
Research Article
Virtual Commissioning with TIA Step7 and Simulink without
S-Functions

Dusan Horvath ,1 Martin Klauco ,2 and Maximilian Stremy 1

1Advanced Technologies Research Institute, Faculty of Materials Science and Technology in Trnava,
Slovak University of Technology in Bratislava, Jána Bottu 2781/25, Trnava 917 24, Slovakia
2Institute of Information Engineering, Automation, and Mathematics,
Faculty of Chemical and Food Technology STU in Bratislava, Slovak University of Technology in Bratislava, Radlinského 2101/9,
Bratislava 812 37, Slovakia

Correspondence should be addressed to Dusan Horvath; dusan_horvath@stuba.sk

Received 15 January 2024; Revised 24 June 2024; Accepted 11 July 2024

Academic Editor: Franca Giannini

Copyright © 2024 Dusan Horvath et al. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Tis paper presents the development and validation of a custom MATLAB library, designed to facilitate seamless and efcient
real-time communication between the Siemens S7-PLCSIM Advanced simulator and MATLAB/Simulink. Te library uses
Siemens.Simulation.Runtime.API to enable this integration and its architecture is structured into three classes—PLCSimAdv,
PLCSR, and PLCSW. To demonstrate the library’s capabilities, we have chosen the validation parameters and conducted
functional experiments including real-time communication at the millisecond level, integration and control of a simulated
industrial process, and simultaneous operation withmultiple virtual controllers. One of the library’s preliminary conditions was to
avoid the requests for regenerating of any version of control program or Simulink model as it is presently by S-functions in TIA
portal. Te results suggest that the proposed library provides a robust tool for various applications in industrial automation, from
the digital twin modelling or simulation of advanced technologies to the operation of traditional control systems. Tis work has
the potential to signifcantly streamline the simulation, control, and validation of automated processes and opens new ways for
research and development in automation and control systems.

1. Introduction

Computer simulation plays a critical role in scientifc re-
search and development [1–3]. It uses digital computing to
save both time and money [4–6]. Tese days, we are seeing
increased blending of the physical world with the virtual one.
Tis ofers a lot of advantages. For example, we can simulate
how processes and control systems work, which helps us
adjust process parameters, optimize control programs, and
validate systems. Plus, virtual commissioning, or evaluating
a system in a virtual environment before real-world de-
ployment, is a key part of Industry 4.0, the latest industrial
revolution that heavily involves digitization and automation
[7, 8]. Numerous tools and methods are available for
modelling and simulation, ranging from Simulink to

software specifcally designed for industrial systems such as
Tecnomatix Plant Simulation and Factory IO. For the in-
tegration with Siemens-based Programmable Logic Con-
trollers (PLCs), simulation of control programs, and virtual
commissioning, we utilized MATLAB and Simulink’s in-
herent libraries, as well as customized ones, to develop
models and simulate processes across diverse industrial
sectors. Siemens provides the capability to interconnect
a virtual controller operating in PLCSim Advanced with
Simulink through TIA Portal-generated s-functions or OPC
UA. However, this feature is exclusive to the specifc soft-
ware controller S7-1500S, and any alterations to the PLC
program necessitate the regeneration of the s-function.

Our work is centered around the creation of a library
that facilitates direct connections to one or multiple virtual

Wiley
Journal of Engineering
Volume 2024, Article ID 2822711, 10 pages
https://doi.org/10.1155/2024/2822711

https://orcid.org/0000-0003-4138-5966
https://orcid.org/0000-0003-0098-2625
https://orcid.org/0000-0003-2918-0714
mailto:dusan_horvath@stuba.sk
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1155%2F2024%2F2822711&domain=pdf&date_stamp=2024-08-04


controllers, eliminating the need for s-function re-
generation. Terefore, no modifcations into the Simulink
model are required following alterations to the PLC control
program, thereby overcoming the restriction of solely using
the 1500S PLC type and ensuring uninterrupted real-time
operation. Such a library will extend the present possibilities
of virtual commissioning.

1.1. Motivation. Programmable Logic Controller (PLC)
simulation is a critical tool in the design and verifcation of
algorithms, particularly in the realm of industrial control
systems. It works as a virtual space for engineers to create,
check, and confrm control systems.Tey can assess how the
system works using a digital model of the industrial plant.
Tis approach reduces the risk to machine operators and the
machine itself, as potential issues can be identifed and
resolved in the simulated environment before actual
deployment.

In the feld of industrial automation, the process of
commissioning is crucial. Equally important is the de-
ployment of PLC in the context of Industry 4.0 concept. In
the case of modern approach with virtual commissioning
applied, a lot of resources are saved [9, 10].

Te process of PLC simulation plays a key role in the
Model-Based Design (MBD) workfow. MBD is a mathe-
matical and visual method of addressing problems associ-
ated with designing complex control, signal processing, and
communication systems. It enables engineers to use simu-
lation to design control algorithms (such as PID control),
prototype control logic (such as fnite state machines), and
even generate automatic PLC code (IEC 61131-3, C, or C++
code) from the design and simulation environment. Tis
approach provides fexibility and independence from the
PLC hardware platform and contributes to greater reliability
through testing and avoidance of programming errors by
automatically generating code from models.

Aiming our attention on Simatic PLCs, we can utilize s-
functions generated in the TIA portal, which efectively tests
our s7 code. However, the utilization of s-functions is ac-
companied by several challenges. For example, debugging an
s-function can be signifcantly more complex compared to
debugging a standard Simulinkmodel. Moreover, as a model
evolves, the associated s-functions necessitate regular
maintenance and updates, potentially requiring additional
efort compared to the use of built-in blocks. Te generation
of s-functions in the TIA portal is also constrained to the
software PLC S7-1500S.

