

Deliverable 2.3

PRIVATEER Framework
Demonstrator – Rel. A

DRAFT – Pending approval by the Smart Networks and Services Joint Undertaking (SNS JU)

Contact Us
privateer-contact@spacemaillist.eu

PRIVATEER has received funding from the Smart Networks and
Services Joint Undertaking (SNS JU) under the European
Union’s Horizon Europe research and innovation programme
under Grant Agreement No. 101096110

PRIVATEER

Deliverable 2.3

PRIVATEER framework
demonstrator – Rel. A

Deliverable Type
Report/Demonstrator

Month and Date of Delivery
July 19th 2024

Work Package
2 Leader

NCSRD
Dissemination Level
Public Authors

Georgios Xylouris (NCSRD), Maria
Christopoulou (NCSRD) and Dimitris
Santorinaios (NCSRD)

Programme Contract Number Duration Starting Date
Horizon Europe 101096110 36 months January 2023

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 3 of 91

Contributors
Name Organization
Anna Angelogianni, Nikos Fotos, Thanassis Giannetsos,
Manos Kalotychos

UBITECH

Mattin Elorza, Antonio Pastor TID
Pedro Sousa, António Pinto, João Vilela INESC TEC
Ilias Papalabrou, Dimosthenis Masouros, Aimilios Lefteriotis ICCS
Elmira Saeedi, Jesús A. Alonso-López UCM
Dimitris Santorinaios, Maria Christopoulou NCSRD
Apostolos Garos, Georgios Gardikis SPH
Anastasios Bikos IQUADRAT
Fábio Silva, Ricardo Santos IPP
Lampros Argyriou, Antonia Karamatskou INFILI

Reviewers
Name Organization
Georgios Gardikis SPH
Cristian Petrollini, César Peñacoba RHEA/STARION

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 4 of 91

Copyright and Disclaimer
This document may not be copied, reproduced or modified in whole or in part for any
purpose without written permission from the Editor and all Contributors. In addition
to such written permission to copy, reproduce or modify this document in whole or
part, an acknowledgement of the authors of the document and all applicable portions
of the copyright notice must be clearly referenced.

The information in this document is provided “as is”, and no guarantee or warranty is
given that the information is fit for any particular purpose. The reader uses the
information at his/her sole risk and liability. Views and opinions expressed are
however those of the author(s) only and do not necessarily reflect those of the
European Union or SNS JU. Neither the European Union nor the granting authority can
be held responsible for them

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 5 of 91

Version History
Version Date Modifications
1.0 19/7/2024 First Version

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 6 of 91

List of Acronyms
Acronym Description
ABAC Attribute-Based Access Control
ABE Attribute-Based Encryption
ADMM Alternating Direction Method of Multipliers
API Application Programming Interface
ATL Actual Trust Level
B5G Beyond 5G
BIOS Basic Input/Output System
CI/CD Continuous Integration (CI) Continuous Delivery (CD)
CIV Configuration Integrity Verification
CPU Central Processing Unit
CTI Cyber Threat Intelligence
DB DataBase
DDoS Distributed Denial of Service
DDPG Deep Deterministic Policy Gradient
DDR Double Data Rate
DID Decentralized IDentifier
DNS Domain Name System
DLT Distributed Ledger Technology
DP Differential Privacy
DQN Deep Q-Networks
DRAM Dynamic Random-Access Memory
E2E End-to-end
eBPF extended Berkeley Packet Filter
FL Federated Learning
FPGA Field-Programmable Gate Array
gNB Next Generation Node B
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
HPA Horizontal Pod Autoscaler
IBNSC Intent-Based Networking Services Catalogue
ICMP Internet Control Message Protocol
IoC Indicator of Compromise
IMEISV International Mobile station Equipment Identity Software Version
IP Internet Protocol
LoT Level of Trust
LSTM Long Short-Term Memory
MISP Malware Information Sharing Platform
MiTM Man in The Middle
MNO Mobile Network Operator

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 7 of 91

MPC Multi-Party Computation
NWDAF Network Data Analytics Function
NAS Network Attached Storage
NFV Network-Function Virtualization
OCI Open Container Initiative
OPoT Ordered Proof of Transit
PCIe Peripheral Component Interconnect Express
PI Privacy Index
PoC Proof of Concept
PoT Proof of Transit
RAN Radio Access Network
RoT Root of Trust
SC Smart Contract
SCB Security Context Broker
SDN Software Defined Network
SD-WAN Software-Defined Wide-Area Network
SGX Software Guard Extensions
SLA Service Level Agreement
SGC Service Graph Chain
SP Service Provider
SOAR Security Orchestration Automation & Response
SSI Self-Sovereign Identities
TEE Trusted Execution Environment
TLS Transport Layer Security
UE User Equipment
UUID Universally Unique IDentifier
VNF Virtual Network Function
vRAN Virtualized Radio-Access Networks (vRAN)
VP Verifiable Presentation
XAI Explainable Artificial Intelligence

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 8 of 91

Executive Summary
The PRIVATEER project aims to cover the challenges of securing B5G networks through
a framework that integrates advanced security mechanisms and privacy enablers. The
project's mission is to develop a comprehensive framework that ensures trust,
security, and privacy across the infrastructure. This document describes the first
integrated release of the PRIVATEER framework. The release is based on the work
carried out by the consortium to implement the architecture for the PRIVATEER as
defined D2.2 [1]. Furthermore, it outlines the functionalities already implemented to
achieve the initial objectives of the project and the specific use case requirements. To
that end, the project has designed three workflows that verify the integration
between various components, ensuring that they interact efficiently and effectively to
form a cohesive system. Each workflow highlights specific functionalities of the
components deployed as part of this release and demonstrates the integration
between these components. These workflows, which directly correspond to -and are
part of- the use cases/storylines described in Deliverable D2.2, are as follows:

Workflow 1: Enhanced Security for Virtualized Infrastructures

This workflow focuses on protecting data in use through Trusted Execution
Environments (TEEs). It employs Security Probes and μProbes to collect and verify
attestation evidence, ensuring the integrity of containerized applications and the
underlying infrastructure. The process involves secure deployment, continuous
monitoring, and real-time trust assessments, facilitated by the SCHEMA Privacy-aware
Orchestrator and PRIVATEER Blockchain.

Workflow 2: DDoS Detection and CTI Sharing

This workflow addresses DDoS attacks using a federated learning (FL) model for
anomaly detection. The security analytics module installed on edge nodes utilizes the
NWDAF to monitor network traffic and detect attacks. Detected anomalies trigger
alerts and engage the CTI-sharing proxy API for threat intelligence sharing. This
approach ensures coordinated responses to DDoS attacks and enhances overall
network security.

Workflow 3: Real-Time Mitigation of Man-in-the-Middle Attacks

In this workflow, for real-time mitigation of Man-in-the-Middle (MiTM) attacks, the
Proof of Transit (PoT) method is employed. This involves deploying a Software Defined
Network (SDN) and configuring nodes to verify packet paths. The workflow ensures
that any packet not following the trusted nodes is discarded, thereby preventing
unauthorized data interception and modification.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 9 of 91

Table of Contents
1 Introduction .. 11

1.1 Purpose of the document .. 11

1.2 Relation to other project work .. 11

1.3 Structure of the document .. 11

2 PRIVATEER Architecture ... 13

3 Integration Methodology ... 16

3.1 GitHub .. 16

3.2 Harbor .. 17

3.3 Slack ... 17

4 Integration Environment .. 18

5 Workflow 1: Enhanced Security for Virtualized Infrastructures & Level of Trust
Assessment .. 20

5.1 Attack models .. 20

5.2 Workflow 1 implementation .. 20

5.2.1 Short Description ... 23

5.2.2 Detailed Description .. 24

5.2.3 APIs/interfaces ... 29

5.2.4 Preliminary Results .. 44

5.3 FPGA attestation .. 47

5.3.1 APIs – Interfaces ... 50

5.3.2 Preliminary Results .. 51

6 Workflow 2: DDoS detection by Federated NWDAF & CTI Sharing and SLA
Management .. 57

6.1 Attack models .. 57

6.2 Workflow 2 implementation .. 60

6.2.1 Short Description ... 60

6.2.2 Detailed Description .. 61

6.2.3 APIs/Interfaces ... 63

6.2.4 Preliminary Results .. 67

6.2.5 Workflow 2 Demonstrators ... 67

7 Workflow 3: Real-Time Mitigation of Man in the Middle Attacks 76

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 10 of 91

7.1 Attack models .. 76

7.2 Workflow 3 implementation .. 76

7.2.1 Short Description ... 76

7.2.2 Workflow .. 76

7.2.3 APIs/Interfaces ... 79

7.2.4 Preliminary Results .. 79

8 Conclusion & next steps ... 83

References ... 84

Annex A: Mapping of Workflows to PRIVATEER Use Cases 85

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 11 of 91

1 Introduction

1.1 Purpose of the document
This document outlines the details of the PRIVATEER framework alpha release, a
collaborative effort under Work Package 2, integrating the components developed
under technical work packages 3 to 5. The primary aim is to explain the solutions
included in this initial release, the interaction between components, the
functionalities provided, and the future plans for the project. This gives the reader a
comprehensive understanding of the alpha release and its capabilities. The document
details the architectural changes and current functionalities, illustrated through three
workflows. Additionally, it describes the development process and the project's
approach to continuous integration and delivery.

