5281/zenodo.1327327
What to deposit ✔ ✔ 10.5281/zenodo.1327325
What not to deposit ✔ ✔ 10.5281/zenodo.1327323
How to describe a
software deposit ✔ ✔ 10.5281/zenodo.1327321

How to choose a software
licence ✔ ✔ 10.5281/zenodo.1327316

How to review a software
deposit ✔ ✔ 10.5281/zenodo.1327314

A summary of the content of each guide now follows.

https://doi.org/10.5281/zenodo.1327333
https://doi.org/10.5281/zenodo.1327331
https://doi.org/10.5281/zenodo.1327329
https://doi.org/10.5281/zenodo.1327327
https://doi.org/10.5281/zenodo.1327325
https://doi.org/10.5281/zenodo.1327323
https://doi.org/10.5281/zenodo.1327321
https://doi.org/10.5281/zenodo.1327316
https://doi.org/10.5281/zenodo.1327314


Why deposit software

Why deposit software

Why bother depositing research software into a digital repository? Why go to all that time and effort? What
are the benefits to researchers for doing so? "Why deposit software" describes some of the significant
benefits that depositing research software delivers, both to individual researchers and to the research
community and also addresses concerns that they may have about sharing their software with others.

When to deposit software

When to deposit software

A researcher may be convinced of the importance and benefits of depositing research software within a
digital repository, so that the exact versions of their software upon which they have published their research
results are retained and remain available for future inspection and use, both by themselves and by other
researchers. But, the researcher may ask, when is the best time for them to deposit their software? "When to
deposit software" poses a series of questions for researchers to ask themselves. If the answer to any of these
questions is "yes", then that is the time for them to deposit their software.



Where to deposit software

Where to deposit software

There are myriad digital repositories where researchers can deposit their research software so that the exact
versions of their software upon which they have published their research results are retained and remain
available for future inspection and use, both by themselves and by other researchers. These digital
repositories may be provided by their institutions, recommended, or mandated, by funders or publishers, or
provided as a service to research communities by third-party organisations. "Where to deposit software"
provides advice to researchers on choosing where to deposit their software.

How to deposit software

How to deposit software

Different digital repositories have different means of submission and different requirements as to the deposits



they will accept, the metadata associated with these deposits and how deposits are done. However, regardless
of the digital repository that a researcher will use, there are some common tasks that a researcher should do
before, during and after they deposit their software. "How to deposit software" describes these tasks.

What to deposit

What to deposit

What do we mean by a "software deposit"? What does a software deposit need to contain to enable it to
allow other researchers to inspect, replicate, reproduce and reuse the research, as manifested in the software,
in the short term and inspect the software, for the historical record, in the long term. "What to deposit"
describes what a software deposit should include, in terms of three types of deposit: a minimal deposit (with
a README, source code, copyright, licence and contributors information), a runnable deposit (with
additional user documentation and sample data) and a comprehensive deposit (providing a rich set of code,
data and documentation relating to the software).

What not to deposit

What not to deposit

A software deposit lodged within a digital repository can contain myriad content. But there is certain content



that should not be included within a software deposit. Some of this content may be innocuous and only result
in a deposit being more bloated than it otherwise needs to be. Some of this content may compromise a
researcher's security. And, in the worst case, some of this content may result in a researcher inadvertently
breaking local laws relating to data protection. "What not to deposit" summarises the content should not be
deposited with a researcher's software.

How to describe a software deposit

How to describe a software deposit

Papers have titles, authors, abstracts, subject categories and keywords, all of which are metadata, data which
describes the paper. These metadata help others to categorise and index papers and find papers of interest to
them. Metadata can serve a similar purpose for software deposits, providing a description of a software
deposit. This metadata can help a researcher get credit for their software, help digital repository managers
categorise and index their software deposit and help other researchers find this software according to criteria
of relevance to them. Researchers will need this metadata when depositing their software into a digital
repository. "How to describe a software deposit" summarises the metadata researchers can, and should,
capture.



