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Abstract

We propose a novel approach for inferring the

individualized causal effects of a treatment (in-

tervention) from observational data. Our ap-

proach conceptualizes causal inference as a mul-

titask learning problem; we model a subject’s

potential outcomes using a deep multitask net-

work with a set of shared layers among the fac-

tual and counterfactual outcomes, and a set of

outcome-specific layers. The impact of selec-

tion bias in the observational data is alleviated

via a propensity-dropout regularization scheme,

in which the network is thinned for every train-

ing example via a dropout probability that de-

pends on the associated propensity score. The

network is trained in alternating phases, where

in each phase we use the training examples of

one of the two potential outcomes (treated and

control populations) to update the weights of the

shared layers and the respective outcome-specific

layers. Experiments conducted on data based on

a real-world observational study show that our al-

gorithm outperforms the state-of-the-art.

1. Introduction

The problem of inferring individualized treatment effects

from observational datasets is a fundamental problem in

many domains such as precision medicine (Shalit et al.,

2017), econometrics (Abadie & Imbens, 2016), social sci-

ences (Athey & Imbens, 2016), and computational adver-

tising (Bottou et al., 2013). A lot of attention has been re-

cently devoted to this problem due to the recent availability

of electronic health record (EHR) data in most of the hos-

pitals in the US (Charles et al., 2015), which paved the way

for using machine learning to estimate the individual-level

causal effects of treatments from observational EHR data

as an alternative to the expensive clinical trials.
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A typical observational dataset comprises a subject’s fea-

tures, a treatment assignment indicator (i.e. whether

the subject received the treatment), and a “factual out-

come” corresponding to the subject’s response. Estimat-

ing the effect of a treatment for any given subject re-

quires inferring her “counterfactual outcome”, i.e. her re-

sponse had she experienced a different treatment assign-

ment. Classical works have focused on estimating “aver-

age” treatment effects through variants of propensity score

matching (Rubin, 2011; Austin, 2011; Abadie & Imbens,

2016; Rosenbaum & Rubin, 1983; Rubin, 1973). More

recent works tackled the problem of estimating “indi-

vidualized” treatment effects using representation learn-

ing (Johansson et al., 2016; Shalit et al., 2017), Bayesian

inference (Hill, 2012), and standard supervised learning

(Wager & Athey, 2015).

In this paper, we propose a novel approach for individual-

level causal inference that casts the problem in a multitask

learning framework. In particular, we model a subject’s po-

tential (factual and counterfactual) outcomes using a deep

multitask network with a set of layers that are shared across

the two outcomes, and a set of idiosyncratic layers for each

outcome (see Fig. 1). We handle selection bias in the ob-

servational data via a novel propensity-dropout regulariza-

tion scheme, in which the network is thinned for every sub-

ject via a dropout probability that depends on the subject’s

propensity score. Our model can provide individualized

measures of uncertainty in the estimated treatment effect

by applying Monte Carlo propensity-dropout at inference

time (Gal & Ghahramani, 2016).

Learning is carried out through an alternate training ap-

proach in which we divided the observational data into

a “treated batch” and a “control batch”, and then update

the weights of the shared and idiosyncratic layers for each

batch separately in an alternating fashion. We conclude the

paper by conducting a set of experiments on data based on a

real-world observational study showing that our algorithm

outperforms the state-of-the-art.

2. Problem Formulation

Throughout this paper, we adopt Rubin’s potential out-

comes model (Rubin, 2011; 1973; Rosenbaum & Rubin,

1983). That is, we consider a population of subjects where

http://arxiv.org/abs/1706.05966v1
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Figure 1. Depiction of the network architecture for our model with Lp = Ls = Li,0 = Li,1 = 2.

each subject i is associated with a d-dimensional feature

Xi ∈ X , and two potential outcomes Y
(1)
i , Y

(0)
i ∈ R

that are drawn from a distribution (Y
(1)
i , Y

(0)
i )|Xi = x ∼

P(.|Xi = x). The individualized treatment effect for a sub-

ject i with a feature Xi = x is defined as

T (x) = E[Y
(1)
i − Y

(0)
i |Xi = x]. (1)

Our main goal is to estimate the function T (x) from an ob-

servational datasetD comprising n independent samples of

the tuple {Xi,Wi, Y
(Wi)
i }, where Y

(Wi)
i and Y

(1−Wi)
i are

the factual and the counterfactual outcomes, respectively,

and Wi ∈ {0, 1} is a treatment assignment indicator that

indicates whether or not subject i has received the treat-

ment. Treatment assignments are random variables that de-

pend on the subjects’ features, i.e. Wi 6⊥⊥ Xi. The quan-

tity p(x) = P(Wi = 1|Xi = x) is known as the propen-

sity score of subject i (Rosenbaum & Rubin, 1983; Rubin,

1973), and it reflects the underlying policy for assigning the

treatment to subjects.