1.2 Relation to other project work
This deliverable outlines the results of the architecture definition and updates to the
design previously presented in "D2.2 Use Cases, Requirements, and Design Report"
[1]. It represents the first of two releases planned for the project, preceding the
second release (D2.4) scheduled for month 36 of the project.

As the PRIVATEER first release incorporates results from all technical work packages,
this document is closely connected to deliverables D3.1 [2], D4.1 [3], and D5.1 [4],
which provide detailed descriptions of the PRIVATEER components. To avoid
redundancy, this document offers a high-level overview, and readers are encouraged
to refer to the mentioned documents for detailed information.

1.3 Structure of the document
The document is structured in 8 chapters:

Chapter 1. Introduction: (this section) presents the objectives of the document and
introduces its content, structure, and relationships with other project’s documents.

Chapter 2. PRIVATEER Architecture: describes the updated architecture, including key
components like the Blockchain Layer, the new Intermediary Layer, and the Privacy
Aware Orchestration layer.

Chapter 3. Integration Methodology: explains the tools and resources used to support
development and integration.

Chapter 4. Integration Environment: provides a description of the integration
environment.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 12 of 91

Chapters 5-7 (Workflow 1-3): describe the attack models mitigated by each workflow,
the workflow implementation, the components and interfaces involved and
preliminary evaluation results.

Chapter 8. Conclusion & Next Steps provides a summary of the current release's
achievements and an outline of the project's future plans and next steps.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 13 of 91

2 PRIVATEER Architecture
The PRIVATEER framework high-level architecture has been updated, as depicted in
Figure 1, based on the design decisions and findings stemming from the progressing
work packages (WP3/4/5). The key updates and the reasons behind them are as
follows:

Blockchain Layer:

The blockchain layer introduced has been divided into two components:

Distributed Ledger Technology (DLT) Off-Chain: This component stores
trustworthiness evidence, allowing for efficient handling and verification of trust-
related data without overloading the main blockchain. The decision to store
information off-chain is influenced by factors such as the payload size. For instance,
attestation evidence might be optimally stored off-chain, while maintaining integrity
and authenticity checks on-chain to prevent tampering with the off-chain data.

DLT On-Chain: This component manages identity-related information and the
quantification of the Level of Trust (LoT). By separating identity management and trust
quantification, we ensure better organization and security of sensitive information.

A new intermediary layer has been introduced between the DLT components and the
other parts of the framework. This layer is responsible for forwarding and translating
information between the DLT and the rest of the system. It consists of two key
components, i) the Security Oracle, and ii) the Security Context Broker.

The i) Security Context Broker (SCB) facilitates the creation of smart contracts for the
Secure Oracle. It provides the list of attributes, Privacy Service Level Agreement (SLA),
service graph chain topology, and Trust Policies received from the Orchestrator and
LoT Assessment component. It additionally facilitates the task of retrieving
information from the ledger for the LoT Assessment component and the Orchestrator,
meaning that the LoT and the Orchestrator may access information stored on the DLT
through the Security Context Broker.

The ii) Secure Oracle operates with the support of a Trusted Execution Environment
(TEE); thus, acts as an integral part of the PRIVATEER Trusted Computing Base (TCB).
As such, it is inherently considered a trusted component within the system. It
performs tasks such as receiving and validating attestation reports from Security
Probes and generating smart contracts with comprehensive information for trust
assessment processes. These contracts include Privacy Service Level Agreements
(SLAs), information regarding the service graph, trust policies, trust parameters,
access control attributes, and pointers to off-chain storage for (failed) attestation
evidence. Smart contracts are signed with the Secure Oracle's key, allowing any entity
accessing the Ledger to verify their authenticity. Whenever a new trust evaluation

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 14 of 91

occurs, the outcome of this assessment can be incorporated into the smart contract.
This integration occurs through communication between the LoT Assessment
component and the Secure Oracle, allowing for the seamless inclusion of the
evaluation result within the smart contract.

Trust Exposure Layer:

The Trust Exposure Layer is a mechanism that protects privacy by limiting the
information provided to external entities like Mobile Network Operators (MNOs),
users, or Service Providers. This layer ensures that the information provided is limited
to the trust state of a service, including trust property and level of trust. It removes
details (i.e., evidence) that may leak information about the underlying infrastructure
or service graph, protecting privacy without compromising external entities' ability to
assess the trustworthiness of microservices. This harmonisation mechanism ensures
that only relevant and necessary information is shared, effectively mitigating risks.

Privacy Aware Orchestration:

The Privacy Aware Orchestration layer has been extended to include the LoT
Controller, which collects information about the end-to-end (E2E) service and
estimates its trustworthiness. The Security Orchestration, Automation & Response
(SOAR) component is added, which, combined with the Decision Engine and utilizing
metrics from the LoT and the Privacy Index (PI), makes informed decisions about the
service lifecycle. Another highlighted component is the intent-based networking
manager, which is composed of the Intent-Based Networking Services Catalogue
(IBNSC), the SLA Manager, and the Smart Contracts templates. The IBNSC will be
populated with a set of services that utilize available network resources efficiently.
The SLA Manager tracks each established service and its specifications, ensuring that
service level agreements are maintained. The smart contracts streamline deployment
by providing templates for Intent-Based Services, ensuring consistency and efficiency
in contract creation and execution.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 15 of 91

Figure 1 - Updated PRIVATEER High-level architecture

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 16 of 91

3 Integration Methodology
To support the development and integration processes, PRIVATEER has established an
infrastructure composed of various resources and tools, which enables the
collaborative effort of the consortium partners. Figure 2 below illustrates the
components of this infrastructure as of June 2024. The plan is to continually assess
and incorporate additional tools and integrations to meet the evolving requirements
for integrating and testing future releases.

Figure 2 - Integration Environment

Once requested, users needing to access the infrastructure receive a username and
password that can be used to access the infrastructure. OpenVPN has been used to
establish secure and encrypted connections for remote access. User accounts have
been configured to ensure secure remote administration, monitoring, and access to
the environment. The following subsection briefly presents the tools, explaining why
and how they are used in the project.

3.1 GitHub
GitHub is the main code repository platform for the project, accessible at
https://github.com/privateer-project. It provides several tools used in the project:

Source code repositories

GitHub stores the source code and technical documentation for the software
components developed in the PRIVATEER project.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 17 of 91

Collaborative development

GitHub includes several features to help developers work together:

• WEB IDE: Allows file changes directly from the GitHub interface.
• Branches and Merge Requests: Lets collaborators suggest changes to the code

in a controlled manner.
• Roles: Assigns different permissions to different people.
• Issue Trackers and To-Do Lists: Helps manage, assign, and discuss technical

tasks.
• Tags and Releases: Creates references to specific versions of the code.

Technical Documentation

GitHub is used to store the API definitions (usually in OpenAPI format) and technical
documentation for each component. This helps other project developers who need to
use or integrate with the component. Keeping all this information in one place and in
a standard format makes it easier to find and reduces communication time. Currently,
there are no strict requirements for the format and type of documentation needed for
each component, but clearer rules will be established for future PRIVATEER releases.

3.2 Harbor
Harbor registry is planned to be used to manage Docker images. Harbor is an open-
source Open Container Initiative (OCI) registry which can be used privately, ensuring
secure storage and access to our container images. It includes image signing and
vulnerability scanning, enhancing our security posture. Additionally, Harbor can be
integrated with GitHub CI/CD pipelines, simplifying the development and deployment
processes, and ensuring efficient version control and reliable distribution of
containerized applications across the project.