During commissioning, code modifcations are not
uncommon, thereby necessitating the time-consuming re-
generation of s-functions for the modifed model. Our
objective is to simplify the simulation process and facilitate
the use of a wider range of simulated controllers. Tis ap-
proach not only enhances work efciency but also aligns
with the need for cost-efective deployments.

Given our institutional emphasis on ion beam tech-
nologies, the proposed solution and the PLCSimAdv library
aim to be employed for modelling and simulating processes

associated with the ion beam accelerator (IBA) as we
mentioned and examined in our previous article [11]. Tis
includes the simulation of the automatic confguration of
accelerator optics for multienergy ion implantation [12–14].
Such an implementation demands a specifc accelerator
confguration, which may difer for each energy level. Each
reconfguration entails shutting down the accelerator,
resulting in considerable system downtime. Te library we
have developed could assist us in devising an optimal al-
gorithm for continuous parameter reconfguration during
the implantation process. Tere are more interesting areas
where our library could be used, e.g., in the experimental
measuring system based on PLC [15]. Additionally, this tool
will be helpful for our future research in process automation
and control systems. It will open new paths for us to explore
in this feld.

2. Materials and Methods

In the design and development of the library, an object-
oriented approach was employed. Our solution is comprised
of three classes: the primary class, PLCSimAdv, serves as the
interface between Siemens.Simulink.Runtime.API and the
MATLAB application. Figure 1 shows a basic class model.
Te classes PLCSR and PLCSW are derived from the
matlab.System class and are thus utilized as library blocks
within the Simulink environment. Figure 2 illustrates the
potential physical connectivity, based on the standard
PLCSim Advanced connection confgurations and
capabilities.

2.1. PLCSimAdv. Te PLCSimAdv class is designed as
a static-like class to facilitate between MATLAB and the
Siemens S7-PLCSIM Advanced simulator, fully developed
by the authors. Tis class enables seamless communication
and data sharing with the simulator, crucial for simulating
and testing PLC programming in a virtual environment.

Key properties and setup:

(i) Library Path and Files. Te class maintains prop-
erties that specify the paths to essential API fles
necessary for interfacing with the simulator. Tese
properties include default paths for both 32 bit and
64 bit versions of the library, ensuring compatibility
across diferent system architectures.

(ii) Automatic Initialization. Initialization of this in-
terface is streamlined through the execution of
a startup.m fle, which prepares the MATLAB en-
vironment for communication with PLCSim Ad-
vanced by setting up necessary paths and
confgurations.

Core methods and functionalities:

(i) Library Management. It includes methods for
loading library fles, checking the existence of these
libraries, and loading the required .NET assemblies
to ensure all dependencies are properly managed
and ready for use.

2 Journal of Engineering

 3962, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2024/2822711 by C

ochrane Slovakia, W
iley O

nline L
ibrary on [07/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



(ii) Instance Management. It utilizes a persistent con-
tainer, Instances, to register and manage simulator
instances. Tis design pattern ensures efcient
management of multiple connections to the simu-
lator, reducing overhead and enhancing
performance.

(iii) Dynamic Instance Handling.Te getInstance() static
method is a critical component of the class, designed
to either retrieve an existing instance from the
container or create a new one if it is not already
available. Tis method supports dynamic connec-
tion handling, allowing users to work with multiple
simulated PLC instances concurrently.

Interaction with simulator:

(i) Tag Management. It includes functionality to read
and write PLC tags, which are essential for real-time
simulation and testing. Tis ability is pivotal for
developing and debugging PLC programs within
MATLAB.

(ii) Error Handling and Data Type Verifcation. It pro-
vides error handling mechanisms to deal with
common issues such as missing tags or incorrect
confgurations. Additionally, it can retrieve and
display data types of PLC tags, enhancing debugging
capabilities.

Enhanced communication:

(i) Secure and Efcient Communication. Methods like
write() and read() are optimized for secure and ef-
fcient communication between MATLAB and the
simulator, ensuring that data integrity is maintained
during transactions.

Overall, the PLCSimAdv class provides an intuitive and
powerful way to interact with the Siemens S7-PLCSIM
Advanced simulator from MATLAB. It abstracts the com-
plexity of direct API calls into a user-friendly interface,
allowing for enhanced productivity in developing, testing,
and simulating PLC programs.

2.2.PLCSR. TePLCSR class is designed as aMATLAB class
defnition tailored for a Simulink block that facilitates
reading values from Siemens PLCSim Advanced simulation
software. Specifcally, it retrieves data from a designated
variable tag within the simulation and outputs these data as
a double-precision scalar.

Key properties and confguration:

(i) Runtime Confguration. It includes properties such
as RuntimeManagerIP, RuntimeManagerPort,
InstanceName, and VariableTag, which are used to
confgure the connection to the Siemens PLCSim
Advanced instance.Tese properties ensure the class
can dynamically connect to and interact with the
simulation based on user-defned settings.

(ii) Initialization and Data Retrieval. Te setupImpl
method is pivotal in initializing the connection to the
PLCSim Advanced. It establishes the PLC object
using the InstanceName, RuntimeManagerIP, and
RuntimeManagerPort and updates the list of tags
available in the simulation. Additionally, it de-
termines the data type of the variable tag to ensure
accurate data handling.

