Multi-scale variations of ocean temperature off the coast of Nova Scotia:

Analyses of *in situ* and remote sensing observations and high-resolution ocean models towards applications in ecosystem and fishery

Youyu Lu

Bedford Institute of Oceanography Fisheries and Oceans Canada (DFO), Maritimes Region

Acknowledgment

Collaborators (detailed in presentation) Supports in work & funding from management

Motivation

- Ocean temperatures (T) are observed with satellite remote sensing & *in situ* (ship-based, moorings/buoys, drifters, Argo profiling floats, gliders) platforms. Observed data can be taken as "truth", but usually has gaps and contains noise
- Numerical ocean models provide hindcast, forecast & climate projection of T. Modelled T has high resolutions in space-time, but contains bias.
- With quality-controlled & validated data, multi-scale T variations in space & time can be revealed; some aspects of T variations have been linked to various aspects of ecosystem & fishery variations
- Can ocean T analyses can be enhanced to reveal more links, for understanding past changes & predicting future changes of ecosystem & fishery?

This presentation:

Examples from recent & ongoing analyses of my collaborators mainly in DFO on ocean T variations at multiple space-time scales, and their potential applications

- 1. Comparison of surface marine heatwave parameters from remote sensing & modelled T similarities & differences
- 2. Rapid cooling in nearshore waters during cold air outbreaks small spatial-scale variations that are hard to resolve by observations & models
- 3. Interannual variations of coastal upwelling combination of remote sensing & modelled T
- 4. Bottom T variations off Nova Scotia during 2008-2023, and relationship with lobster catching rate

1. Surface marine heat wave parameters from OISST v2.1 & GLORYS 12v1 Haiyan Wang et al. 2024: Frontiers in Marine Science

NW Pacific annual statistics during 1993-2019

Similar spatial distributions; GLORYS obtains larger "Total days" & "Duration", but lower mean intensity

Interannual variations in different regions

 Similar large peaks (GLORYS higher) in "Total Days" (1st row), "Duration" (2nd row) & "Cumulative Intensity" (5th row)

Some large peaks show correspondence with Niño3.4 index

Compare SST time series in 1998 at two representative sites

- In low-lat, GLORYS obtains much less highfrequency SST variations than OISST; Climate Forecast System CFS v2 is in between
- Are differences due to issues in OISST or data assimilation? further work is needed

Recent work: Marine heat waves & cold spells on Scotian Shelf Zhai, Lu, Garric, in progress

Detection with GLORYS

SST: GLORYS & CMCSST has similar spectra

Bottom 12 Climatology 11 Threshold Temp 10 Event 9 S S 6 5 10/01 20/04 29/07 06/11 1997

Bottom T: GLORYS & in situ Obs has different spectra

GLORYS MHW parameters averaged over 1993-2023

Surface

Spatial variations can be attributed to circulation, eddies, etc.

Interannual variations of heatwave & cold spell parameters

Further work

- Forcing mechanism of space-time variations
- Applications: Do heatwaves & cols spells impact fish physiology?

2. Rapid drops of ocean temperatures in nearshore shallow bays during cold air outbreaks

Casey, Lu, Petrie, MacDermid, Paquin, Proc NS Institute of Science, in revision

Event on Feb 3-5, 2023

Kalin Mitchell CTV News Atlantic Chief Meteorologist

Follow | Contact

Updated Feb. 6, 2023 5:18 p.m. AST Published Feb. 6, 2023 4:31 p.m. AST

While relatively short-lived, the blast of Arctic air in the Maritimes was enough to break some long-standing low temperature records for all three Maritime provinces Friday and Saturday.

Long-standing low temperature records were broken in the Maritimes on both Friday and Saturday.

- Short lived approximately 2.5 days
- Relatively warm season up to that point

Air T at Shearwater Airport

How & where does ocean temperature change?

Analyze CIOPS-E model results

Model shows 1.5 - 5 °C drops of water temperature (surface to bottom) in relatively isolated shallow bays & straits: St. Margaret's, Mahone, St. Mary's, Cobequid &Chignecto Bays; **Pubnico/Cape Sable shallow** areas; Northumberland **Strait**

Comparison of model T with *in situ* observations

Blue: Obs Red: model

- Model bias may be attributed to 2.5 km spatial resolution
 - It may be challenging for satellite data to resolve T changes in nearshore water

Can rapid ocean cooling impact fish?

December 2016 CAO is coincidental with fish kill in St. Mary's Bay, Nova Scotia

4. Bottom T variations off Nova Scotia during 2008-2023, and relationship with lobster catching rate

Lu, Hu & Cool et al, in progress

Previous study: 2012, 2014 & 2015 warm events on Scotian Shelf –using GLORYS12v1 & AZMP data Brickman et al 2018

July bottom T anomalies

AZMP July 2012 bottom T anomaly relative to 1981-2010

Warm anomaly in 2011/2012 appears to have negative impacts on some life stages of snow crab Zisserson & Cook 2017

Focus on LFA33, Polygons #1-7

Bottom temperature from GLORYS12v1 & Lobster CUPE (catch per unit effort)

There are different ways to examine their relations – needs for collaborative analysis

Original time series: Nov-Dec averaged bottom T vs Fishing season (Nov-Apr) averaged Lobster CPUE

Pearson correlation (Kendall tau)

#3, R=0.27 (0.12)

-ВоТ

#6, R=0.60 (0.25)

#/, **K=0./9 (0.48)**

Detrended time series: Nov-Dec averaged bottom T vs Fishing season (Nov-Apr) averaged Lobster CPUE Pearson correlation (Kendall tau)

#2, R=0.39 (0.14)

#5, R=0.65 (0.47)

#6, R=0.02 (-0.01)

#7, R=0.59 (0.45)

#3, R=0.47 (0.29)

Related work using CIOPS-E: Bottom cold anomaly on Scotian Shelf during 2023

Motivation: Investigate fishermen's finding of abnormally low bottom temperature & low lobster catching rate in LFA34

CIOPS-E model results

Summary

- Remote sensing SST may have different high-frequency statistics with data-assimilative ocean reanalysis – causes?
- Model & observations (*in situ* & remote sensing) have challenges to resolve small spatial-scale ocean T variations
- Quality-control & validation tell accuracy/bias of obs/models, important for deciding where, when & at what scales applications can be developed
- Ocean T variations have multiple space-time scales, which may affect different aspects of marine ecosystem & fishery
- Applications will benefit from continuing development & evaluation of high-resolution ocean T, from remote sensing & in situ obs, & models