3.3 Slack
Slack is a collaboration tool that helps the communication between development
teams. It makes discussions quicker and accessible to all developers. It has been
chosen for its ease of use and integration capabilities. Slack supports one-to-one
conversations, group chats, and channels for unlimited members. Channels can be
created per topic to keep related discussions organized. Predefined channels have
been created for each work package to facilitate work package-wide conversations.
Additional channels can be created by any member to discuss specific topics.
Moreover, plugins can be added to integrate Slack with other automation tools, such
as notifications for GitHub events, deployment events, email notifications and so
forth.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 18 of 91

4 Integration Environment
The infrastructure provided by NCSRD, shown in Figure 3, is designed to support
diverse computing and networking requirements, such as virtualization, container
orchestration, and secure remote access. It features a Proxmox1 cluster of five
dedicated physical servers, utilizing the Proxmox Virtual Environment (Proxmox VE) to
manage virtual machines and containers. This cluster supports the PRIVATEER
components that are combined (see Figure 4) to provide the first release. These
servers are connected via a Gigabit Ethernet network switch. Additionally, a
centralized 20TB network-attached storage (NAS) solution is integrated into the
cluster. This storage is crucial for data sharing and redundancy, ensuring that virtual
machines and containers can access and store data across the network. Furthermore,
the infrastructure includes a 5G system with two Next Generation Node B (gNBs)
positioned at the edge. Both gNBs are connected to the core network and support
seamless handover for User Equipment (UE) devices.

1 https://www.proxmox.com/en/

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 19 of 91

Figure 4 - PRIVATEER components deployed on the integration environment

Figure 3 - Testbed diagram

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 20 of 91

5 Workflow 1: Enhanced Security for
Virtualized Infrastructures & Level of
Trust Assessment

5.1 Attack models
Due to the complexity of the B5G infrastructure, several attacks might be feasible.
When it comes to attacks against the virtualised infrastructure, the following
categories are identified in [5]:

• Software attacks: Attacks targeting the software and firmware on the host
system, including the operating system, hypervisor, BIOS, various software
stacks, and any associated workloads.

• Protocol attacks: Attacks on protocols related to attestation and transporting
workloads and data. These could compromise the integrity of a Trusted
Execution Environment (TEE) instance, potentially leading to a breach of the
workload or data.

• Cryptographic attacks: Vulnerabilities in cryptographic ciphers and algorithms
can emerge over time due to advances in mathematics, computing power, or
new computing paradigms like quantum computing. Maintaining crypto agility
is crucial to replace outdated cryptographic methods with more secure
alternatives. This flexibility is more feasible in software and firmware but
generally impractical in hardware.

• Basic physical attacks: While extensive, intrusive attacks on CPUs are typically
out-of-scope, other physical attacks such as cold DRAM extraction, bus and
cache monitoring, or connecting attack devices to ports (e.g., PCIe, Firewire,
USB-C) are considered within scope.

• Basic upstream supply-chain attacks: While attacks in the supply chain on
Trusted Execution Environment (TEE) components are mostly out-of-scope,
significant modifications such as adding debugging ports are considered within
scope.

5.2 Workflow 1 implementation
One of the scopes of PRIVATEER is to protect not only data in rest and data in transit
but also data in use, which is the latently introduced challenge. To perform this task

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 21 of 91

TEEs are employed and more specifically the Intel Software Guard Extensions (Intel
SGX). SGX is a set of instructions designed to enhance the security of application code
and data, by creating "SGX Enclaves" [6] Within these Enclaves sensitive code and data
can be executed within an isolated, CPU-protected region. Through this application-
level isolation, SGX manages to separate the enclave from the OS and system
components (i.e., including hypervisor, BIOS, firmware and drivers). Hence, the
aforementioned components, which are located outside the enclave, cannot access or
modify the enclave and its data. Due to the isolation, the enclave cannot be accessed
through traditional function calls, while data within enclaves can only be accessed by
code that is part of the same enclave. It shall be noted that the enclave is isolated and
protected through logically separating the memory of the trusted world. Such Root of
Trust (RoT) is needed as an anchor, to provide the verifiable (trustworthiness)
evidence monitoring based on which trust assessment is conducted. The PRIVATEER
attestation framework is elaborated in D5.1.

Workflow #1 aims to demonstrate the use of the runtime attestation appraisals
acquired leveraging the installed Security Probes (i.e., at the infrastructure) and
μProbes (i.e., within the containerized services) by the LoT Assessment component
and the SCHEMA Privacy-aware Orchestrator for their decision-making.

The following table (i.e., Table 1) describes the functionalities implemented within the
Release A of the PRIVATEER platform. Additionally, the functionalities that will be
demonstrated in the Release B of the platform are described.

Table 1 - Workflow #1 components and functionalities

PRIVATEER
Component

Implemented Functionalities Functionalities for Release B

μProbe • Attestation Agents for
producing verifiable evidence
on static properties of the
containerised application
integrity (i.e., verifiable
launch of the container)

• Key Restriction Usage Policies

• Integration of tracing
capabilities (i.e., eBPF) for
expanding the evidence from
static properties to runtime
properties, to monitor the
configuration integrity of the
containerised application

• Verifiable Key Restriction Usage
Policies

Security Probe • Attestation Agents for
producing verifiable evidence
on runtime properties of the
infrastructure configuration
integrity

• Verify μProbe signature

• Extended tracing capabilities
(i.e., eBPF) for control flow
integrity

• Attestation Agents for
producing verifiable evidence on
static properties of the
container integrity (i.e.,
verifiable launch of the
container)

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 22 of 91

LoT Assessment
Manager

• Design & implementation of
the first release of LoT
assessment algorithm

• Acquire and verify Attestation
evidence for its evaluation by
the LoT assessment
component (time driven)

• Acquire and verify Proof of
Transit evidence for its
evaluation by the LoT
assessment component
(event driven)

• Generation of ‘New LoT value’
messages to be consumed by
the Privacy-aware
Orchestrator that will
consider the new values in its
orchestration decisions

• Acquire and verify SLA
accomplishment evidence for its
evaluation by the LoT
assessment component (time
driven)

• Acquire and verify CTI evidence
for its evaluation by the LoT
assessment component (event
driven)

• Acquire and verify Reputation
evidence for its evaluation by
the LoT assessment component
(time driven)

• Acquire and verify Privacy Index
evidence for its evaluation by
the LoT assessment component
(time driven)

SCHEMA Privacy-
aware Orchestrator

• Deployment of a simple
Proof-of-Concept (PoC)
evaluation-simulation
scenario consisting of
distinctive networking nodes
(for the preliminary Privacy
aware containerised
application migration).

• Digestion of the ‘New LoT
value’ messages inside the
core decision-engine of the
Privacy aware Orchestrator.

• Acquired technological
possibility to export Network
Service Graphs (post
decision-making) from the
SCHEMA Privacy-aware
Orchestrator.

• Implementation progress in
the Game-theoretic
procedures to encompass the
‘New LoT value’ messages.

• Design and implement faster
converging and more
performance-efficient GT
algorithms and Decentralized-AI
policies (coded stochastic
ADMM with sublinear
convergence, Deep Q-Networks
(DQN), clipped double-Q
DDPG).

• Adapt preliminary XAI features
from the SCHEMA decision
output (Machine Reasoning).

• Solid evaluation of the
VNF/container migration
performance in terms of service
latency, and Privacy leakage.

Security Context
Broker (SCB)

• Acquire and verify attestation
evidence Security Probe(s)

• Acquire integrity appraisals
from μProbe(s), through the
Security Probe(s)

• Acquire Trust Policies from
LoT Assessment Manager

• The acquiring of the attestation
appraisals as well as the
verification of signatures will be
performed as part of the Secure
Oracle (instead of the SCB)

• Identity verification based on
Privateer Self Sovereign
Identities (SSI) technology and

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 23 of 91

• Acquire infrastructure
information (i.e., container
IDs and relationships/graph)
for the deployed service from
the SCHEMA Privacy-aware
Orchestrator

the use of Decentralized
Identifiers (DIDs).