Core functionalities:

(i) Data Reading and Conversion.Te stepImpl method
is the core functional method that reads the current
value of the specifed variable tag during each
simulation step. It employs conditional checks on
the data type of the tag to convert the read value into

PLCSimAdv

PLCSWPLCSR

System
matlab

Figure 1: Simplifed class model of library.

Station A

Station B

MATLAB
+

SIMULINK

PLCSim
Advanced
Runtime

PLC Instance

Another Instance

PLCSim
Advanced
Runtime

PLC Instance

Another Instance

Local TPC/IP

Remote TPC/IP

Figure 2: PLCSim advanced communication.

Journal of Engineering 3

 3962, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2024/2822711 by C

ochrane Slovakia, W
iley O

nline L
ibrary on [07/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



the appropriate MATLAB data type (e.g., bool,
int16, and double), ensuring the output is consistent
regardless of the underlying data type in the
simulation.

(ii) Output Confguration. Tis class includes methods
such as getOutputNamesImpl, which sets the output
port name to the VariableTag name, and getOut-
putSizeImpl, ensuring the output is a scalar. It also
defnes the output data type through getOutput-
DataTypeImpl and specifes that the output is not
complex via isOutputComplexImpl.

(iii) Error Handling and Data Types. Te class is
equipped to handle errors related to unsupported or
unknown data types through the stepImpl method,
which throws an informative error if the data type of
the variable tag is not recognized.

By encapsulating the functionality to interact with the
PLCSim Advanced within a Simulink block, the PLCSR class
makes it easier for users to integrate PLC simulation data
into broader Simulink models, supporting more compre-
hensive simulation and testing environments. Overall, the
PLCSR class provides an efcient and user-friendly way to
incorporate real-time data from Siemens PLCSim Advanced
into MATLAB and Simulink workfows, enhancing the
capability for detailed simulation and analysis in industrial
automation projects.

2.3. PLCSW. Te PLCSW class is a custom MATLAB
System block designed for Simulink, facilitating the writing
of values to a Siemens PLCSim Advanced instance.Tis class
enables precise interaction with the simulation software by
writing data directly to specifed variable tags, which are
critical components of the TIA project’s variable table.

Key properties and confguration:

(i) Connection Settings. Te class properties include
RuntimeManagerIP, RuntimeManagerPort, Instan-
ceName, and VariableTag. Tese settings confgure
the connection to the specifed instance of PLCSim
Advanced, ensuring targeted communication within
the simulation environment.

(ii) Initial Value Setup. An additional property, Init-
Value, is used to set an initial value for the specifed
tag if it is not NaN (Not a Number), facilitating
initial conditions or default settings for
simulation runs.

Core functionalities:

(i) Initialization and Setup. Te setupImpl method
initializes the PLCSimAdv object, updates the list of
available tags, and fetches the data type of the
specifed variable tag to ensure accurate data han-
dling.Tis method also handles the initial writing of
values if specifed.

(ii) Data Writing Mechanism. Te write method, which
is crucial for the operation of this block, dynamically
converts the input value to the appropriate data type

of the tag before writing it to the simulation. Tis
conversion ensures that data integrity and type
consistency are maintained, preventing errors
during simulation.

(iii) Simulation Step Integration. In the stepImpl
method, the input value from Simulink is passed
directly to the write method, ensuring that the data
in the simulation are updated at every simulation
step, refecting real-time changes and interactions.

(iv) Input Port Customization. Te getInputNamesImpl
method sets the input port’s name to match the
VariableTag, enhancing the usability and clarity of
the Simulink model, making it easier to trace and
verify simulation fows.

(v) Error Handling and Data Types. It supports a wide
range of data types from Boolean to 64 bit integers
and foating-point numbers, accommodating vari-
ous simulation needs. It provides error messages for
unknown data types, ensuring that users are im-
mediately aware of confguration issues.

Overall, the PLCSW class signifcantly streamlines the
process of integrating andmanipulating data within Siemens
PLCSim Advanced via Simulink, providing a robust tool for
engineers and researchers to simulate and test PLC pro-
grams efectively. By automating the data writing process
and ensuring data type compatibility, this class enhances the
simulation’s accuracy and reliability, making it an invaluable
tool for development and testing in industrial automation
projects.

3. Development

Te development of the Simulink library began with
a comprehensive study of the Simulink runtime API. Es-
sential methods and functions were identifed that would
enable efective utilization of the API for our specifc pur-
poses. Tis foundational step ensured a deep understanding
of the available tools and how they could be adapted to meet
the needs of our project. Subsequent to familiarizing our-
selves with the necessary API functionalities, we investigated
the process of creating libraries and modules within
Simulink. Tis investigation provided insights into best
practices and methodologies for structuring custom libraries
that are both efcient and scalable, serving as the backbone
for the subsequent development phases. Te frst major
development milestone was the creation of the PLCSimAdv
class. Tis class was designed as a read/write library that
facilitated direct interaction with PLC simulations but ini-
tially did not interact with Simulink itself. To extend our
library’s capabilities, the PLCSR class was developed to test
reading from PLC instances, followed by the PLCSW class,
which enabled writing to PLC instances. Tese classes
formed the core of our Simulink library, allowing for robust
data manipulation within the PLC simulations.

Te development process was inherently iterative,
overlapping various stages of design, implementation, and
testing. Tis approach allowed for continuous refnement of

4 Journal of Engineering

 3962, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2024/2822711 by C

ochrane Slovakia, W
iley O

nline L
ibrary on [07/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



the library through trial and error, ensuring that each
functionality was thoroughly vetted and optimized before
fnalization. While iterative and occasionally involving
setbacks, this method proved crucial in achieving a highly
functional and reliable fnal product.

