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1.Supplemental Methods

1.1 Datasets

TF, histone modification ChlP-seq and ATAC-seq datasets for HepG2, K562, and H1 were
batch-downloaded from the ENCODE Project (Davis et al., 2018). For each ChlP-seq target
of each cell line, if there were multiple datasets, the one with the latest date was selected
(Table S1). The GRCh37/hg19 assembly was used as a reference genome throughout the
study. In those cases when the ChIP-seq dataset was reported on GRCh38/hg38, the
coordinates were converted to hg19 using liftOver. The phastCons (46 vertebrates), CpG
islands, repeat elements, and GENCODE TSS annotations were obtained from the UCSC
genome browser database (Kent et al., 2002). Transcribed enhancer regions (eRNAs) were
obtained from the FANTOM database (Lizio et al., 2019). Super-enhancer regions were
obtained from (Hnisz et al., 2013). GC contents were calculated using the “nuc" functionality
of the bedtools program (Quinlan and Hall, 2010). Gene expression data was obtained from
the Roadmap Epigenomics project



(https://egg2.wustl.edu/roadmap/data/byDataType/rna/expression/). Tissue-specificity metric
tau scores for genes were downloaded from (Palmer et al., 2021).

1.2 Definitions

The loci were divided into bins according to a two-part scale. The first part is on a linear scale
from 1 to 5, and the second part is on a logarithmic scale from 5 to the maximum number of
DAPs bound to a single locus in that cell line.

TFs Bin edges (n=14)

HepG
2 5451112 |34 |57 (12|19 |31 |48 |77 |122|192 | 304 | 480

K662 | 411|123 |4 |5 |7 |11 |16 |24 |37 |55 | 82 | 123|184 | 275

HA1 4711123 (4|56 |7 |8 10|12 |15 | 18 | 22 | 26 | 32

linear growth
(n=4) logarithmic growth (n=10)

These nominal numbers are used in cases when the distributions are displayed for individual
cell lines (eg. Fig1A). When the figures display the distributions for two cell lines in a joint
manner (eg Fig3A), the edges are converted to the average percentages of the overall scale
lengths for each cell line. HOT regions are defined as loci with the number of DAPs
corresponding to the last four bins.

Regqular_enhancers were defined as the central 400bp regions of DHS which overlap
H3K27ac histone modification regions with promoter and exons removed from them.

Promoters were defined as 1.5kbs upstream and 500 downstream regions of the canonical
and alternative TSS coordinates, extracted from the knownGenes.txt table obtained from
UCSC Genome Browser database. All the genomic arithmetic operations were done using
the bedtools program. Figures were generated using Matplotlib (Hunter, 2007) and Seaborn
(Waskom, 2021) packages. Statistical and numerical analyses were done using the pandas,
NumPy, SciPy, and sklearn packages (Virtanen et al., 2020). Genomic repeat regions were




obtained from http://www.repeatmasker.org/. CpG islands were extracted from cpglslandExt
table obtained from the UCSC Genome Browser.

1.3 Joint DAPs and Hi-C 3D chromatin analysis.

To jointly analyze the conditional distributions of ChIP-seq signal levels in
presence/absence of individua DAPs, we extracted a square matrix of size n=545 using the
DAPs present in HepG2. For each analyzed 400bp locus, we extracted bound DAPs together
with the ChlP-seq signal values. Then, each binary combination of the DAPs bound in that
locus is added to their respective cells on the square matrix. Afterward, the matrix is
normalized along the x-axis with the maximum value of each row. In other words, each row
represents the normalized ChlP-seq signal strength in the presence of DAP indicated on the
x-axis. We treated the empty values as 0 and removed the main diagonal values, leading to
the matrix size of 544x544. Hierarchical clustering was done using the UPGMA algorithm.

Hi-C data analysis was carried out on HepG2. The datasets were obtained from
ENCODE Project: ENCFFO50EKS (chromatin loops), ENCFFO18XKF (TADs),
ENCFF548XLR (hic file). The coordinates in all of the datasets were converted from hg38 to
hg19 using LiftOver.