How to choose a software licence

How to choose a software licence

By depositing software into a digital repository, a researcher is implicitly stating that, at some point in time,
they expect, or hope, someone will download it, with the aim of inspecting, replicating, reproducing or
reusing their research. A software licence is an explicit, and legally-binding, statement of what others can,
and cannot, do with a researcher's software and any obligations upon them. "How to choose a software
licence" provides an overview of the licensing options available - specifically open source licences,
proprietary licences and dual licencing - and the key qualities of each in respect to allowing others to inspect,
use and reuse research software.



How to review a software deposit

How to review a software deposit

Digital repositories can differ in the deposits that they accept, the metadata requested from researchers, how
researchers make their deposits and how these deposits are processed. This includes how deposits are
reviewed post-deposit and pre-publication and the criteria that are used in these reviews. Despite the
differences between individual digital repositories, there are some common checks that can be done for any
software deposit. The nature and degree to which a software deposit can be reviewed depends upon the time,
effort and expertise available. "How to review a software deposit" describes three approaches to reviewing a
deposit: a quick content review, a more detailed consistency review and a comprehensive review of quality,
utility and usability.

Glossary
The following terms are used throughout the guides.

Digital preservation system: a repository, archive or service that also hosts digital artefacts, including
research outputs, but also implements strategies to afford long term access to the digital artefacts, in the face
of technological changes. For example, Archivematica 5. Preservica 6 or Arkivum Perpetua 7.

Digital repository: a repository, archive or service that hosts digital artefacts, including research outputs
such as papers, presentations, data sets and software. For example, Zenodo 8, figshare 9, DSpace 10 or
Samvera 11.

Inspect: read source code, supporting narratives and papers to understand what was run, the environment in
which it was run, important decisions that were made, how results were produced and to identify any flaws.

Repeat: the same lab runs the same experiment with the same set up to try and get the same result.

Replicate: an independent lab runs the same experiment with the same set up.

Reproduce: an independent lab varies the experiment or set up to try and get similar results.

Repository hosting service: a service that hosts source code repositories within an institution, within a
community, or for myriad individuals and communities. For example, GitHub 12, BitBucket 13, GitLab 14,
CCPForge 15 or Microsoft Visual Studio Team Services 16.



Rerun: the same or independent labs running the same or different experiments with the same or different
set ups.

Research software: any collection of scripts or code written for, or used within, a research context. For
example, a 50 line bash shell script for manipulating and filtering files, a collection of 50 line R scripts for
running a bioinformatics analysis, 10,000 lines of Java for medical image analysis or 100,000 lines of Fortran
using MPI for computational fluid dynamics are all examples of research software and may be suitable
candidates for deposit into a digital repository.

Reuse: an independent lab runs a different experiment.

Source code repository: a version control tool, revision control system, source code management tool or
source code repository i.e. any tool that manages versions of source code and related files. For example, Git,
Mercurial, Subversion or Microsoft Team Foundation Version Control.

Acknowledgements
The writing of these guides was done as part of a software deposit and preservation project undertaken by
The Software Sustainability Institute and funded by Jisc.

Christopher Brown, Jisc and Neil Chue Hong, The Software Sustainability Institute managed this project and
offered valuable advice and guidance throughout.

The following people also offered valuable advice and guidance which contributed to both the content and
form of these guides: Steffan Adams, Cardiff University; Matthew Addis, Arkivum; Mario Antonioletti,
EPCC; Alessia Bardi, ISTI-CNR; David Clipsham, National Archives; Jonathan Cooper, UCL; Antonin
Delpeuch, University of Oxford; Roberto Di Cosmo, Software Heritage; Federica Fina, University of St
Andrews; Alistair Grant, EPCC; Morane Gruenpeter, Software Heritage; Maria Guerreiro, eLife Sciences
Publications Ltd; Matthew Herring, University of York; Catherine Jones, STFC; Steve D. Jones, University
of Bergen; Daniel S. Katz, University of Illinois Urbana-Champaign; Somaya Langley, University of
Cambridge; Antonis Lempesis, Athena Research Center; Joanna Leng, University of Leeds; James Long,
University of Plymouth; Mary McDerby, University of Manchester; Rachel MacGregor, University of
Lancaster; Hrafn Malmquist, University of Edinburgh; Brian Matthews, STFC; Rowland Mosbergen, QUT
(Queensland University of Technology); Martin O'Reilly, Turing Institute; Naomi Penfold, eLife; Edward
Ransley, University of Plymouth; Fernando Rios, University of Arizona; Ben Samuels, University of
Lincoln; Joshua Sendall, Lancaster University; Matthew Siekier, University of Huddersfield; Justin Simpson,
Artefactual Systems; Mark Woodbridge, Imperial College; Wei Xing, Crick Institute.