Privateer DLT (i.e.,
BESU)

• Deployment and
maintenance of all smart
contracts for managing
service trust requirements

• Attributes will be added into the
smart contracts to enable
Attribute-Based Access Control
(ABAC), further leveraging the
Verifiable Presentations (VPs)

• Implementation of the Trust
Exposure Layer, providing
harmonisation of information
that led to the trust assessment

Secure Oracle N/A • Acquire Attestation evidence
verification enactment in the
trusted environment of Secure
Oracle (ported from SCB)

• Acquire Integrity appraisals
from μProbe(s), Trust Policies
from LoT Assessment Manager
and

• Implementation of Attribute-
Based Encryption (ABE)
mechanisms to protect the
access to the off-chain

5.2.1 Short Description

Beyond providing advanced protection through technologies like Intel SGX, PRIVATEER
delivers the necessary trustworthiness appraisals for assessing trust levels during
runtime. This is achieved by extracting attestation evidence from the TEE-enabled
infrastructure. Attestation is the verification process that ensures the integrity and
authenticity of the code running within an enclave. It validates the integrity of the
enclave and confirms that it has not been altered and is operating the intended
software. The extracted attestation evidence is made available to the Level of Trust
(LoT) Assessment Manager and the SCHEMA Privacy-aware Orchestrator via the
PRIVATEER Blockchain infrastructure, as detailed in D5.1 [4]. Blockchain technology
offers a decentralized and tamper-proof method for storing and sharing evidence,
guaranteeing its integrity and accessibility. PRIVATEER platform employs continuous
monitoring and assessment of the enclave's configuration state. Hence, in case of
unauthorized tampering, the attestation will fail, and the LoT Assessment Manager
will promptly update its evaluation to reflect this failure, while the SCHEMA Privacy-

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 24 of 91

aware Orchestrator will also leverage this information for its decision-making (i.e.,
migrate a service or not).

Furthermore, it shall be noted that evidence is anticipated to be extracted from both
the containerized applications (i.e., enclaves) and the infrastructure including the
containers. In the initial phase of the PRIVATEER platform, the focus is on acquiring
and assessing the attestation evidence stemming from the containerized applications.
This is translated into a Level of Assurance (LoA) 2, as defined by ETSI [7] .

As it pertains to the PRIVATEER designs to support the attestation of the configuration
of the virtualised infrastructure, to initiate the collection of the evidence from the
containerized application, certain steps are required. To begin with, a Trust Policy
dedicated to the properties needed for the specific service (and its corresponding
service graph chain) is needed by the Orchestrator in order to initiate the process
within its virtualized infrastructure. This Trust Policy is made available to the
Orchestrator through the Blockchain. Upon accessing it, the Orchestrator may send a
Request for Evidence to the Security Probe installed at the server. The Security Probe
will forward this request to the μProbe installed at a container-level to initiate the
collection of the evidence for the containerized application. The μProbe will respond
to the Security Probe with the collected evidence, and the latter will verify this
information and forward it to the Blockchain. The following section will delve into the
specific interactions and steps to enable this information exchange.

5.2.2 Detailed Description

5.2.2.1 Deployment of the infrastructure and containerised applications including
Security Probes and μProbes

Prior to the runtime collection of configuration integrity-related information, the steps
referring to the deployment of the infrastructure should be described. This interaction
reflects the secure deployment and launching of the containerised service (to-be-
monitored; thus, attested) on the designated infrastructure. This further includes the
setup of the Security Probes and μProbes, which enable the configuration integrity
verification.

The flow is initiated with a Service Provider (SP) requesting to deploy its service to a
Mobile Network Operator’s (MNO) infrastructure (see Figure 5). This request should
include the application image and clearly specify the service, security, and privacy
requirements from the SP’s point of view (step 1). The SCHEMA Privacy-aware
Orchestrator processes the request to construct the Interpretable Manifest (step 2).
This manifest translates, in essence, the SP’s requirements into the actual capabilities
of the infrastructure. This manifest file further includes the gramine-enabled images,
which are precomputed. This information is included in the Privacy Service Level
Agreement (SLA). The containerized application is launched securely once the SP and
MNO have both agreed to the terms outlined in the Privacy SLA.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 25 of 91

This secure launching process includes two steps:

1. Deployment of the Container on the Infrastructure Side (Step 3): This includes
the establishment of the virtualized infrastructure equipped with confidential
computing capabilities (i.e., enacting upon SGX-capable nodes) for hosting the
secure operation of the containerized applications as part of the deployed
service-graph-chain. Core to this chain-of-trust is the verifiable launch of the
necessary trust enablers (Security Probes) responsible for the monitoring and
secure reporting of the configuration and behavioral evident based on which
the trust assessment will be conducted - of both the infrastructure nodes as
well as the host (containerized) microservices.

2. Deployment of the Containerized Application (Step 4): This involves the
deployment of the containerized application, including the integration of
μProbes. These μProbes are essential for monitoring and ensuring the integrity
of the application/service.

As detailed in D5.1 [4], key restriction usage policies that enable the attestation of
containers in a privacy-preserving manner are defined during these steps, for both
Security Probes and μProbes, by the SCHEMA Privacy-aware Orchestrator. More
information on the JOIN phase for the Security Probes and μProbes is available in D5.1
[4].

Upon the successful deployment of both the containerized applications and the
infrastructure, a message signifying the verification of the enclave launch is sent from
the container to the infrastructure (step 5). Similarly, the infrastructure sends a
verification message back to the SCHEMA Privacy-aware Orchestrator (step 6).
Consequently, the SCHEMA Privacy-aware Orchestrator is now aware that both the
infrastructure and the containerized applications have been securely launched and
can notify the Security Context Broker to create a new smart contract for the newly
deployed service (step 7). Additionally, this notification from the SCHEMA Privacy-
aware Orchestrator (step 8) enables the LoT (Level of Trust) Assessment to construct
the Trust Policy for the newly deployed service (step 9). The Trust Policy is sent from
the LoT Assessment component to the Security Context Broker (step 10) and the latter
can construct and send to the Privateer DLT (i.e., BESU) the Smart Contract (SC), which
contains the Service Graph Chain (SGC) Trust Chain Data Structure (step 11).

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 26 of 91

Figure 5 – Deployment of the infrastructure and containerised applications flow

5.2.2.2 Runtime LoT Assessment based on Attestation results from Security Probes
and μProbes

After the infrastructure and the containerised services have been securely launched,
the runtime configuration integrity verification operation may be initiated (see Figure
6). This involves the continuous attestation of both the infrastructure and the
containerized applications by the Security Probes and μProbes respectively, to ensure
that no tampering has occurred. The flow is initiated by the SCHEMA Privacy-aware
Orchestrator, based on the Trust Policy constructed by the LoT Assessment
component. The Security Context Broker (SCB) sends a request to the Security Probe
to initiate the attestation flow (based on the predefined key restriction usage policies)
(step 1). Note that such a challenge can be sent periodically based on the Trust Policy
for the specific service, as defined by the LoT Assessment component.

Upon receiving this request, the Security Probe will perform the configuration
integrity verification (CIV) check for the infrastructure (step 2), while it will further
send and attestation initiation request to μProbes. The latter initiates the collection
of the static properties to verify the integrity of the containerized application (steps 3,
4). The response of the μProbe is returned to the Security Probe (step 5), which
verifies it (step 6). Afterwards, the Security Probe constructs a JSON structure, named

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 27 of 91

attestation report, which encapsulates the aforementioned information, including the
attestation appraisal of μProbe, along with the Security Probe’s evidence (step 7). This
structure is sent by the Security Probe to the Security Context Broker (step 8). The
latter, the Security Context Broker, is tasked with verifying the evidence of the Security
Probe (step 9). Please note that in Release B this verification will be performed by the
Secure Oracle.

After the successful verification of the received information, the Security Context
Broker (SCB), builds the Trustworthiness Evidence Object Data Structure (step 10) and
signs it, using its own key (step 11). The SCB further updates the smart contract, to
include the Trustworthiness Evidence Object Data Structure and makes it available to
other entities through the Privateer DLT (i.e., Hyperledger BESU2) (step 12). Other
entities, such as the LoT Assessment component or the SCHEMA Privacy-aware
Orchestrator may access this information through the Privateer DLT and leverage it
for their trust evaluation and decision making respectively.

To do so, the LoT Assessment component may query the SCB for trustworthiness
evidence, and more specifically attestation evidence in this case, based on the
Container IDs that comprise the specific service graph chain (step 13). This information
(i.e., Container IDs) is already known to the LoT assessment component from the
secure deployment of the infrastructure phase (see step 8 of Figure 5). The SCB, in its
turn will query the PRIVATEER DLT to locate this information (step 14) and respond
back to the LoT assessment component with the needed information, containing the
container appraisals and infrastructure evidence, stemming from the μProbe and
Security Probe respectively (step 15). The LoT assessment component leverages the
attestation report to perform its trust evaluation and consequently sends the Actual
Trust Level (ATL) data structure to the SCB (step 16). The latter may update the Smart
Contract on the DLT, adding the ATL related field to the SGC Trust Chain data structure
(step 18). In parallel, the LoT assessment component shares with the SCHEMA Privacy-
aware Orchestrator the trust estimation (i.e., ATL) (step 17), to facilitate its decision-
making process (i.e., migrate or not migrate container) (step 19).