The significant long-range contacts with 5 kbs resolution were extracted using the
FitHiChIP program (Bhattacharyya et al., 2019) with a threshold g-value<0.0001 and ICE bias
correction, using all-against-all option.

The loci with >50% overlap were considered for the analysis of loops, TADs, and long-
range chromatin contacts. Using the long-range chromatin contacts, we constructed a graph
such that each node is the analyzed 400 bp locus and the edge is a long-range chromatin
contact if the two connected nodes are located on different legs of the chromatin contacts.
Based on this graph, we calculated the total number of contacts between the loci located in
different bins, leading to a 14x14 matrix. We then normalized the values in each cell of the
matrix with the maximum number of contacts in all cells.

FIRE loci were extracted from the .hic file using FIRECaller R package (Schmitt et al.,
2016).

For enrichment analyses of all the mentioned Hi-C-related regions, the ATAC-seq
regions were used as background.

1.4 PPI enrichment analysis.

To test the significance of the PPI networks described above, we ran 100 trials for each cluster
by randomly selecting an equal number of DAPs reported in PPI networks and calculated the
significance of the PPI enrichment p-values. All of the reported PPI enrichment p-values were
significantly higher than the randomized trials (p-value < 0.01, one-sample t-test).

PPI networks and PPI enrichment p-values were extracted using the STRING Database’s
API (https://string-db.org/cgi/help.pl?subpage=api). For each cluster of DAPs analyzed, we




submitted the list of DAPs as identifiers and retrieved the p-values using the ppi_enrichment
interface. For each cluster, we extracted 100 PPl enrichment p-values each time randomly
selecting DAPs in equal numbers to the size of the analyzed cluster. We then used the set of
100 p-values as a background distribution and conducted a one-sample t-test, where by the
null hypothesis the p-value of the cluster is the mean of 100 p-values and computed the p-
values of significance of the reported PPl network. The results of this analysis are in Table
S2.

1.5 Statistical analyses

All the statistical significance analyses were done using the SciPy package. The p-values too
small to be represented by the command line output were represented as <1E-100.
Correlation values with the number of bound DAPs were calculated using the average of the
value for the bins, and the midpoint numbers of the edges of each bin.

1.6 Classification analyses

The aim of this section is to determine whether the HOT loci can be accurately predicted
based on their DNA sequences alone, and sequence features, including GC, CpG, GpC contents,
and CpG island coverage. For sequence-based classification, we trained a Convolutional Neural
Network (CNN) model using one-hot encoded sequences and an SVM classifier trained on
gapped k-mers (gkmSVM) (Supplemental Methods 1.6.2, Figure S12A). For feature-based
classification, we trained logistic regression (LogReg) classifiers and SVM classifiers with linear,
polynomial, radial basis functions and sigmoid kernels. We carried out the classification
experiments using the following control sets: a) randomly selected loci from merged DNasel
Hypersensitivity Sites (DHS) of cell lines in the Roadmap Epigenomics Project, b) promoter
regions, and c) regular enhancers.

Using the sequence features, we trained separate models using each of the features in
addition to one with all of the features combined. We observed that, when averaged across all
the methods, GC content value possesses the highest amount of discrimination power (auROC:
0.73), followed by the combination of all features (auROC: 0.70) (Figure S13A,B). When
compared across the classification methods, LogReg and SVM with linear kernel outperformed
the other non-linear kernels by 20%, suggesting that the features possess linearly combined or
largely overlapping effects in encoding the information in HOT loci (Figure S13A).

When classified using the sequences directly, CNN yielded the highest performance with
auROC of 0.91, while for the gkmSVM it was 0.86 (both averaged over cell lines and control sets),
suggesting that CNNs capture the motif grammar of the HOT loci better than gapped k-mers
(Figure S13C). When the two classification schemes (sequence- and feature-based) are
compared, CNNs outperformed the LogReg and linear SVMs by a factor of 1.3x (or 17%),
suggesting that there is additional information that is highly relevant to the DNA-DAP interaction
density encoded in the DNA sequences, in addition to the GC, CpG, GpC (Fig 5C).