3. Model Description

Most previous works adopted a direct modeling approach

for estimating T (x) in which a single-output regression

model f(., .) : X × {0, 1} → R that treats the treat-

ment assignment Wi ∈ {0, 1} as an input feature is used

to estimate the two potential outcomes, i.e. T̃ (x) =
f(x, 1) − f(x, 0) (Shalit et al., 2017; Wager & Athey,

2015; Xu et al., 2016; Hill, 2012; Johansson et al., 2016).

Such a modeling approach clearly limits the interaction be-

tween the treatment assignment and the subjects’ features,

especially in high dimensional feature spaces, which can

lead to serious consequences in settings where the response

surfaces E[Y
(1)
i |Xi = x] and E[Y

(0)
i |Xi = x] have dras-

tically different properties (i.e. different relevant features

and different nature for the interactions among the covari-

ates). Another less popular modeling approach is the “vir-

tual twin” approach, which simply fits a separate regres-

sion model for each of the treated and control populations

(Lu et al., 2017). Such an approach sacrifices statistical ef-

ficiency for the sake of the modeling flexibility ensured by

fitting separate models for the two potential outcomes. In

the following Subsections, we propose a novel approach

that ensures both modeling flexibility and statistical effi-

ciency, and in addition, is capable of dealing with selection

bias.

3.1. Multitask Networks

We propose a neural network model for estimating the indi-

vidualized treatment effect T (x) by learning a shared rep-

resentation for the two potential outcomes. Our model, de-

picted in Fig. 1, comprises a propensity network (right)

and a potential outcomes network (left). The propensity

network is a standard feed-forward network with Lp layers

and h
(l)
p hidden units in the lth layer, and is trained sepa-

rately to estimate the propensity score p(x) via the samples

(Xi,Wi) in D. The potential outcomes network is a mul-

titask network (Collobert & Weston, 2008) that comprises

Ls shared layers (with h
(l)
s hidden units in the lth shared

layer), and Li,j idiosyncratic layers (with h
(l)
i,j hidden units

in the lth layer) for potential outcome j ∈ {0, 1}.

The potential outcomes network approaches the problem

of learning the two response surfaces E[Y
(1)
i |Xi = x] and

E[Y
(0)
i |Xi = x] via a multitask learning framework. That

is, we view the potential outcomes as two separate, but re-

lated, learning tasks. The observational dataset D is thus

viewed as comprising two batches of task-specific data: a

treated batch D(1) = {i ∈ D : Wi = 1} comprising all

treated subjects, and a control batch D(0) = {i ∈ D :
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Wi = 0} comprising all untreated subjects. The treatment

assignment Wi is viewed as equivalent to the task index in

conventional multitask learning. The shared layers in the

potential outcomes network ensure statistical efficiency as

they use the data in bothD(0) andD(1) to capture the “com-

monality” between the two learning tasks. The idiosyn-

cratic layers for task (outcome) j ensure modeling flexibil-

ity as they only use the data in D(j) to capture the pecu-

liarities of the response surface E[Y
(j)
i |Xi = x]. Since

the feature distributions in D(0) andD(1) are different (due

to the selection bias), we use the outputs of the propensity

network to regularize the potential outcomes network.

