Democratising knowledge representation with BioCypher
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To the editor

Biomedical data are amassed at an ever-increasing rate, and machine learning tools that
use prior knowledge in combination with biomedical big data are gaining much traction 2.
Knowledge graphs (KGs) are rapidly becoming the dominant form of knowledge
representation However, for many research groups, building their own biomedical KG is
prohibitively expensive. This motivated us to build the BioCypher framework to support users
in creating KGs (https://biocypher.org).

The ability to build a task-specific KG is important, since directly standardising the
representation of biomedical knowledge is not appropriate for the diverse research tasks in the
community. While human researchers can contextualise and abstract concepts easily, the
same does not apply to algorithms. For example, drug discovery tasks (viewing genes as
functional ancestors of protein targets) require a different KG structure and content compared
to the implementation of a molecular tumour board (genes as clinical markers), which is
different still from research into cell type-contextualised gene regulatory network inference
(genes as targets of regulatory mechanisms). Even for similar tasks, the KG structure or
subtle decisions about included resources lead to different results for many modern analytic
methods 2. In addition, decisions about how to represent knowledge at each primary resource
pose problems in their integration, for instance via the use of different identifier namespaces,
levels of granularity, or licences *°.

The current landscape of biomedical KGs is not easily navigated; neither the KGs
themselves, nor the pipelines used to build them, consistently adhere to FAIR (Findable,
Accessible, Interoperable, and Reusable) ® and TRUST (Transparency, Responsibility, User
focus, Sustainability, and Technology) * principles. Understandably, the overhead required to
implement these principles may not be justified when building a one-off task-specific KG for
research. Thus, many KGs are built manually for specific applications, which leads to issues in
their reuse and integration *. For downstream users, the resulting KGs are too distinct to easily
compare or combine °. Maintaining KGs for the community is additional work; once
maintenance stops, they quickly deteriorate, leading to reusability and reproducibility issues *
(Supplementary Note 1).

BioCypher has been built with continuous consideration of the FAIR and TRUST principles,
yielding benefits to the entire community in multiple respects:

1) Modularity: To rationalise efforts across the community, we propose a modular
architecture that maximises reuse of data and code in three ways: input, ontology, and
output (Figure 1A). Input adapters allow delegating maintenance work to one central
place for each resource, ontology adapters give access to the wealth of structured
information curated by the ontology community, and output adapters allow
benchmarking and selection of database management systems. Together, these
mechanisms enable a workflow that reduces the time and effort to develop and deploy
custom KGs.

2) Harmonisation: By using ontologies as expertly crafted repositories of conceptual
hierarchies, we facilitate harmonisation from a biological perspective. We aid with the
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technical aspects of using and manipulating ontologies, for instance by flexibly
extending or hybridising complementary ontologies.

3) Reproducibility: By sharing the mapping of KG contents to ontologies, we facilitate
reproduction of the structure of the corresponding database without access to the
primary data, which may be prohibited by licence or privacy issues. We also enable
extraction of subgraphs, effectively converting storage-oriented to task-specific KGs,
which due to their reduced sizes are easier to share alongside analyses.

4) Reusability and accessibility: Finally, the sustainability of research software is
strongly related to adoption in — and contributions from — the community. BioCypher is
developed as a TRUSTworthy open-source software, applying methods of continuous
integration and deployment, and including a diverse community of researchers and
developers from the beginning. This facilitates workflows that are tested end-to-end,
including the integrity of the scientific data. We operate under the permissive MIT
licence and provide community members with guidelines for their contributions and a
code of conduct (https://qithub.com/biocypher).

Different measures further increase the accessibility and FAIRness of our framework. For
example, we provide a template repository for a BioCypher pipeline with adapters, including a
Docker Compose setup. To enable learning by example, we curate existing pipelines, as well
as all adapters they use, in our GitHub organisation. Using the GitHub API and a BioCypher
pipeline, we build a “meta-graph” for the simple browsing and analysis of BioCypher workflows
(https://meta.biocypher.org). To inform the contents of this meta-graph, we have reactivated
and now maintain the Biomedical Resource Ontology (BRO &), which helps to categorise
pipelines and adapters into research areas, data types, and purposes (Supplementary Note
2).

BioCypher is implemented as a Python library that provides a low-code access point to
data processing and ontology manipulation, emphasising the reuse of existing resources to
the highest extent possible. By our design principles and the automation of data management
tasks, we aim to free up developer time and guide decision making on how to represent
knowledge, bridging the gap between the field of biomedical ontology and the broad
application of databases in research.