Once the core classes were established and functioning as
intended, extensive testing and experimental trials were
conducted. Tese tests were crucial for evaluating the
library’s performance, particularly the response times and
reliability under diferent operational conditions. Te in-
sights gained from these experiments were instrumental in
further refning the library, ensuring optimal performance
and user experience.

4. Experiments

To confrm the correctness and to validate the library
functions, six validation parameters were chosen, and we
conducted three experiments. In the frst experiment, we
tested the library’s ability to communicate in real time,
meaning that data exchange between the virtual PLC and
Simulink will occur at the millisecond level. In the second
experiment, we focus on modelling the process of flling
a water tank, while examining the library’s ability to facilitate
communication between the virtual controller and the
simulated model. Te last experiment aims to confrm the
library’s ability to communicate with multiple virtual con-
trollers simultaneously. Te results of the time-based ex-
periments performed on diferent stations may slightly vary,
which can be caused by the diferent computing power of
various computers. To provide a more comprehensive
evaluation, we included objective performance metrics and
comparative analysis with existing solutions. Te experi-
ments were designed, constructed, and selected based on the
validation parameters outlined in the subsequent section.

4.1. Selection of Validation Parameters. Te main discussion
is about picking appropriate parameters to test our library in
the next experiments. Tese parameters will help us assess
key features of our library, such as real-time communication,
process control, working with multiple PLCs, and managing
diferent numeric data types. Te following parameters have
been selected for validation during the experimental phase:

(a) Real-Time Communication. Given the time-sensitive
nature of industrial processes, the library exhibits the
capability to transfer data within milliseconds.
Hence, the response time of the library would be
a key parameter that we intend to validate.

(b) Industrial Process Control. Te library is profcient at
handling complex control operations, such as PID
regulation. Te performance and accuracy of PID
regulation under diferent operating conditions
would form an essential part of our validation
process.

(c) Multi-PLC Cooperation. One of the key validation
parameters involves assessing the library’s ability to
facilitate seamless communication and coordination

among multiple PLCs. We plan to evaluate this by
running simultaneous processes involving multiple
PLCs and gauging the efectiveness of the
coordination.

(d) Numeric Data Types. We intend to validate the
library’s ability to handle all valid numeric data
types, including Boolean. Tis will be carried out
by testing the library’s compatibility with a range
of devices and equipment that use various
data types.

(e) Independence of Specifc PLCSim Instance. Te
library’s fexibility and adaptability would be tested
by deploying it across diferent PLCSim instances.
Te expectation is that the library functions seam-
lessly, regardless of the specifc PLCSim instance
in use.

(f ) Immediate and Accurate PLC State Refection. Te
PLCSimAdv class promptly and accurately mirrors
changes in the PLC state. We plan to validate this by
closely monitoring the correlation between actual
PLC state changes and the corresponding refection
by the PLCSimAdv class.

To ensure a thorough evaluation, we also included
metrics such as latency, error margins, and performance
benchmarks against existing solutions. Tese parameters
have been thoughtfully chosen to ensure that the library’s
capabilities align with the requirements of industrial auto-
mation tasks. Te expectation is that the library will suc-
cessfully meet the criteria set by these validation parameters
in the forthcoming experiments, thereby demonstrating its
suitability and efectiveness for use in real-world scenarios.

4.2. Preliminaries. S7-PLCSim Advanced is a product from
Siemens AG that works as a virtual PLC (Programmable
Logic Controller). It helps in testing and running S7 pro-
grams, which means a physical PLC is not needed. Te
software can operate in real time and work well with pro-
gramming done through the TIA Portal. In our project, we
used PLCSim Advanced V5.0 and MATLAB R2023a to
develop the library. We programmed the PLC instructions
with TIA Portal V18, and we picked a virtual controller CPU
1515-2 PN for our setup. We made sure our experimental
setup meets the Nyquist criterion (fS ≥ 2B) for system
control. According to the Nyquist theorem, the PLC’s
sampling frequency (fS) must be double or more than the
highest frequency (B) of the original signal from the
Simulink model. So, we set the PLC sampling frequency to
5 kHz, which is more than double the model’s 100Hz fre-
quency, satisfying the criterion. We set the PLC’s minimum
cycle time to “disabled” state, which is typically less than
0.2ms. Tis lets the PLC sample at around 5 kHz. In con-
trast, the Simulink model uses a fxed-step solver that works
with an automatic solver type and an open-ended step size of
10ms. Tis setup means the Simulink model can sample at
100Hz.We chose these conditions carefully to make sure the
control system remains reliable and stable during the
experiment.

Journal of Engineering 5

 3962, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2024/2822711 by C

ochrane Slovakia, W
iley O

nline L
ibrary on [07/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4.3. Te First Experiment: Real-Time Communication. Te
primary objective of this experiment was to validate the
capability of the library in facilitating real-time communi-
cation between Simulink and PLCSim Advanced. Te
Simulink system model comprised a single PLCSR and one
PLCSW block, which were interconnected (see Figure 3).

Te OUTPUT tag’s value was seamlessly transferred to
the INPUT tag. A simple program was implemented in the
PLC. Tis program compared the values of the OUTPUT
and INPUT tags, and if they were the same, the value of the
OUTPUT tag was changed. Te simulation came to a halt
after 5000 such changes. At the onset of the experiment, the
time was recorded and subsequently subtracted from the end
time of the simulation to determine the total duration of the
simulation. Table 1 presents the details of each individual
measurement along with their parameters.