Technically, though, the SCHEMA Privacy-aware Orchestrator shall be capable to
perform not only binary decision-making process (i.e., migrate or not migrate
container), but also deploy "horizontal scaling" and "vertical scaling", respectively.
Thus, the current implementation of SCHEMA is fully modular; its AI-agents are
modular and can be configured with additional functionality (e.g., container smart
HPA - Predictive Horizontal Pod Autoscaler (HPA)). The heart of SCHEMA decision-
making is its bidding mechanism. Smart negotiation tactics are being used between
the agents, such as voting or auction. Surplus lies underneath a fully distributed
system that avoids any kind of central point of failure. Finally, there is the capability

2 https://www.hyperledger.org/projects/besu

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 28 of 91

for automatic agent discovery on-demand, something that is quite useful for the meta-
information export of SCHEMA (i.e., the Security Context Broker (SCB)).

Figure 6 - Runtime LoT Assessment based on Attestation results from Security Probes and μProbes

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 29 of 91

5.2.3 APIs/interfaces

5.2.3.1 Step #1 API-ID: INT_SCB_DLT Storage and consumption of DLT Information.

Description: The Secure Context Broker (SCB) acts as a mediator for accessing the DLT,
providing the necessary interfaces for storing and consuming DLT information. More
specifically, the DLT is used to store and access trust-related information, including
trust policies, trustworthiness evidence(s) and the trust value(s). The SCB constructs
the smart contracts enabling the transactions within the DLT; thus, it can notify other
entities (i.e., LoT Assessment Manager) when new information (i.e., attestation
evidence) is received.

In Release B, certain functionalities of the SCB (i.e., acquiring attestation evidence
from Security Probes as well as acquiring integrity appraisals μProbes and Trust
Policies from LoT Assessment Manager) will be performed by the Secure Oracle (as
mentioned in Table 1).

Component: Secure Context Broker

Details: Prior to constructing the smart contracts for enabling the transactions on the
DLT, the network should be initiated. Figure 7 illustrates the initiation of the
Hyperledger BESU network, which is leveraged in PRIVATEER for storing information
related to the trust assessment, including the trustworthiness evidence.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 30 of 91

Figure 7 – Hyperledger BESU network Initiation

The Security Context Broker may support the functionalities of posting request or
getting request from the Hyperledger BESU. The following figure (i.e., Figure 8)
presents how the SCB sends (i.e., setTrustSource) and receives information (i.e.,
getTrustSource) to and from the Hyperledger BESU network. The SGC Smart Contract
structure, available on-chain and accessible through the Hyperledger BESU network is
reported in D5.1.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 31 of 91

Figure 8 - SCB's post request and get request to Hyperledger BESU

5.2.3.2 Step #2 API-ID: INT_ORC Service Deployment to the underlying infrastructure

Description: The Privacy-aware Orchestrator is the entity responsible for the decision-
making of a service deployment on a given infrastructure, considering the service and
security requirements as well as the agreed SLA. Besides networking SLAs, inside the
scope of PRIVATEER, we endorse the incorporation of Cybersecurity-related SSLAs,
that grant Security & Privacy enablers for the UCs (like LoT assessment). The manner
the SCHEMA (Privacy Aware Orchestrator) digests the messages is through a
Trustworthiness Evidence Object Data Structure that is published via the Kafka bus
and is consumed by the LoT service. As mentioned earlier, the attestation frequency
is being inferred into the SCHEMA via the Kafka bus channel broker.

Component: Privacy Aware Orchestrator

Details: Since the SCHEMA orchestrator works with internal confidence levels (bidding
mechanism), together with solving a multi-constraint game-theoretic optimization
problem (e.g., where to service migrate with Privacy best-effort), the demonstrated
workflow interacts in a few crucial steps with the rest I/O components.

The LoT publishes a message to the Kafka bus with the new LoT metric for such a
service and the Orchestrator consumes it, at first. Such confidence levels appear
critical not only for the Attestation engine itself, but also for the manner the (OpenAI
Gym) game that empowers the decision-engine of SCHEMA will converge and, of
course, which decision will take (migrate or not the particular service). The Attestation
service provides a Trustworthiness Evidence value that, once processed by the LoT
assessment service, results in a lower LoT, actually a LoT value below this service's LoT

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 32 of 91

threshold. Finally, after the internal SCHEMA procedures, the Orchestrator consumes
this new value and, since it's below the LoT threshold decides to take an orchestration
action for this specific service (as will be depicted in step #10: Migration), for instance,
containerized applications migration, or not. Furthermore, the technological
capability of SCHEMA to share information regarding the service deployment, during
run-time and/or exportable via specific DLT-friendly data formats (i.e., JSON files), as
well as depicting the IDs for the nodes with regards to the service graph chain is
persistent.

Figure 9- SCHEMA initialization phase

5.2.3.3 Step #3 API-ID: INT_ORC_LOT Service deployment notification (including
service graph chain) & Consume service deployment notification

Description: This step (linked to step #2) is crucial for the construction of the Trust
Policies by the LoT Assessment Manager. The Orchestrator shall share information
regarding the deployment of the service (including details such as container IDs that
participate in the service graph chain).

In Release A, this notification is received by the LoT Assessment Manager through
Kafka.

After the successful deployment of a service, the LoT Assessment Manager is able to
initiate the assessment process by setting up the Trust Policies. These policies are

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 33 of 91

tailored to each deployed service and dictate what information is needed (i.e.,
attestation evidence) along with other information such as periodicity.

Component: Privacy Aware Orchestrator and LoT Assessment Manager

Details: Here, the Privacy Aware Orchestrator shares the graph with the SCB. The LoT
Assessment Manager receives this information to create the Trust Policies, as
described in step 4.

5.2.3.4 Step #4 API-ID: INT_LOT_SCB Trust policy specification.

Description: This step (linked to step #3 and #1) allows the LoT Assessment Manager
to share the Trust Policies to the DLT, through the SCB.

In Release A, this communication between the LoT Assessment Manager and the SCB
is facilitated by Kafka.

Component: LoT Assessment Manager

Details: Figure 10 demonstrates the JSON structure as it pertains to the Trust Policy,
as defined by the LoT Assessment Manager. Trust Policies are defined per service (i.e.,
based on the serviceID), along with the required Trust Level for the specific service,
the Trust Property and the Trust Model. In this particular case, examined for the
purposes of Workflow #1, the trust property under investigation is integrity. In other
cases, different Trust Properties such as privacy or safety could be examined.
Moreover, the Trust Model captures the trust relationships between the nodes that
participate in the service graph chain, while the list of Trust Sources defines the
specific dimensions where information for the LoT Assessment is required (i.e., SLA
adherence, Privacy Index, Attestation, PoT, and CTI). In Workflow #1 the focus will be
placed on Attestation. For each of the dimensions within the Trust Sources,
periodicity, serviceID and trustModelID is defined.

{
 "requiredTrustLevel": "High", // Very Low, Low, Medium, High (Target Integrity Level
for Specific property)
 "trustProperty": "integrity",
 "serviceId": "5dda1e5a-8408-44d1-90ea-eddfc6e2a762",
 "trustModel": [
 {
 "trustModelId": "603ccedc-d476-4a25-b04e-8bc1446a1fd5",
 "edges": [] // {"src": "source-container-ID", "dst": "destination-container-ID"}
 }],
 "listOfTrustSources": [
 {
 "name": "Attestation",
 "periodicity": 5,
 "serviceId": "5dda1e5a-8408-44d1-90ea-eddfc6e2a762",
 "targetTrustModelIds": ["603ccedc-d476-4a25-b04e-8bc1446a1fd5"]
 },
]
 "signature": "asd123dq122321123cdec" // LoT signature over the rest of the structure
}

Figure 10 - Trust Policy JSON structure

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 34 of 91

5.2.3.5 Step #5 API-ID: INT_SCB_SP Request for attestation.

Description: Based on the Trust Policy (acquired by the SCB from the LoT Assessment
Manager in step #4), the SCB may initiate the attestation process by sending a nonce
to the Security probes that are part of the infrastructure nodes hosting the deployed
service graph chain, with a pre-defined (by the Trust Policy) periodicity.

In Release A, this communication between the SCB and the Security Probe(s) is
facilitated by Kafka.

Component: SCB

Details: The SCB is responsible for processing the Trust Policy (as defined in Figure 10)
and then creating the nonce to be sent to the Security Probe and the μProbe. Hence
this step includes the creation of the nonce which is shared with the Security Probe.

