Image-based Parameter Optimization of a mechanically-coupled Brain Tumor Growth Model

Daniel Abler^{1,2}, Russell Rockne², Philippe Büchler¹

¹University of Bern, Institute for Surgical Technology & Biomechanics (ISTB), Switzerland; ²Beckman Research Institute, City of Hope, Department of Information Science, Duarte, CA

Glioblastoma

Glioblastoma multiforme (GBM) is the most frequent malignant brain tumor in adults. It presents with varying degree of mass-effect, from predominantly invasive tumors without notable "mass-effect" to strongly displacing lesions that induce high mechanical stresses resulting in healthy-tissue deformation, midline shift or herniation. Biomechanical forces **shape** the **tumor micro-environment** [1] and thus affect tumor evolution and treatment response.

Simulation Framework

Can different GBM "growth phenotypes" be distinguished by mathematical modeling?

Developing open-source framework for image-based simulation of macroscopic tumor growth and mechanical impact, to

- Estimate patient-specific growth parameters for cohorts of patients.
- Evaluate and compare different model specifications to identify best-fitting model.

Design considerations:

Sim Sim	ple kVT			K			
Imaging Data		Mesh Creation		Sir	Simulation Framework		
		Lateral Ventricles			Model-Sp with suit	pecificati able Solv	ons /ers
		Image-derived Target Fields		S dolfin	n-adjoint	Displacement	[mm] 3.1 25- 20- 15- 10- 5- 0.0_

- Support for simulations in 2D & 3D
- Adaptable to different model specifications
- Efficient approach to inverse problem
- High-level language

Forward Model

Status & Results

Mathematical Model

Cell proliferation & healthy tissue invasion represented by **Reaction-Diffusion** (RD) model with logistic growth:

$$\frac{\partial c}{\partial t} = \boldsymbol{\nabla} \cdot \left(\boldsymbol{\hat{D}} \ \boldsymbol{\nabla} c \right) + \rho \ c \ (1 - c) \ ,$$

with normalized cancer cell concentration $c(\mathbf{r}, t)$, diffusion tensor $\hat{D} = \hat{D}(r)$ and proliferation rate ρ .

Mass-Effect based on linear constitutive relationship between stress $\hat{\boldsymbol{\sigma}}(\boldsymbol{u})$ and strain $\hat{\boldsymbol{\epsilon}}(\boldsymbol{u})$:

> $\hat{\boldsymbol{\sigma}}(\boldsymbol{u}) = \hat{\boldsymbol{E}} : \hat{\boldsymbol{\epsilon}}(\boldsymbol{u})$ $\hat{\boldsymbol{\epsilon}}(\boldsymbol{u}) = \frac{1}{2} \left(\boldsymbol{\nabla} \cdot \boldsymbol{u} + (\boldsymbol{\nabla} \cdot \boldsymbol{u})^{\mathsf{T}} \right)$

Presence of tumor cells assumed to result in **tumor**induced strains with coupling strength $\hat{\lambda}$:

Simulation Domain & Parameters

All parameters currently assumed **isotropic**.

Growth parameters: cell motility \hat{D} : D_{GM} , D_{WM} **proliferation** ρ : ρ_{GM} , ρ_{WM}

Mechanical properties:

Young's modulus $E: E_{\Omega_i}$ **Poisson ratio** ν : ν_{Ω_i}

Forward model implemented for 2D & 3D, tested in 2D.

Adjoint optimization tested for parameters across domains. Achieves reliable simultaneous estimation of at least 2 growth parameters $\{(D, \rho), (D, \lambda), (\rho, \lambda)\}$ on synthetic data.

$\hat{\boldsymbol{\epsilon}}^{\mathsf{growth}}(c) = \hat{\boldsymbol{\lambda}} c$.

coupling λ : $\lambda_{GM} = \lambda_{WM} = \lambda$

Inverse Problem

Optimization on Synthetic Data

PDE-constrained Optimization

Find model parameters p that minimize a given optimization functional $f(\boldsymbol{\phi}, \boldsymbol{p})$ under the PDE constraint $q(\boldsymbol{\phi}, \boldsymbol{p}) = 0$, where ϕ are the statevariables.

The adjoint method provides an efficient approach for computing the gradient $\frac{df}{dn}$. We use FENICS-adjoint [2] for deriving the adjoint equations.

General optimization functional for observation time point k with estimates of tumor cell concentration $c_k^*(\boldsymbol{r})$ and tissue deformation $\boldsymbol{u}_{k}^{*}(\boldsymbol{r})$:

 $J = \|c(\mathbf{r}, t_k) - c_k^*(\mathbf{r})\|_2^2 + \|\mathbf{u}(\mathbf{r}, t_k) - \mathbf{u}_k^*(\mathbf{r}_l)\|_2^2$

Image-derivable Information for Patient-specific

The patient's normal (non-tumor bearing) anatomy is typically unknown. We approximate the **healthy patient-**Patient Images specific anatomy by affine registration of an atlas (MR and tissue labels) to the first imaging time point.

: Optimiza	tion

Image-derivable information compatible with optimization approach.

Next Steps

Evaluation of **parameter** estimation approach on patient-data.

Evaluation of image-based initialisation using timeseries data from rodent study where normal and tumor-bearing states are known.

Explore **different model specifications**, particularly

- stress-modulated diffusivity / cell motility
- isotropic Ogden material model [4]

Further Information

Software will be available on project website soon!

From this configuration, tumor-induced **displacements** are estimated by **de**formable registration [3].

Approximate tumor cell distribution is inferred from surrogate information: anatomical MR: tumor segmentation and lthy Br Atlas **imaging thresholds** for T1, T2-weighted MR <u>functional MR</u>: tumor **cellularity** from diffusion-weighted imaging.

Glioma mass-effect Simulator

Selected References

- R. K. Jain et al. "The Role of Mechanical Forces in Tumor Growth and Therapy". In: Annu. *Rev. Biomed. Eng.* 16.1 (07/11/2014), pp. 321–346.
- P. Farrell et al. "Automated Derivation of the Adjoint of High-Level Transient Finite Ele-[2] ment Programs". In: SIAM Journal on Scientific Computing 35.4 (2013), pp. C369–C393.
- Advanced Normalization Tools (ANTs). https://github.com/ANTsX/ANTs.
- S. Budday et al. "Mechanical Characterization of Human Brain Tissue". In: Acta Bioma-[4] *terialia* 48 (01/2017), pp. 319–340.
- D. Abler et al. "Evaluation of a Mechanically Coupled Reaction-Diffusion Model for [5] Macroscopic Brain Tumor Growth". In: Computer Methods in Biomechanics and Biomedical Engineering. Ed. by A. Gefen et al. Cham: Springer International Publishing, 2018, pp. 57-64.
- C. Hogea et al. "An Image-Driven Parameter Estimation Problem for a Reaction-diffusion [6] Glioma Growth Model with Mass Effects". In: Journal of Mathematical Biology 56.6 (06/2008), pp. 793-825.
- A. Gholami et al. "An Inverse Problem Formulation for Parameter Estimation of a [7] Reaction-diffusion Model of Low Grade Gliomas". In: J. Math. Biol. 72 (1-2 01/2016), pp. 409–433.
- M. S. Alnæs et al. "The FEniCS Project Version 1.5". In: Archive of Numerical Software [8] 3.100 (2015).

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No 600841 and from European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 753878.

omain

Contact:

daniel.abler@istb.unibe.ch