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Glioblastoma

Glioblastoma multiforme (GBM) is the most frequent
malignant brain tumor in adults. It presents with
varying degree of mass-effect, from predominantly
invasive tumors without notable “mass-effect” to
strongly displacing lesions that induce high mechan-
ical stresses resulting in healthy-tissue deformation,
midline shift or herniation. Biomechanical forces
shape the tumor micro-environment [1] and thus af-
fect tumor evolution and treatment response.
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Simulation Framework

Can different GBM “growth phenotypes” be
distinguished by mathematical modeling?

Developing open-source framework for image-based
simulation of macroscopic tumor growth and
mechanical impact, to

• Estimate patient-specific growth parameters for
cohorts of patients.

• Evaluate and compare different model
specifications to identify best-fitting model.

Design considerations:
• Support for simulations in 2D & 3D
• Adaptable to different model specifications
• Efficient approach to inverse problem
• High-level language
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Forward Model

Mathematical Model

Cell proliferation & healthy tissue invasion repre-
sented by Reaction-Diffusion (RD) model with logistic
growth:

∂c

∂t
= ∇ ·

D̂ ∇c
 + ρ c (1 − c ) ,

with normalized cancer cell concentration c (r, t), dif-
fusion tensor D̂ = D̂ (r) and proliferation rate ρ .
Mass-Effect based on linear constitutive relationship
between stress σ̂ (u ) and strain ϵ̂ (u ):

σ̂ (u ) = Ê .. ϵ̂ (u )

ϵ̂ (u ) = 1
2

∇ · u + (∇ · u )T


Presence of tumor cells assumed to result in tumor-
induced strains with coupling strength λ̂:

ϵ̂ growth(c) = λ̂ c .

Simulation Domain & Parameters

no flux BC

no displacement BC

All parameters currently assumed isotropic.
Growth parameters:
cell motility D̂ : DGM, DWM
proliferation ρ: ρGM, ρWM
coupling λ̂: λGM = λWM = λ

Mechanical properties:
Young’s modulus E: EΩi

Poisson ratio ν: νΩi

Inverse Problem

PDE-constrained Optimization

Find model parameters p that minimize a
given optimization functional f (ϕ ,p ) un-
der the PDE constraint g (ϕ ,p ) = 0, where
ϕ are the statevariables.
The adjoint method provides an efficient
approach for computing the gradient df

dp .
We use FENICS-adjoint [2] for deriving the
adjoint equations.

General optimization functional for obser-
vation time point k with estimates of tumor
cell concentration c ∗

k (r) and tissue defor-
mation u ∗

k (r):
J = ∥c (r, tk) − c ∗

k (r)∥2
2 + ∥u (r, tk) − u ∗

k (rl)∥2
2

Optimization on Synthetic Data

Image-derivable Information for Patient-specific Optimization

The patient’s normal (non-tumor bearing)
anatomy is typically unknown.
We approximate the healthy patient-
specific anatomy by affine registration of
an atlas (MR and tissue labels) to the first
imaging time point.
From this configuration, tumor-induced
displacements are estimated by de-
formable registration [3].
Approximate tumor cell distribution is in-
ferred from surrogate information:
anatomical MR: tumor segmentation and
imaging thresholds for T1, T2-weighted MR
functional MR: tumor cellularity from
diffusion-weighted imaging.
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Status & Results

Forwardmodel implemented for 2D & 3D, tested in 2D.
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Adjoint optimization tested for parameters across do-
mains. Achieves reliable simultaneous estimation of
at least 2 growth parameters {(D, ρ), (D, λ), (ρ, λ)} on
synthetic data.
Image-derivable information compatible with opti-
mization approach.

Next Steps

Evaluation of parameter estimation approach on
patient-data.
Evaluation of image-based initialisation using time-
series data from rodent study where normal and
tumor-bearing states are known.
Explore different model specifications, particularly

• stress-modulated diffusivity / cell motility
• isotropic Ogden material model [4]

Further Information

Software will be available on project website soon!

Glioma mass-effect Simulator www.glims.ch
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