5.2.3.6 Step #6 API-ID: INT_SP_SCB Attestation report

Description: Following the attestation request (step #5), the Security Probe(s) that
comprise the service graph chain (for a given service), report back to the SCB with a
structure that includes the signature of the nonce, along with other information such
as the integrity appraisals for the μProbe(s) and timestamps. This structure is made
accessible to other entities by the SCB through the DLT (see step #1).

In Release A, this communication between the Security Probe(s) and SCB is facilitated
by Kafka.

Component: Security Probe(s)

Details: Upon receiving the attestation request from the SCB, the Security Probe(s),
that participate in the given service graph chain, initiate the Configuration Integrity
Verification (CIV) flow, elaborated in D5.1. To perform this task, the infrastructure
node needs to have been instantiated with a CoCo which in our case is Gramine. Figure
11 demonstrates Gramine’s deployment in the Intel SGX box.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 35 of 91

Figure 11 - Gramine deployment on Intel SGX

When the infrastructure is properly configured, the Configuration Integrity
Verification (CIV) process may begin for both the Security Probes and the μProbes.
This includes: i) the creation of the attestation keys, ii) the correct execution of a
predefined Key Restriction Usage Policy, iii) the successful sign of the policy, iv) the
policy authorise correct execution and v) the successful creation of the attestation
evidence. The aforementioned steps verify, in essence that the attestation evidence
is strictly signed when the Security Probe (or the μProbe) adhere to the enforced
policy. The logs of this process are illustrated in Figure 12.

Figure 12 - Configuration Integrity Verification logs

The response sent back from the Security Probe to the SCB is illustrated in Figure 13,
including the result (i.e., appraisal), set either to 0 or 1 to indicate failure or success
respectively for both the Security Probe and the μProbe, along with other information
such as the timestamp, nonce and the signature.

{ "attestationReports": [
 {
 "containerID": "Microservice 1 μProbe",
 "attestationReport": [
 {
 "claim": "container-configuration-integrity",
 "timestamp": "2024-05-16T15:30:45Z",
 "appraisal": 1
 }, {
 "claim": "runtime-integrity",
 "timestamp": "2024-05-16T15:35:22Z",
 "appraisal": 0

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 36 of 91

 }
]
 }
],
 "securityProbeEvidence": {
 "timestamp": "2024-05-16T15:30:45Z",
 "nonce": "d78080092edf3633e6933f67ddfe6744",
 "signatureAlgorithmType": "ECDSA-SHA256",
 "signature": "30440220655e8f8b6f96a6...",
 "keyRef": "ecdsa_public_key_71"
 }}

Figure 13 - Attestation report in JSON

5.2.3.7 Step #7 API-ID: INT_LOT_SCB Consume JSON structure from Smart Contract
and Report LoT new value

Description: This step (linked to step #6) enables the LoT Assessment Manager to
consume information regarding the attestation as reported to the DLT by the Security
Probe through the SCB. This type of information allows the LoT Assessment Manager
to calculate the LoT value.

In Release A, this communication between the SCB and the LoT Assessment Manager
is facilitated by Kafka.

Upon calculating the LoT value (step #8) the LoT Assessment Manager reports this
value to the DLT through the SCB.

Component: LoT

Details:

Reading and Processing Messages: Messages produced by Attestation (Figure 14) are
read after we include them as a part of the LoT evaluation, and the input is processed.

Figure 14 - Attestation message received

Task Creation: A new task is created based on the processed messages (15) and
inserted into a new row in the MongoDB Database (Figure 16).

Figure 15 - Task created

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 37 of 91

Figure 16 - Task Table

Fuzzy Logic Evaluation (Step 1): The first step of fuzzy logic is evaluating the inputs
that we receive based on Time-driven or Event-driven logic (Figure 17), which is saved
on DB (Figure 18).

Figure 17 - Result of the first step of LoT Assessment

Figure 18 - Dimensions_Result Table

LoT Evaluation: The LoT evaluation is completed, providing an overall assessment
(Figure 19) and saved on DB (Figure 20).

Figure 19 Final LoT Evaluation Result shown by Kafka message

Figure 20 Final_Trust Table

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 38 of 91

The JSON structure (Figure 21) captures the initial set of data required for the LoT
evaluation process. It includes unique identifiers, precise timestamps, and a series of
evaluated metrics, thereby providing a foundation for assessing the trustworthiness
of a service within a distributed system. Handling these data through Kafka and Docker
ensures scalability, reliability, and real-time processing capabilities, making them an
integral part of a robust trust evaluation framework.

First Step of LoT Evaluation

In the context of Level of Trust (LoT) evaluation, the first step typically involves
collecting and recording relevant metrics or dimensions that contribute to the overall
trust assessment. A detailed explanation of this process is provided in the JSON:

• Data Collection:
In the first two lines, we created a unique task ID for executing the LoT
assessment for every call. Using service_id and task_id, we can track the
process until it is completed.

• Timestamp Recording:
Precise timestamps were recorded to ensure that the data were correlated
with other events within the system. This is crucial for maintaining the integrity
of the evaluation process and auditing purposes.

• Dimension Evaluation:
Each dimension was evaluated and assigned a numerical value, which was
derived from the system's first-step assessments.
For instance, d4 represents an attestation metric, d5 represents a Proof of
Transit metric, and so forth. The actual interpretation of these dimensions
depends on the specific implementation of the LoT evaluation process (Fuzzy
Logic).

This JSON structure is part of a broader workflow involving multiple services and
components, such as Kafka for messaging and Docker for containerization. The data
captured here will be published to a Kafka topic and DB, consumed by the Attestation
Service, processed, and then fed back into the second step of the LoT Assessment for
continuous trust assessment and management.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 39 of 91

Figure 21 - First Step Result JSON file

Figure 22 depicts a JSON object that represents the final trust result for a specific
system. We break down each component of the JSON object and explain its
significance.

• recordDate:
Description: This field indicates the date and time at which the trust
level is recorded.
Format: The timestamp is in the ISO 8601 format, which includes the
date, time, and fractional seconds.

• trustLevel:
Description: This field represents the computed trust level for a
particular service.

• serviceId:
Description: This field is a unique identifier for the service being
evaluated.
Format: Identifier is a Universally Unique Identifier (UUID) that ensures
a globally unique reference.

Figure 22 - Final LOT assessment JSON file

The image illustrates the final trust result being sent to a Kafka broker and then saved
for further use by different modules within a system.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 40 of 91

5.2.3.8 Step #8 API-ID: INT_ORC_SCB Consume LoT value and Migration decision.

Description: Following step #7, the LoT value stored on the DLT can be accessed by
the Privacy Aware Orchestrator, through the SCB. In Release A, this communication
between Privacy Aware Orchestrator and the SCB is facilitated by Kafka.

Leveraging the LoT value acquired by the DLT through the SCB and calculated by the
LoT Assessment Manager, the Privacy Aware Orchestrator may now use this metric
for its own decision-making. Hence, if a service receives a low value, the Orchestrator
may decide to migrate it.

Component: Privacy Aware Orchestrator

Details: Once the SCHEMA orchestrator digests the LoT Assessment messages from
the LoT Assessment Manager through Kafka, it initiates its internal innovative
containerized applications migration procedures (service orchestrator functions).
SCHEMA is running with SFC Management with Distributed Reinforcement Learning
and Game-Theory. In this specific workflow #1, we utilized the following hard-coded
steps across a fully ad-hoc simulation environment:

•Proposed solution: We used a framework that attaches distributed Reinforcement
Learning agents to perform intra-domain service migration & slicing orchestration
locally and introduced an auction mechanism to allow agents to exchange container
services.

•We separated the network into an intra-domain level graph and multiple intra-
domain level graphs.

•We assigned local domain Reinforcement Local agents responsible for performing
intra-domain containerized applications migration & orchestration.

•For every containerized service in the network, we performed an auction and thus
letting multiple local domain RL agents bid to receive a specific container and migrate
it to the selected server.

•The local RL agents performed intra-domain orchestration (migrate, or not the
service; based on the LoT messages prone) to avoid global network SFC
reconfiguration.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 41 of 91

Figure 9i - SCHEMA main deployment phase. We denote hereby a successful containerized application
migration with the following depicted convention in the above figure: (a) green colour bar: Source <->

Destination containers for a specific LoT attested 5G/6G service, and (b) red colour bar: Indication message of
successful service migration from SCHEMA Privacy-aware orchestrator (CLIENT INTERFACE SHELL).

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 42 of 91

Figure 9ii - SCHEMA main deployment phase (BUSINESS INTERFACE SHELL).