1.6.1 Datasets

For classification experiments of different categories of regions, the loci from HepG2 and K562
were used. For the classification of HOT loci, three different setups were constructed using the

control (negative) sets:

- Randomly selected from the merged DHS regions obtained from the Roadmap

Epigenomics Project to be 10x the size of the positive set (HOT loci)

- Regular enhancers (see 1.2), with the HOT loci subtracted

- Regular promoters (see 1.2)

The regions from chromosomes 6,7 were used as validation sets, the chromosomes 8, and 9
were used as test sets, and the rest of the autosomal chromosomes were used as training sets.

The total number of regions in classification setups and their train/validation/test sets splits is as

follows:
Controls: DHS
Cell Line HOTs Controls Train Validation Test
HepG2 25,928 249,499 210,520 33,231 31,676
K562 15,231 146,585 123,041 20,310 18,465
Controls: regular enhancers
Cell Line HOTs Controls Train Validation Test
HepG2 25,928 249,499 210,520 33,231 31,676
K562 15,231 146,585 123,041 20,310 18,465
Controls: regular promoters
Cell Line HOTs Controls Train Validation Test
HepG2 25,928 28,621 34,970 5,479 3,403
K562 15,231 25,810 41,979 5,800 3,959




1.6.2 Sequence-based classification

1.6.2.1 Convolutional Neural Networks (CNNs)

For training CNNs, the sequences of the loci were converted to one-hot encoding, with the lengths
options of 400bps and extended to 1000bps.
The model consists of the layers as follows.

Layer Params Activation

1.Convolutional filters=480, kernel_size=9, RelLu
stride=1

2.Max pool Pool_size=9, stride=3

3.Droupout P=0.2

4 .Convolutional filters=480, kernel_size=4, RelLu
stride=1

5.Max pool Pool_size=4, stride=2

6.Droupout P=0.2

7.Convolutional filters=240, kernel_size=4, RelLu
stride=1

8.Max pool Pool_size=4, stride=2

9.Droupout P=0.2

10.Convolutional filters=320, kernel_size=4, RelLu
stride=1

11.Max pool Pool_size=4, stride=2

12.Fully connected units=180 RelLu

13. Fully connected units=15 Sigmoid

Total number of trainable parameters is 2,342,723. The kernels were subjected to constraints
of max_norm=0.9, [1=5"10E-7, 12=1E-8. Each instance of the model was trained using the
input lengths of 400 and 1000. The training process was optimized using the Adadelta
optimizer (“[1212.5701] ADADELTA: An Adaptive Learning Rate Method,” n.d.) and ran for a
maximum of 200 epochs with a patience period of 15. The models were built using tensorflow
v2.3.1 and trained on NVIDIA k80 GPUs.

1.6.2.2 SVM classification.

For SVM classification, gapped k-mer SVM program was used downloaded from
https://github.com/Dongwon-Lee/lsgkm. For each category of the regions, instances of SVM

models were trained, using 400bp and 1000bp regions, with the following kernel options:
0 -- gapped-kmer
1 -- estimated I-mer with full filter
2 -- estimated I-mer with truncated filter (gkm)
3 -- gkm + RBF (gkmrbf)
4 -- gkm + center weighted (wgkm)
5 -- gkm + center weighted + RBF (wgkmrbf)




Of the tried kernels, gapped-kmer kernel outperformed the others, so the gapped-kmer option
was used for further comparison with other methods.
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SVM performed worse with 1000kbs input length compared to 400 bp. So, 400bp results were
used for further comparisons with other methods.
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1.6.3 Feature-based classification

The features used for classification were:
- GC content
- CpG content: counted the occurrences of “CG" as density over the sequence length.
- GpC content: counted the occurrences of “GC* as density over the sequence length.



- CpGisland coverage: fraction of the overlaps with the CpG island obtained from UCSC
Genome Browser database.

Each classification model was trained using all of the features at once (n=4), and using each of
the features separately.

Logistic regression:
Sklearn.linear_model.LogisticRegression method was used from scikit-learn library.

SVM:
sklearn.svm.SVM method was used from scikit-learn library

Kernels used with SVM classification are: linear, polynomial, radial basis function(rbf), and
sigmoid.