Te frst experiment’s results, summarized in Table 1,
show that we can make the virtual PLC and Simulink
communicate in real time, although there are limitations.
We managed to make this real-time communication work,
and the average delay was around 60ms, which is acceptable
in many cases.Te data in Table 1 also show that transferring
a block of data is quicker than transferring individual pieces.
For example, it is quicker to transfer one INTthan to transfer
four BOOLs. Tis pattern is the same for various kinds of
data and various levels of complexity, which tells us that how
we structure the data matters for communication speed.
Also, the choice of Simulink solver step makes a diference to
performance. In general, using the “Variable discrete” solver
step tends to be slower, so we need to think about this if we
are trying to make things faster. However, there are ex-
ceptions to this, such as with the 4x REAL data transfer,
where “Variable discrete” was faster. Tis tells us that the
best choice of solver step might depend on what kinds of
data we are transferring, and how much. Tis could be
caused by various reasons:

(i) Size and structure of diferent data types may vary
which could afect how the solver processes them.

(ii) Te efciency of a solver can vary based on the
nature of the data being transferred and the com-
putational load it imposes.

(iii) Real-time communication necessitates precise
synchronization between Simulink and the PLC.
Te solver step size can infuence this synchroni-
zation, as it determines the frequency at which data
are processed and exchanged.

4.4. Te Second Experiment: PI Control of Tank-Filling
Simulink Model. For the second experiment, we utilized
a model simulating a tank flling with liquid. We tested the
model’s (water tank) system response to a unit step (see
Figure 4).

Te water-tank Simulink model inspired this model. Te
flling process was regulated by a PI (Proportional-Integral)
controller situated in a PLC. To facilitate this, we in-
corporated a PI regulator into a PLC control subsystem (see
Figure 5). Tis subsystem featured PLCSR and PLCSW

blocks for communication with the PLC. In the Step7 TIA
program, we used OB30 (50ms), which initiated (called
based on constant time) the “PID_Compact V2” block.

Te mathematical model of PI regulator in Simulink,
where P is the proportional gain and ITS is the integral time
constant, is shown in the following equation:

y � P +
ITS

s
. (1)

Te time sampling for PI in Simulink model was set to
50ms (called OB30 with PI in PLC). Te mathematical
model of PI regulator “PID_Compact V2” used in TIA portal
is shown in the following equation:

y � P + fS

1
Tis

. (2)

Firstly, we set the Simulink model to run a stop time set
to Inf and with pacing set to 1. We then fne-tuned the PID
regulator, which was started in the TIA environment. Tis
helped us adjust the P and I parameters of the regulator.
Once the fne-tuning was done, we limited the Simulink
model to run for only 5 seconds. When we started the
simulation in Simulink, we saw the results shown in Figure 6.

It is worth noting that there is a time delay between
PLCSim and Simulink caused by communication reasons.
However, this kind of delay is absent when the PI regulator
in Simulink controls the system. Tis time lag results in
a minor shift in the system’s behavior, leading to observable
diferences in how the systems operate. We used the stan-
dard MATLAB function xcorr to calculate the lag. Tis
function computes the cross-correlation of the two signals,
allowing us to measure the similarity between the MATLAB
and VirtualPLC signals. We applied cross-correlation to
compare the responses of both systems. Our results (see
Figure 7) indicated an almost identical correlation with
a maximal value of lag close to 1 (0.9991), suggesting the two
signals were nearly identical. Te calculation details are
straightforward and can be easily verifed.Te values and the
calculation script (Lag_calculation.m) are available in the
“results” directory on our GitLab repository [16].

Tis high degree of similarity implies that the two sys-
tems respond in an exceedingly similar manner to the input,
with minor deviations occurring with minimal delay.
Terefore, we can infer from this analysis that our control
systems are operating efciently and performing as expected.
Other values were obtained from the “stepinfo” function.
Te main values are shown in Table 2.

As mentioned earlier, the goal of this experiment was to
evaluate the library’s ability to manage a PID control system
in a simulated environment. Specifcally, we modelled the
process of flling a water tank and examined the library’s
capability to facilitate real-time communication between the
virtual PLC and the simulated model. Figure 8 shows the
progression of control deviation over time during Experi-
ment 2. Te control deviation represents the diference
between the desired setpoint and the actual system output.
Tis fgure illustrates how the deviation changes as the PID
controller, implemented through our library, adjusts the

6 Journal of Engineering

 3962, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2024/2822711 by C

ochrane Slovakia, W
iley O

nline L
ibrary on [07/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



system to achieve the desired setpoint. Te data show
a similar progression of systems with maximal control de-
viation value 1.2184, as could be seen in Figure 8. In the
second experiment, we made some important discoveries.
Te PLC, working with the PI controller, was great at
managing the control model. Tis showed that we could

successfully combine the PLC with the Simulink model. Te
communication between the PLC and Simulink was trust-
worthy, making sure that all input and output data were sent
and received correctly. Te experiment also highlighted the
PLC’s ability to deal with complex tasks, such as adjusting
a PI controller for the tank flling process. In simple terms,
the second experiment confrmed that using a PLC with
Simulink to simulate and control processes like this one is
a practical and reliable approach. Te diferences between
the process controlled by the Simulink PI block and the PLC
PI might not only come from the parameters used in each
controller. Another factor that might afect the diferences is
the communication time between the Simulink and the PLC
simulator. In the experiment, there is a certain amount of
time needed for Simulink and the PLC simulator to ex-
change information. Tis time can add to the delay in the
response of the system. If this communication delay is
signifcant, it can infuence the control behavior, resulting in
diferent outcomes between the Simulink PI block and PLC
PI controllers. It is crucial to understand that these difer-
ences do not indicate a problem. Instead, they highlight how
diferent factors like parameter setup and communication
delay can infuence the behavior of the control system. Both
controllers performed their tasks efectively, proving the