3.2. Propensity-Dropout

In order to ameliorate the impact of selection bias, we use

the outputs of the propensity network to regularize the po-

tential outcomes network. We do so through a dropout

scheme that we call propensity-dropout. In propensity-

dropout, the dropout procedure is applied in such a way

that it assigns “simple models” to subjects with very high

or very low propensity scores (p(x) close to 0 or 1), and

more “complex models” to subjects with balanced propen-

sity scores (p(x) close to 0.5). That is, we use a different

dropout probability for each training example depending

on the associated score: the dropout probability is higher

for subjects with features that belong in a region of poor

treatment assignment overlap in the feature space. We im-

plement the propensity-dropout by using the following for-

mula for the dropout probability:

Dropout Probability(x) = 1−
γ

2
−

1

2
H(p̃(x)), (2)

where 0 ≤ γ ≤ 1 is an offset hyper-parameter (which we

typically set to 1), H(p) = −p log(p)−(1−p) log(1−p) is

the Shannon entropy, and p̃ is the output of the propensity

network for an input x. Thus, when the propensity score is

0 or 1, the dropout probability is equal to 1 − γ

2 , whereas

when the propensity score is 0.5, the dropout probability is

equal to 1
2 −

γ

2 . Propensity-dropout is simply a feature-

dependent dropout scheme that imposes larger penalties

on training examples with “bad” propensity scores, and

hence prevents hidden units from co-adapting with “un-

reliable” training examples, which allows the learned po-

tential outcomes network to generalize well to the ac-

tual feature distribution. The idea of propensity-dropout

can be thought of as the conceptual analog of propensity-

weighting (Abadie & Imbens, 2016) applied for conven-

tional dropout networks (Srivastava et al., 2014). We dub

our potential outcomes model a deep counterfactual net-

work (DCN), and we use the acronym DCN-PD to refer

to a DCN with propensity-dropout regularization. Since

our model captures both the propensity scores and the out-

comes, then it is a doubly-robust model (Dudı́k et al., 2014;

2011).

An important feature of a DCN-PD is its ability to asso-

ciate its estimate T̃ (x) with a pointwise measure of con-

fidence, which is a crucially important quantity in applica-

tions related to precision medicine (Athey & Imbens, 2016;

Wager & Athey, 2015). This is achieved at inference time

via a Monte Carlo propensity-dropout scheme in which we

draw samples of T̃ (x) from our model (Gal & Ghahramani,

2016). Given a subject’s feature x, a sample of T̃ (x) can

be drawn from a DCN-PD as follows:

p̃(x) = f(. . .f((w(1)
p )T x). . .),

r
(l)
s , r

(l)
i,0, r

(l)
i,1 ∼ Bernoulli(1 − γ/2−H(p̃(x))/2),

s̃(x) = f(. . . f(r(1)s ⊙ (w(1)
s )T x) . . .),

Ỹ (1) = f(. . . f(r
(1)
i,1 ⊙ (w

(1)
i,1 )

T s̃(x)). . .),

Ỹ (0) = f(. . . f(r
(1)
i,0 ⊙ (w

(1)
i,0 )

T s̃(x)). . .),

T̃ = Ỹ (1) − Ỹ (0),

where w
(l)
p ,w

(l)
s ,w

(l)
i,0 and w

(l)
i,1 are the weight matrices for

the lth layer of the propensity, shared and idiosyncratic

layers, respectively, r
(l)
s , r

(l)
i,0 and r

(l)
i,1 are dropout masking

vectors, and f(.) is any activation function.

3.3. Training the Model

We train the network in alternating phases, where in each

phase, we either use the treated batch D(1) or the control

batchD(0) to update the weights of the shared and idiosyn-

cratic layers. As shown in Algorithm 1, we run this pro-

cess over a course of K epochs; the shared layers are up-

dated in all epochs, wheres only one set of idiosyncratic

layers is updated in any given epoch. Dropout is applied

as explained in the previous Subsection with γ = 1. As

visualized in Fig. 2, we can think of alternate training as

deterministically dropping all units of one of the idiosyn-

cratic layers in every epoch. We update the weights of all

Algorithm 1 Training a DCN-PD

Input: Dataset D, number of epochs K

Output: DCN-PD parameters (w
(l)
s ,w

(l)
i,1,w

(l)
i,0)

for k = 1, k ← k + 1, k ≤ K do

if k is even then

(w
(l)
s ,w

(l)
i,1)← Adam(D(1),w

(l)
s ,w

(l)
i,1)

else

(w
(l)
s ,w

(l)
i,0)← Adam(D(0),w

(l)
s ,w

(l)
i,0)

end if

end for

layers in each epoch using the Adam optimizer with default

settings and Xavier initialization (Kingma & Ba, 2014).
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Figure 2. Visualization of the training algorithm.