Selina Aragon, The Software Sustainability Institute, formatted the images.

References
In addition to material referenced in the "Find out more" and footnotes in the individual guides, the material
in the guides has been drawn from the following papers, reports, blog posts and presentations.

Aerts, Dr. (PhD) P.J.C. (DANS) (2017): Sustainable Software Sustainability - Workshop report. DANS.
https://doi.org/10.17026/dans-xfe-rn2w.

Beals, M.H., Jones, C., Palmer, G., Jackson, M., Wilde, H., Hammersley, J., Grose, D., Long, R., Panescu,
A-T. and Whitaker, K. (2018) "Sharing reproducible research - minimum requirements and desirable
features", The Software Sustainability Institute blog, 22 May 2018, https://www.software.ac.uk/blog/2018-
05-22-sharing-reproducible-research-minimum-requirements-and-desirable-features

Brown, C., Chue Hong, N., Jackson, M. (eds) (2018) Software Deposit and Preservation Policy and Planning
Workshop Report, 1.1, The Software Sustainability Institute and Jisc, 4 July 2018.
doi:10.5281/zenodo.1304912.

Brown, C.T. (2017) "How I learned to stop worrying and love the coming archivability crisis in scientific

https://doi.org/10.17026/dans-xfe-rn2w
https://www.software.ac.uk/blog/2018-05-22-sharing-reproducible-research-minimum-requirements-and-desirable-features
https://dx.doi.org/10.5281/zenodo.1304912


software", 11 January 2017. http://ivory.idyll.org/blog/2017-pof-software-archivability.html.

Cooper, N. and Hsing, P-Y (eds.) 2017. "A Guide to Reproducible Code in Ecology and Evolution", British
Ecological Society, 2017. https://www.britishecologicalsociety.org/wp-content/uploads/2017/12/guide-to-
reproducible-code.pdf

Goble, C. (2016) "What is Reproducibility? The R* Brouhaha", Alan Turing Institute Symposium
Reproducibility, Sustainability and Preservation, 6-7 April 2016.
https://www.slideshare.net/carolegoble/what-is-reproducibility-gobleclean.

Haines, R., Jay. C. (2016) "Reproducible Research: Citing your execution environment using Docker and a
DOI", The Software Sustainability Institute blog, 29 March 2016. https://www.software.ac.uk/blog/2016-09-
12-reproducible-research-citing-your-execution-environment-using-docker-and-doi

Jackson, M., Crouch, S. and Baxter, R. (2011) "Software Evaluation Guide", The Software Sustainability
Institute. https://www.software.ac.uk/resources/guides-everything/software-evaluation-guide

Penfold, N. (2018) "Sustainability in research communication", SSI CW18, March 2018.
doi:10.6084/m9.figshare.6033749.v2. [slide 19]

Smith, A.M., Katz, D.S., Niemeyer, K.E. (2016) "Software citation principles". FORCE11 Software Citation
Working Group, 2016, PeerJ Computer Science 2:e86. doi:10.7717/peerj-cs.86. See also
https://www.force11.org/software-citation-principles.

The Software Sustainability Institute. (2016). Checklist for a Software Management Plan. v0.1. Available
online: https://www.software.ac.uk/software-management-plans. Raw content:
https://github.com/softwaresaved/software-management-
plans/blob/aa5ea9f88d477f4f0694d3679c3aab50b6dacc18/SMP_Checklist.yaml.

Storer, T. (2017) "Bridging the Chasm: A Survey of Software Engineering Practice in Scientific
Programming". ACM Computing Surveys (CSUR) Surveys, Volume 50 Issue 4, October 2017, Article No.
47. doi:10.1145/3084225.