PLCSR

Read

PLCName=PLC_NAME

Write

PLCName=PLC_NAME

OUTPUT INPUT PLCSW

Figure 3: Experiment 1: output signals were written into PLC immediately. PLCSR represents a model of PLCSR class; PLCSW represents
a model of PLCSW class.

Table 1: Results of experiment 1.

Exp. Nr. Transferred data Simulink solver step AVG duration total (s) AVG duration per cycle (ms)

1-1 1B
Fixed 2ms 7.563 1.512

VA 7.626 1.525
VD 7.662 1.532

1-2 4B
Fixed 2ms 17.148 3.430

VA 17.931 3.586
VD 31.307 6.261

1–3 1I
Fixed 2ms 11.451 2.290

VA 10.931 2.186
VD 11.598 2.320

1–4 4I
Fixed 2ms 47.136 9.427

VA 49.336 9.867
VD 46.768 9.354

1–5 1R
Fixed 2ms 23.372 4.674

VA 23.869 4.774
VD 24.565 4.913

1–6 4R
Fixed 2ms 97.893 19.579

VA 97.741 19.548
VD 72.746 14.549

1–7 2R + 6I + 10B
Fixed 2ms 271.072 54.214

VA 312.973 62.595
VD 330.588 66.118

Simulink solver step (VA� variable auto; VD� variable discrete) and transferred data (R� real; I� integer; B�Boolean).

1.8

1.6

1.4

1.2

1

0.8

Va
lu

e (
a.u

.)

0.6

0.4

0.2

0 9 18 27 36 45
Time (s)

54 63 72 81 90
0

Figure 4: Experiment 2: unit step response (water tank model).

Journal of Engineering 7

 3962, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2024/2822711 by C

ochrane Slovakia, W
iley O

nline L
ibrary on [07/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



usability of our library for complex tasks, even in the
presence of such variables. It is important to remember that
running the same simulation on diferent computers can
give slightly diferent results. Tis can happen because each
computer has a diferent number of resources and power to
run the simulation. Tings like how fast the computer’s
processor is, how much memory it has, and how efcient its
operating system is can all afect how fast and accurately the
simulation runs. So, you might see slight diferences in
results depending on the computer used for the simulation.

4.5.TeTirdExperiment:Multiple Instances. Te aim of this
experiment was to verify the feasibility of connecting several
PLCs at the same time. We operated three PLCs (PLCa, PLCb,
and PLCc) in the PLCSim Advanced environment. PLCa
produced numbers representing angles in degrees, with an
increase of 0.5 degrees every 50ms. Simulink received this value
and passed it to PLCb, which calculated the sine of the given
angle. Tis calculated value was returned to Simulink and then
forwarded to PLCc, which regenerated the original value. To
maintain synchronization, we enabled simulation pacing and
set it to one. Figure 9 visualizes the Simulinkmodel used in this
experiment. In relation to this experiment, the data from the
complex interactions between three virtual controllers—PLCa,

10 +

+ Pl (z) 1 1

1 1

Water tank1

Pl

Pl (PLCSim adv)

Desired water level Action

Water tank

PLC–

–

Figure 5: Experiment 2: the setup for a two-tank water system. Te upper tank flling process is regulated by a PLC with a PI controller,
while the lower tank is managed by a PI regulator within Simulink.

0 0.5 1 1.5 2 2.5
Time (s)

3 3.5 4 4.5 5

Va
lu

e (
a.u

.)

14

12

10

8

6

4

2

0

Figure 6: Experiment 2: results (red line: Simulink regulation; blue
line: PLC regulation).

-500 -400 -300 -200 -100 0
Lag (u.m.)

100 200 300 400 500

1
0.9
0.8
0.7
0.6
0.5
0.4

Cr
os

s-
C

or
re

lat
io

n 
(u

.m
.)

0.3
0.2
0.1

0

Figure 7: Experiment 2: cross-correlation of PLC and Simulink PI
regulation results.

Table 2: Results of experiment 2.

PLC Simulink
Rise time 42.0453 35.3445
Overshoot 20.2420 21.7524
Peak 12.0263 12.1797

0 0.5 1 1.5 2 2.5
Time (s)

3 3.5 4 4.5 5

Va
lu

e (
a.u

.)

1.4

1.2

1

0.6

0.4

0.8

0.2

0

-0.4

-0.2

-0.6

Figure 8: Experiment 2: control deviation progression.

8 Journal of Engineering

 3962, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2024/2822711 by C

ochrane Slovakia, W
iley O

nline L
ibrary on [07/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



PLCb, and PLCc—were obtained. Tese controllers were
emulated and coordinated using our custom-built Simulink
library. We used diferent types of PLC: S7-1518-4 PN/DP was
chosen for PLCa, S7-1511-1 PN was chosen for PLCb, and S7-
1513-1 PNwas chosen for PLCc.Te types of PLC selected here
demonstrate the library’s ability to work independently of the
PLC type, as outlined in chapter III.A. PLCa generates a series
of numbers, PLCb calculates the sine of these angles, and PLCc
reproduces the original values in degrees. Te changes in these
numbers are recorded efectively and in real time, showing the
successful communication enabled by the Simulink library.