4. Experiments

The ground truth counterfactual outcomes are never avail-

able in an observational dataset, which hinders the eval-

uation of causal inference algorithms on real-world data.

Following (Hill, 2012; Johansson et al., 2016), we adopt a

semi-synthetic experimental setup in which the covariates

and treatment assignments are real but outcomes are simu-

lated. We conduct our experiments using the Infant Health

and Development Program (IHDP) dataset introduced in

(Hill, 2012). (The IHDP is a social program applied to

premature infants aiming at enhancing their IQ scores at

the age of three.) The dataset comprises 747 subjects (139

treated and 608 control), with 25 covariates associated with

each subject. Outcomes are simulated based on the data

generation process designated as the “Response Surface B”

setting in (Hill, 2012).

We evaluate the performance of a DCN-PD model with

Ls = 2, Li,1 = Li,2 = 1 (a total of 4 layers), and with 200

hidden units in all layers (ReLU activation), in terms of the

mean squared error (MSE) of the estimated treatment ef-

fect. We divide the IHDP data into a training set (80%) and

an out-of-sample testing set (20%), and then evaluate the

MSE on the testing sample in 100 different experiments,

were in each experiment a new realization for the outcomes

is drawn from the data generation model in (Hill, 2012).

(We implemented the DCN-PD model in a Tensorflow

environment.) The propensity network is implemented as a

standard 2-layer feed-forward network with 25 hidden lay-

ers, and is trained using the Adam optimizer.

The marginal benefits conferred by the propensity-dropout

regularization scheme are illustrated in Fig. 3, which de-

picts box plots for the MSEs achieved by the DCN-PD

model, and two DCN models with conventional dropout

(dropout probabilities of 0.2 and 0.5 for all layers and all

training examples). As we can see in Fig. 3, the DCN-

PD model offers a significant improvement over the two

DCN models for which the dropout probabilities are uni-

form over all the training examples. This result implies

that the DCN-PD model generalizes better to the true fea-

0 0.5 1
0.1

0.2

0.3

0.4

0.5

Propensity score

D
ro

p
o
u
t
p
ro

b
a
b
il
it
y

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

M
ea

n
S
q
u
a
re

E
rr
o
r
(M

S
E
)

DCN-PDDCN DCN

Dropout prob. = 0.2

Dropout prob. = 0.5

Figure 3. Performance gain achieved by propensity-dropout.

ture distribution when trained with a biased dataset as com-

pared to DCN with regular dropout, which suggests that

propensity-dropout is a good regularizer for causal infer-

ence.

Table 1. Performance on the IHDP dataset.

Algorithm MSE

k-NN 5.30 ±0.30

Causal Forest 3.86 ±0.20

BART 3.50 ±0.20

BNN 2.45 ±0.10

NN-4 2.88 ±0.10

DCN 2.58 ±0.06

DCN-PD 2.05 ±0.03

In order to assess the marginal performance gain achieved

by the proposed multitask model when combined with

the propensity-dropout scheme, we compare the perfor-

mance of DCN-PD with other state-of-the-art models

in Table 1. In particular, we compare the MSE (av-

eraged over 100 experiments) achieved by the DCN-

PD with those achieved by k nearest neighbor match-

ing (k-NN), Causal Forests with double-sample trees

(Wager & Athey, 2015), Bayesian Additive Regression

Trees (BART) (Chipman et al., 2010; Hill, 2012), and Bal-

ancing neural networks (BNN) (Johansson et al., 2016).

(For BNNs, we use 4 layers with 200 hidden units per layer

to ensure a fair comparison.) We also provide a direct com-

parison with a standard single-output feed-forward neural

network (with 4-layers and 200 hidden units per layer) that

treats the treatment assignment as an input feature (NN-4),

and a DCN with a standard dropout with a probability of

0.2. As we can see in Table 1, DCN-PD outperforms all the

other models, with the BNN model being the most compet-

itive. (BNN is a strong benchmark as it handles the selec-

tion by learning a “balanced representation” for the input

features (Johansson et al., 2016).) DCN-PDs significantly
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outperforms the NN-4 benchmark, which suggests that the

multitask modeling framework is a more appropriate con-

ception of causal inference compared to direct modeling by

assuming that the treatment assignment is an input feature.
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