University of Edinburgh. "Benefits of deposit", The University of Edinburgh,
https://www.ed.ac.uk/information-services/research-support/research-data-service/sharing-preserving-
data/data-repository/benefits.

Wilson, G., Aruliah, D.A., Brown, C.T., Chue Hong, N.P. and Davis, M. (2014) "Best Practices for
Scientific Computing", PLoS Biol 12(1): e1001745, January 2014. doi:10.1371/journal.pbio.1001745.

Cite this guide
Please cite as: Michael Jackson (ed.) (07 August 2018). Software Deposit Guidance (Version 1.0). Zenodo.
doi:10.5281/zenodo.1327310. Online: https://softwaresaved.github.io/software-deposit-
guidance/SoftwareDepositGuidance.html.

 This work is published under a Creative Commons Attribution 4.0 International License
(CC BY 4.0), https://creativecommons.org/licenses/by/4.0/.

1. The Software Sustainability Institute, http://www.software.ac.uk.↩

2. Jisc, http://www.jisc.ac.uk.↩

3. Zenodo, https://zenodo.org.↩

4. Software Deposit Guidance for Researchers, https://softwaresaved.github.io/software-deposit-guidance.↩

5. Archivematica, https://www.archivematica.org/.↩

http://ivory.idyll.org/blog/2017-pof-software-archivability.html
https://www.britishecologicalsociety.org/wp-content/uploads/2017/12/guide-to-reproducible-code.pdf
https://www.slideshare.net/carolegoble/what-is-reproducibility-gobleclean
https://www.software.ac.uk/blog/2016-09-12-reproducible-research-citing-your-execution-environment-using-docker-and-doi
https://www.software.ac.uk/resources/guides-everything/software-evaluation-guide
https://doi.org/10.6084/m9.figshare.6033749.v2
https://doi.org/10.7717/peerj-cs.86
https://www.force11.org/software-citation-principles
https://www.software.ac.uk/software-management-plans
https://github.com/softwaresaved/software-management-plans/blob/aa5ea9f88d477f4f0694d3679c3aab50b6dacc18/SMP_Checklist.yaml
https://doi.org/10.1145/3084225
https://www.ed.ac.uk/information-services/research-support/research-data-service/sharing-preserving-data/data-repository/benefits
https://doi.org/doi:10.1371/journal.pbio.1001745
https://creativecommons.org/licenses/by/4.0/
http://www.software.ac.uk
http://www.jisc.ac.uk
https://zenodo.org
https://softwaresaved.github.io/software-deposit-guidance
https://www.archivematica.org/


6. Preservica, https://preservica.com/.↩

7. Arkivum Perpetua, https://arkivum.com/perpetua/.↩

8. Zenodo, https://zenodo.org.↩

9. figshare, https://figshare.com.↩

10. DSpace, http://www.dspace.org.↩

11. Samvera, https://samvera.org.↩

12. GitHub, https://github.com.↩

13. BitBucket, https://bitbucket.com.↩

14. GitLab, https://gitlab.com.↩

15. CCPForge, https://ccpforge.cse.rl.ac.uk/gf/.↩

16. Microsoft Visual Studio Team Services, https://www.visualstudio.com/team-services/.↩

https://preservica.com/
https://arkivum.com/perpetua/
https://zenodo.org
https://figshare.com
http://www.dspace.org
https://samvera.org
https://github.com
https://bitbucket.com
https://gitlab.com
https://ccpforge.cse.rl.ac.uk/gf/
https://www.visualstudio.com/team-services/

	Software Deposit: Guidance for Researchers
	Michael Jackson (ed.), The Software Sustainability Institute
	07 August 2018

	Introduction
	What is research software?
	Guiding principles
	Guides for software deposit
	Why deposit software
	When to deposit software
	Where to deposit software
	How to deposit software
	What to deposit
	What not to deposit
	How to describe a software deposit
	How to choose a software licence
	How to review a software deposit

	Glossary
	Acknowledgements
	References
	Cite this guide