From these observations, we can confdently afrm that
the Simulink library meets our expectations and demon-
strates robust capabilities in managing simultaneous oper-
ations of multiple virtual controllers. Tis not only
underscores its potential in coordinating complex, multi-
controller systems but also paves the way for further ex-
ploration into real-time data exchange and control in larger
industrial setups. Tis experiment has confrmed the
library’s profciency in handling simultaneous real-time
communications among multiple virtual controllers.

5. Experiment Results

Findings from our research demonstrate the efectiveness
and applicability of the library in various scenarios. One of
the results is that small datasets appear to be more efectively
processed. As shown in Table 3, a comprehensive summary
of the results from each individual experiment is provided.
In summary, the results prove the library’s usability for each
of the experiments.

6. Conclusions and Discussion

Te comprehensive solution was built within the MATLAB
environment, utilizing the Siemens Simulation Runtime API
to bridge the gap between our model and the PLCSim
Advanced virtual controllers. Tis integration facilitates the
virtual commissioning of the newly developed industrial
systems or simulations of multiple concurrent models,
presenting a versatile tool for a diverse range of applications.
Notably, these applications can span from the simulation of
advanced material technologies, such as ion beam acceler-
ator systems, to more traditional industrial systems.
Moreover, the developed solution exhibits a compatibility
range that includes even older control systems that remain
operational in industrial factories globally. Te custom-
developed library in MATLAB, consisting of PLCSimAdv,
PLCSR, and PLCSW classes, has shown signifcant advan-
tages over the traditional s-function approach. By elimi-
nating the need for regeneration of s-functions after control
program modifcation, the proposed solution provides
a seamless and efcient real-time operation. Additionally,
three distinct experiments were conducted to validate the
efectiveness and reliability of this solution. Tese tests
verifed real-time communication, the simultaneous use of
multiple controllers, and the fexible confguration of dif-
ferent control strategies in a simulation environment. Te
library facilitates interconnection between the Simulink
environment and PLCSim Advanced using the Simatic
runtime API. Tis setup enables operation on a single
machine when both applications are running on the same
node. Additionally, it supports remote communication,
allowing Simulink to run on one node and the runtime
manager on another. Tis fexibility is made possible by the
architecture of our library, which also permits communi-
cation among multiple runtime managers operating on
various nodes simultaneously.

Our future goal is to expand the applicability of this so-
lution and to conduct more thorough accuracy and perfor-
mance tests. One area of focus could be the utilization of this
tool in simulations related to ion beam accelerators (IBAs).Tis
might facilitate the development of an efcient algorithm that
can continually readjust parameters during the implantation
process, minimizing system downtime. Another potential area,
which has already been mentioned in this article, is the ex-
perimental measurement system based on PLC [15]. We also
expect that our solution will play an important role in future
research, especially in process automation and control systems.
By ofering capabilities for real-time and multicontroller
simulations, this solution opens the door to awide range of new
research avenues. Te whole source code of the library, sim-
ulation fles, TIA Portal V18 project, and results of experiments
are available online at [16].

Data Availability

Te data that support the fndings of this study are openly
available in GitLab at https://gitlab.websupport.sk/
dusanhorvath/plcsimadv-simulink-library, reference num-
ber [16].

AngleRad

PLCName=PLCa

SinAngle PLCSW

AngleDeg

PLCName=PLCb

PLCName=PLCb
Original value

PLCName=PLCc

PLCName=PLCc

SinAngle

PLCSWAngleRad

PLCSR 

PLCSR 

PLCSR 

Figure 9: Experiment 3: simulation model in Simulink. Te angle
value from PLCa is read and sent to PLCb, where the sine of the
angle is computed. Tis sine value is then transferred to PLCc,
where it is decoded back into an angle.

Table 3: Results of experiments.

Parameter Experiment 1 Experiment 2 Experiment 3
a Valid Valid Valid
b N/A Valid N/A
c N/A N/A Valid
d Valid Valid Valid
e N/A N/A Valid
f Valid Valid Valid
Parameters: as defned in chapter IV.A. Results: N/A� not available (ex-
periment did not include test of this parameter). Valid� expectation
confrmed.

Journal of Engineering 9

 3962, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2024/2822711 by C

ochrane Slovakia, W
iley O

nline L
ibrary on [07/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://gitlab.websupport.sk/dusanhorvath/plcsimadv-simulink-library
https://gitlab.websupport.sk/dusanhorvath/plcsimadv-simulink-library


Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Wewould like to extend our sincere gratitude to Assoc. Prof.
Dr. Martin Juhás from the Institute of Applied Informatics,
Automation, and Mechatronics at the Faculty of Materials
Science and Technology in Trnava, Slovak University of
Technology in Bratislava, for his invaluable assistance and
expert advice. Tis research was funded by the European
Regional Development Fund, Operational Program Re-
search and Innovation, project “Scientifc and Research
Centre of Excellence SlovakION for Material and In-
terdisciplinary Research,” no. ITMS2014+: 313011W085 and
by the Ministry of Transport and Construction of the Slovak
Republic, Operational program Integrated Infrastructure,
project “Research and development into potential applica-
tion of autonomous aircraft in the fght against the pandemic
caused by COVID-19,” no: 313010ATR9. M. Klaučo this
research is funded by the European Union’s Horizon Europe
under grant no. 101079342 (Fostering Opportunities to-
wards Slovak Excellence in Advanced Control for Smart
Industries). Gratefully acknowledge the contribution of the
Scientifc Grant Agency of the Slovak Republic under the
grants 1/0239/24, the Slovak Research and Development
Agency under the projects APVV-21-0019. Tis article was
written thanks to the generous support under the Opera-
tional Program Integrated Infrastructure for the project:
313021BXZ1 - Support of research activities of excellent STU
laboratories in Bratislava, co-fnanced by the European
Regional Development Fund.