1.7 Variant analysis

Common SNPs and INDELs were extracted from the gnomAD r2.1.1 dataset (Karczewski et
al. 2020). Variants with PASS filter value and MAF>5% were selected using the “view -f PASS
-i 'MAF[0]>0.05" options of bcftools program (Li, 2011). raQTLs were downloaded from
https://sure.nki.nl (van Arensbergen et al., 2019). Liver and blood eQTLs were extracted from
the GTEx v8 dataset (https:/www.gtexportal.org/home/datasets). Liver caQTLs were
obtained from the supplementary material of (Currin et al., 2021). NHGRI-EBI GWAS
database variants were grouped according to their traits (dataset e0_r2022-11-29). For each
GWAS SNP, LD SNPs with r2>0.8 were added using the plink v1.9 (Chang et al., 2015)
program using the parameters “--Id-window-r2 0.8 --Id-window-kb 100 --Id-window 1000000
Enrichments of GWAS-trait SNPs were calculated as the ratios of densities of SNPs in each
class of regions (eg. HOT enhancers, HOT promoters) to either that of the regular enhancers
or the DHS regions. The statistical significance of enrichment was calculated using the
binomial test. FDR values were calculated using the Bonferroni correction.
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Fig S1. Distribution of the number of loci by the number of overlapping peaks 400bp loci in
HepG2, K562, and H1. Loci are binned on a logarithmic scale (Table 1. see Methods).
Shaded region represents the HOT loci.

HepG2 Promoters K562 Promoters

DAPs DAPs

HepG2 Enhancers K562 Enhancers

s promoter
s enhancer
. rest

DAPs

Fig S2. A, B) Percentages of overlapping promoter loci binned by bound DAPs with histone
modification regions. C, D) Percentages of overlapping enhancer loci (non-promoter) binned
by bound DAPs with histone modification regions. E) Composition of the HOT loci to
promoter and enhancer regions based on the definitions used in this study, chromHMM
states and ENCODE SCREEN annotations.
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Fig S3. Overlaps between the HOT loci as reported in this study, Remaker et al. and Boyle

et al. Overlaps are calculated in terms of fractions of overlapping bps.
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Fig S4. phastCons conservation scores of HOT loci defined by this study, Remaker et al.,
and Boyle et al. Bar plots depict median values, error bars are 95% confidence intervals. P-

values are Mann-Whitney U test results.
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A 80 @ 160 @ 240 @ 320 @ 400 @ 480 B @ promoters @ enhancers

6 e
‘ 4
2 -
~ m
g o0- Y
_2 -
—4 - =2.5 1
-6 L v : v v v -5.0 T T T
-5 0 5 10 -5 8
PC1 PC2 (AUC=0.85)
C @ P300 @ non-P300 @ Cohesin ® non-Cohesin
4+ R
2 e
o~ et
go. Y 0-
-251 & : k : -2 4
-5.01 s ;
- 0 10 -5 0 5 10 15
PC1 (AUC=0.85) PC1 (AUC=0.77)

Fig S6 PCA plots of HOT loci in HepG2 based on the DAP presence vectors. Each dot
represents a HOT locus: A) PC1 and PC2 correlated with the number of overlapping DAPs.
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Fig S7. DAPs clustered by percentage of HOT promoters and HOT enhancers that the
ChlIP-seq peaks overlap. The top cluster comprises the DAPs which on average overlap
13% of HOT loci. The DAPs which form the bottom cluster are present in 53% of HOT loci.
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Fig S8. PPI networks of 4 clusters. Names of the clusters are indicated as titles. Refer to
the text for interpretations.
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Figure S12. Schematic representation of trained CNN model.
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Figure S16. GO terms associated with the HOT enhancers and promoters in H1-hESC.
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Figure $17. GWAS traits enrichment analysis filtered by unadjusted p-values (p-

value<0.001).
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Figure S$18. Normalized ChlP-seq signal values of DAPs in HOT loci (rows) in the presence of

other DAPs (columns). The hierarchical clustering is done using the columns. That is, the
leftmost outer group (in the green box) contains the DAPs in the presence of which most of
the other DAPs yield highest ChlP-seq signal values.
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Figure S19. Distribution of the ChIP-seq signal values of DAPs when the stabilizing DAPs
(Figure S18) are present vs. absent.
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