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 43 of 91

Figure 9iii - SCHEMA main deployment phase. We denote hereby a successful containerized application
migration with the following depicted convention in the above figure: (a) green colour bar: Source <->

Destination containers for a specific LoT attested 5G/6G service, (b) red colour bar: Indication message of
successful service migration from SCHEMA Privacy-aware orchestrator, and (c) yellow colour bar: the
SLAs/SSLAs constraints affecting the SCHEMA equilibrium decision-making (CLIENT INTERFACE SHELL).

The objective of (privacy-aware) network slicing is to maximize the performance of
network slices in the system, while at the same time, fulfilling the privacy SSLAs
requirements.

The objective of the network slicing can be expressed as:

As 𝜏𝜏  →  ∞ , the slicing orchestration problem is an infinite time horizon stochastic
dynamic programming (optimization) problem.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 44 of 91

5.2.4 Preliminary Results

Privacy-aware Orchestrator. We introduced (in the previous dry run) the Auction
Mechanism. It actually consists of a fully scalable system that enables intra-domain
containerized applications migration in a distributed multi-domain network, alongside
privacy-aware slicing (already supported). We envisioned, in this demonstration
setup, an overview of the multi-domain and distributed Auction Mechanism, where
all local domains can orchestrate containers-services in parallel and exchange
containers only during an auction. The following illustrations are real-case simulation
scenarios and validation deriving results from the SCHEMA capabilities. Since
scalability is not an issue for the Orchestrator, we plan to deploy in the next Release
an even larger number of end nodes for the 5G/6G network showcase. Finally, we care
about service latency as well as dissemination efforts to benchmark 6G Privacy KPIs,
in future releases, among other Cybersecurity metrics like user/service/UE geo-
location privacy preservation from the containerized applications migration, or even
how protective is our SOAR-Security Orchestrator Automation and Response
component, that provisions the whole stack of both SCHEMA and the rest functionality
components and is able to become the main trusted authority of the (Privacy-aware)
service function chaining operations.

Figure 23 - SCHEMA demo dashboard from the experimentation plane.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 45 of 91

Figure 24 - SCHEMA and its UI back-end running.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 46 of 91

Figure 25 - A conceptual model of the SCHEMA system model capabilities to architecture and export VNF

service graphs.

The containerized applications migration technique has been expanded in the
following ways since it was first shown in this demo workflow for a single domain: The
scheme can now support multiple containers per slice, including an arbitrary,
probabilistic network functions service graph that permits loops. Additionally, it can
support a range of realistic end-to-end performance metrics for the average flow
served by such a container(s) graph. Lastly, there is a multi-agent solution that involves
the presence of a DE (agent) with each slice, or even with each container of a slice,
greatly enhancing the scheme's scalability as the number of slices (or containers-
services host locations) increases while maintaining near-optimal performance.

Finally, this time, the probing approach for containerized services bottleneck
localization is used in a more useful use case that depends on a Service Chaining
Function that runs on Docker/Kubernetes.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 47 of 91

5.3 FPGA attestation
In addition to software infrastructure and container attestation, PRIVATEER
incorporates mechanisms for hardware attestation specifically designed for Field-
Programmable Gate Arrays (FPGAs) deployed on edge nodes. PRIVATEER envisions
that each node within the infrastructure provider's network is equipped with
dedicated FPGA accelerators. These FPGAs serve to accelerate critical monitoring
analytics tasks developed under Task 3.5. While these attestation mechanisms are not
yet integrated into Release A of the PRIVATEER framework, they are planned for
inclusion in Release B. During Release B, the attestation results from the FPGA
attestation mechanism will be propagated and incorporated into the Level of Trust
assessment mechanism. This will provide an extra factor for assessing the
trustworthiness of each individual node within the network. Essentially, the
attestation results will serve as an additional knob to fine-tune trust evaluation.

While FPGAs offer advantages like low latency and power efficiency, they are
susceptible to various security attacks that can compromise the system's privacy (e.g.
stealing/eavesdropping valuable information, loading malicious code, reverse
engineering user’s code etc.). To tackle this challenge, as described in D5.1, in
PRIVATEER various methodologies are developed to provide the necessary security
countermeasures for the hardware accelerators. Precisely, we primarily rely on
custom remote attestation protocols, to ensure secure programming of such devices,
as well as to protect the application and the infrastructure provided. In this workflow,
apart from ensuring the secure programming of the hardware accelerators, a
distribution of the security state for this service is shared with additional PRIVATEER
components, i.e. the Blockchain. This enables the opportunity, in a future state of the
project (after Release A), to incorporate the attestation results of the hardware
accelerators into the LoT.

In the following section, the security countermeasures for hardware accelerators that
will be showcased in this workflow are described.

 FPGA Attestation protocol description

The core of the developed features a remote attestation protocol that is based on the
one described in D5.1. Moreover, it involves the interaction among four entities: i) the
User, ii) the Attestation Server iii) the Edge Accelerator and finally iv) Blockchain.
Specifically, in the context of PRIVATEER:

(i) The User corresponds to the developer of the hardware accelerators for the
anomaly detection AI models.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 48 of 91

(ii) The attestation server represents an external server used for verification, that is
responsible for interacting with all the parties involved for the integrity verification of
the edge accelerators, including the User, the Edge server hosting the accelerator, as
well as the PRIVATEER’s blockchain.

(iii) The Edge server contains a x86-based CPU along with an FPGA card (i.e. Alveo
family from AMD) connected via PCI-E, that serves as the hardware accelerator.
Additionally, the system’s host CPU is responsible for performing the security
operations required.

(iv) The Blockchain refers to the infrastructure developed by a different Task of
PRIVATEER.

The detailed steps of the developed remote attestation protocol are illustrated in
Figure 26 and can be divided into 3 main steps:

1. An offline phase, which includes the preparation from the user, namely the
encryption of the application from the developer, as well as uploading the
reference values (i.e. the application’s checksum) to a secure location. The
developer user is also responsible for transferring the encrypted application to
the edge server, with a generic secure transfer protocol. Furthermore, during
the preparation stage, the operator of the Edge Server is also responsible for
acquiring the reference values for the attestation service that will be deployed
on the server.

2. Then, upon a request from the User/Developer, the remote attestation

process instantiates and verifies two components: 1) the attestation service
running on the Edge Server and 2) the accelerator kernel prior to being loaded
in the FPGA. This is performed by generating in the Edge Server the attestation
report, containing the respective checksum values, as well as random nonces,
that is used for mitigating any possible replay attacks. Then, this report is
transferred back to the verification server for checking all the individual values.

3. Upon a successful remote attestation (i.e. all the received values from the
attestation report match with the reference data), the application’s decryption
key is delivered securely to the Edge server. Afterwards: (a) decryption of the
application is executed and (b) the programming of the FPGA accelerator is
performed. Furthermore, the outcomes of the attestation are forwarded to
the Blockchain.

Providing a more detailed analysis of the proposed remote attestation protocol, the
process initiates with the operator of the Edge server acquiring the reference values
for the attestation service that will be deployed on the Edge server (Step 1), as well as
uploading them to the Attestation Server (Step 2). Additionally, the preparation from

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 49 of 91

the user side includes the encryption of the application from the Developer (Step 3),
as well as uploading the reference values (i.e. the application’s checksum) also to the
Attestation Server (Step 4). The user is also responsible for transferring the encrypted
application to the edge server, prior to invoking for an attestation request. Following
this preparation, the user can initiate a request for remote attestation (Step 5). After
securing a connection with the Attestation Server and sending the request along with
a randomly generated nonce (N1) to prevent replay attacks (Step 6), the Attestation
Server receives the checksum of the attestation application and the nonce (Step 7-8).
This is done to confirm that the correct verification service is operating on the Edge
Accelerator (Steps 9-10). We note that, for verifying any received values, the
Attestation Server checks with the reference values acquired in Steps 2,4. After a
successful authentication, the Attestation Server then sends an attestation request to
the Edge Accelerator, including a new randomly generated nonce (N2) (Step 12-13).
The Edge Accelerator then calculates the static checksum of the received bitstream
and retrieves the included bitstream certificate to generate the AttestReport.
Additionally, the generated AttestReport is encrypted with a private key that is stored
in the Edge Server (Step 14). Subsequently, the EncAttestReport is sent to the External
Server for inspection (Step 15), in which, after decrypting the received values with the
respective key, verification of each individual values is performed (Step 16-17). Then,
the attestation results (successful/failed) are uploaded to the Attestation Server to the
Blockchain (Step 18). Upon successful authentication of the received AttestReport, the
verification server transfers the bitstream decryption key (BitstrDecKey) from the User
to the Edge Accelerator using a secure key exchange algorithm, i.e. Elliptic Curve Diffie-
Hellman (ECDH) (Steps 19-20). Once the Edge Server receives the Decryption Key, it
decrypts the accelerator kernel and loads it into the Hardware Accelerator (Step 21).