By abstracting the KG build process as a combination of modular input adapters, we save
developer time in the maintenance of integrative resources built from overlapping primary
sources (Figure 1B), for instance OmniPath °, Bioteque 2, CROssBAR DB "°, and the Clinical
Knowledge Graph ™.

By mapping the contents of those resources onto a common ontological space, we gain
interoperability between the different biomedical domains (Figure 1C). BioCypher helps with
the mapping procedure by providing examples and an interface, as well as numerous
user-friendliness measures. By using the industry standard Web Ontology Language (OWL)
format, we provide access to the majority of available ontologies. Separating the ontology
framework from the modelled data enables the implementation of reasoning applications at
the ontology level, for instance the ad-hoc harmonisation of disease ontologies.
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By providing access to a range of modular output adapters, we facilitate the project-specific
benchmarking and selection of suitable database management systems. For instance, a
Neo4j adapter provides rapid access to extensive databases for maintenance of knowledge
and enables queries from analysis (Jupyter) notebooks. Switching to alternative graph or
relational databases (e.g., ArangoDB or PostgreSQL) allows for task-specific performance
optimisation. A CSV-writer and Python-native adapters (e.g., Pandas, sparse matrix, or
NetworkX formats) vyield knowledge representations that can directly be used
programmatically by a wide range of machine learning frameworks. Due to BioCypher’s
modular nature, additional output adapters can quickly be added.

Application programming interfaces (APIs) built on top of the BioCypher KGs enable
complex and versatile queries and simplify the interaction of users with the knowledge. For
example, web widgets and apps (such as drug discovery and repositioning with
https://crossbar.kansil.org and analysis workflows with https://drugst.one) allow researchers to
browse and customise the database, and to plug it into standard pipelines. Additionally, a
structured, semantically enriched knowledge representation facilitates connection to and
improves performance of modern natural language processing applications such as GPT "2 3,
The use of common standards enables sharing of tools across projects and communities or in
cloud-based services that preserve sensitive patient data (Supplementary Note 3).

There have been numerous attempts at standardising KGs and making biomedical data
stores more interoperable. We can identify three general types of approaches, in increasing
order of abstraction: centrally maintained databases, explicit standard formats (modelling
languages), and KG frameworks. With BioCypher, we aim to improve user-friendliness on all
three levels of abstraction; for an in-depth discussion, see Supplementary Note 4. Despite
many efforts, there is no widely accepted solution. Very often, resources take the “path of least
resistance” in adopting their own, arbitrary formats of representation. To our knowledge, no
framework provides easy access to state-of-the-art KGs to the average biomedical researcher,
a gap that BioCypher aims to fill. We demonstrate some key advantages of BioCypher by
case studies in Supplementary Note 5.
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Figure 1: The BioCypher framework. A) Threefold modularity: Resources (left) and
ontologies (bottom left) are combined to yield a knowledge graph (right). The mapping of
entities to ontology concepts is realised by shareable configuration, which can be iteratively
optimised. B) Initially, we transform commonly used, curated “secondary” resources into
configurable, task-specific knowledge graphs in various output formats. Incrementally, these
secondary adapters will be replaced by primary resource adapters (see Figure S1). Coloured
panels in A and B indicate parts of the BioCypher ecosystem. C) Agreeing on a common
representational framework allows harmonisation of task-specific data sources to answer
complex queries across biomedical domains. For instance, starting at mass spectrometry
measurements of a patient’s tumour (left), one could go through clinical annotations to genetic
dependencies from the Dependency Map project to identify potential drug targets, or through
pathway / process annotations in Reactome and IntAct, identify relevant ligand-receptor pairs
using OmniPath, and use CROssBAR to perform drug discovery or repurposing for these
receptors. Panels correspond to resources; although we work on most of the displayed
resources, the figure is used for illustrative purposes and does not depict an existing pipeline.

We believe that creating a more interoperable biomedical research community is as much a
social effort as it is a scientific software problem. To facilitate adoption of any approach, the
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process must be made as simple as possible, and it must yield tangible rewards, such as
significant savings in developer time. We will provide hands-on training for all interested
researchers, and we invite all database and tool developers to join our collective effort.

Editor's note: This article has been peer-reviewed
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