References

[1] K. M. Kam, P. Saha, M. O. Tadé, and G. P. Rangaiah, “Models
of an industrial evaporator system for education and research
in process control,” Developments in Chemical Engineering
and Mineral Processing, vol. 10, no. 1-2, pp. 105–127, 2002.

[2] S. Pati, O. P. Verma, R. K. Arya, and A. K. Tiwari, “Transient
modeling and simulation of a multiple-stage evaporator in the
paper industry,” Chemical Engineering and Technology,
vol. 45, no. 3, pp. 456–466, 2022.

[3] S. Schütz, R. Schmidt, C. Henke, and A. Trächtler, “Virtual
commissioning of the trajectory tracking control of a sensor-
guided, kinematically redundant robotic welding system on
a PLC,” in 2022 IEEE International Systems Conference
(SysCon), Montreal, Canada, April 2022.

[4] P. Ahrweiler and S. Wörmann, “Computer simulations in
science and technology studies,” in Computer Simulations in
Science and Technology Studies, P. Ahrweiler and N. Gilbert,
Eds., pp. 33–52, Springer, Berlin, Heidelberg, 1998.

[5] I. Fagarasan, S. Iliescu, and I. Stamatescu, “Process Simulator
using PLC technology,” Scientifc Bulletin-University Poli-
tehnica of Bucharest, vol. 72, pp. 17–26, 2010.

[6] E. Winsberg, “Computer simulations in science,” in Te
Stanford Encyclopedia of Philosophy, Winter 2019, E. N. Zalta,
Ed., Metaphysics Research Lab, Stanford University, Stanford,
CA, USA, 2019, https://plato.stanford.edu/archives/win2019/
entries/simulations-science/.

[7] C. Bock, R. Barbau, I. Matei, and M. Dadfarnia, “An extension
of the systems modeling language for physical interaction and
signal fow simulation,” Systems Engineering, vol. 20, no. 5,
pp. 395–431, 2017.

[8] J. Cigánek and F. Žemla, “Design of digital twin for PLC
system,” in Proceedings of the 2022 Cybernetics and In-
formatics (K&I), Visegrád, Hungary, September 2022.

[9] T. Lechler, E. Fischer, M. Metzner, A. Mayr, and J. Franke,
“Virtual Commissioning—scientifc review and exploratory
use cases in advanced production systems,” Procedia CIRP,
vol. 81, pp. 1125–1130, 2019.

[10] M. Schamp, L. V. D. Ginste, S. Hoedt, A. Claeys,
E.-H. Aghezzaf, and J. Cottyn, “Virtual commissioning of
industrial control systems—a 3D digital model approach,”
Procedia Manufacturing, vol. 39, pp. 66–73, 2019.

[11] M. Stremy, D. Horvath, D. Vana et al., “RBS channeling
MATLAB application for automated measurement control
and evaluation for 6MV tandetron accelerator,” Applied
Sciences, vol. 11, no. 9, p. 3817, 2021.

[12] J. Orlof, Handbook of Charged Particle Optics, CRC Press,
Boca Raton, FL, USA, 2017.

[13] B. Wolf,Handbook of Ion Sources, CRC Press, Boca Raton, FL,
USA, 1995.

[14] H. Wollnik, Gaussian Optics and Transfer Matrices, CRC
Press, Boca Raton, FL, USA, 2022.

[15] P. Fabo, S. Sedivy, M. Kuba, A. Buchholcerova, J. Dudak, and
G. Gaspar, “PLC based weather station for experimental
measurements,” in Proceedings of the 2020 19th International
Conference on Mechatronics—Mechatronika (ME), Prague,
Czech Republic, December 2020.

[16] D. Horvath, “PLCSimAdv simulink library GitLab,” 2023,
https://gitlab.websupport.sk/dusanhorvath/plcsimadv-simulink-
library.

10 Journal of Engineering

 3962, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2024/2822711 by C

ochrane Slovakia, W
iley O

nline L
ibrary on [07/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://plato.stanford.edu/archives/win2019/entries/simulations-science/
https://plato.stanford.edu/archives/win2019/entries/simulations-science/
https://gitlab.websupport.sk/dusanhorvath/plcsimadv-simulink-library
https://gitlab.websupport.sk/dusanhorvath/plcsimadv-simulink-library

	Virtual Commissioning with TIA Step7 and Simulink without S-Functions
	1. Introduction
	1.1. Motivation

	2. Materials and Methods
	2.1. PLCSimAdv
	2.2. PLCSR
	2.3. PLCSW

	3. Development
	4. Experiments
	4.1. Selection of Validation Parameters
	4.2. Preliminaries
	4.3. The First Experiment: Real-Time Communication
	4.4. The Second Experiment: PI Control of Tank-Filling Simulink Model
	4.5. The Third Experiment: Multiple Instances

	5. Experiment Results
	6. Conclusions and Discussion
	Data Availability
	Conflicts of Interest
	Acknowledgments
	References