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 50 of 91

Figure 26 Remote attestation protocol for Workflow 5.3

5.3.1 APIs – Interfaces

The Attestation Server, as described in the previous sections, communicates with the
PRIVATEER’s Blockchain, to upload the attestation results. The attestation server for
the project’s Release A is hosted by ICCS, therefore a VPN connection is required to
connect to the infrastructure provided in the NCSRD facilities, where the Kafka broker
is operating. We also note that, the attestation results that are forwarded to the
Blockchain are structured in a predefined Json format.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 51 of 91

5.3.2 Preliminary Results

In Figure 28 to Figure 30 some screenshots are presented, that showcase the
functionality of the proposed remote attestation protocol, with the detailed
transactions between the Edge Server and the Attestation Server.

The listed execution results, cover both successful and failed attempts to program the
Edge Accelerator, to evaluate the developed methodologies under different
circumstances. In Figure 28 and Figure 27 a successful attestation scenario is
presented. In the first part (1b,2a), the verification of the infrastructure is performed,
i.e. the attestation service running in the Edge Server. After a successful attestation,
the protocol proceeds with the verification of the accelerator kernel (1c,2b). In the
final sections (2c,2d) where the attestation succeeds, we observe that the bitstream
is decrypted and loaded successfully to the accelerator.

Furthermore, from the last step of the Attestation Server (1d), we observe that the
attestation evidence is uploaded to the Blockchain, through the Security Context
Broker (SCB).

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 52 of 91

Figure 27 - Successful attestation scenario with programming the hardware accelerator (Edge Server side).

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 53 of 91

Figure 28 - Successful attestation scenario with uploading attestation evidence to the Blockchain (Attestation

Server side).

Apart from the successful attestation example, in Figure 29 and Figure 30, two
different failed attestation scenarios are presented. In the first one (Figure 29), we
notice that the cause of the failed attestation is the unverified attestation service in
the Edge Server due to receiving the wrong checksum. Regarding the second
unsuccessful attestation example (Figure 30), the accelerated kernel is the cause of
failing, since the wrong checksum is received. In both cases, we observed that neither
the hardware accelerator was programmed, nor the AI kernel was decrypted.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 54 of 91

Figure 29 - Failed attestation due to invalid attestation service (Top: Edge Accelerator, Bottom: Attestation

Server)

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 55 of 91

Figure 30 Failed attestation due to invalid/unauthorized accelerator kernel.

Regarding the KPIs for this workflow, we focus on the additional time required (namely
time overhead) to program the hardware accelerators (i.e. FPGAs), when applying the
developed methodologies for attesting these devices. This is essentially the time
required for the Edge server to complete the attestation process. We aim for an
attestation time of under 10 sec. We note that, from the reported screenshots, we
observe that we obtain a successful attestation in under 2 sec with the current setup.
However, we leave margins in the selected KPI, to be able to meet the target in the

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 56 of 91

future Release B, where the use of Intel SGX technology will be examined, running the
remote attestation in lower end devices (with less computational power), as well as
deploying security functions in the hardware accelerators. This feature adds
supplementary overhead due to the time required for the programming of the device.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 57 of 91

6 Workflow 2: DDoS detection by
Federated NWDAF & CTI Sharing and
SLA Management

6.1 Attack models
DDoS Attack

A Distributed-Denial-of-Service (DDoS) attack is a malicious attempt to disrupt the
normal traffic of a targeted server, service, or network by overwhelming the target or
its surrounding infrastructure with a flood of internet traffic. In the context of the 6G
architecture, DDoS attacks have been identified as potential security risks, particularly
for technologies such as Network-Function Virtualization (NFV), Software-Defined
Wide-Area Networks (SD-WAN), Virtualized Radio-Access Networks (vRAN), Open
RAN, and programmable HW Accelerators. This was documented in the deliverable
'6G Threat Landscape and Gap Analysis' (D2.1), which highlighted the main
technological innovations required for the envisioned 6G architecture and the
potential cybersecurity threats they could face.

To accommodate for these risks, PRIVATEER partners have been working on releasing
open-source datasets from the 5G+ infrastructure located in the premises of NCSRD
capturing DDoS attacks initiated by malicious connected user equipment (UEs). This
infrastructure will also serve as the testbed for deploying use-case scenarios for
Release B of the project. The process of generating and utilizing this data has been
thoroughly documented in D3.1 “Decentralised Robust Security Analytics Enablers Rel.
A” [2].

Federated-Learning Attack Models

The attack surface of federated learning (FL) includes all the weaknesses that attackers
can target. Typically, attackers break into the system by compromising the security of
the central servers, local devices, or participants in the FL process. Once they gain
access, attackers can change training parameters, model updates, and the results of
the learning process. The taxonomy of FL attacks can be separated into two main
categories, namely poisoning attacks and inference attacks. Poisoning attacks
primarily threaten the robustness and integrity of the FL process, by introducing
corrupted data or malicious updates that skew the learning process. On the other
hand, inference attacks focus on compromising the privacy of FL participants by
extracting sensitive information from the model’s outputs or shared data during the
training phase. These attacks have been thoroughly documented in D3.1
“Decentralised Robust Security Analytics Enablers Rel. A” [2].

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 58 of 91

Defining a comprehensive threat model in an FL scheme requires a structured
approach that considers the different entities involved, their knowledge, capabilities
and access to auxiliary data. The following steps help in identifying and characterizing
these factors to ensure that robust security and privacy measures are in place.

1. Identify Key Entities

• Server: Coordinates the training process and aggregates updates.
• Participants (Clients): Perform local training and send updates to the server.
• Eavesdroppers: Unauthorized entities that intercept communications between

the server and participants.

2. Classify Types of Participants

• Honest-but-Curious Participants: Follow the FL protocol but attempt to infer as
much private information as possible from the data they have access to.

• Malicious Participants: Provide no guarantee of following the FL protocol and
may engage in activities such as data poisoning, model poisoning, or
attempting to extract private data from other participants.

3. Assess Knowledge

• Model Structure: Determine which entities have access to the model
architecture.

• Weights and Gradients: Identify which entities can access the weights and
gradients during training.

4. Evaluate Capabilities

• Training and Design: Can the entity train or redesign the model?
• Modifying Updates: Can the entity modify the updates sent to the server or to

participants?

5. Consider Access to Auxiliary Data

• Server: Typically, does not have access to auxiliary data that can be used to
infer additional information.

• Participants: Often have auxiliary data that can aid in performing inference
attacks.

• Eavesdroppers: Generally, lack auxiliary data beyond intercepted
communications.

In threat modelling for FL the severity of threats can vary significantly based on the
number and behaviour of participants, their knowledge, and their capabilities. More
malicious participants increase the risk, particularly if they possess extensive
knowledge of the model structure, weights, and gradients, as well as access to

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 59 of 91

auxiliary data. Participants with advanced capabilities, such as the ability to modify
updates or perform sophisticated inference attacks, pose higher threats.

In the context of WP3, we are going to implement privacy-preserving methods like
Differential Privacy (DP) and Multi-Party Computation (MPC) to cater to the varying
severity levels of threats in FL. These methods will help mitigate risks posed by both
honest-but-curious and malicious participants, ensuring robust security and privacy.
By incorporating these advanced techniques, we aim to protect against data breaches,
model manipulation, and unauthorized inference attacks, thereby maintaining the
integrity and confidentiality of the learning process.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 60 of 91

6.2 Workflow 2 implementation
6.2.1 Short Description

This workflow showcases the PRIVATEER functionalities of anomaly detection through
the security analytics deployed on the edge nodes, as well as the privacy-preserving
CTI-sharing capabilities. Prior to workflow initiation, the security-analytics module
must be installed on the PRIVATEER edge nodes. This module uses the Network-Data
Analytics Function (NWDAF) to continuously monitor network traffic. The process
begins when an attacker launches a DDoS attack targeted at these edge nodes.
Obviously, one or more edge nodes can be affected by the attack. The machine-
learning (ML) anomaly-detection model within the security-analytics module then
detects any unusual behaviour and classifies the type of attack. After the detection,
an alert is created and transmitted to the CTI-sharing proxy API, which creates a new
event in the MISP instance of the entity that received the information. The users that
have access to the CTI-sharing proxy API can then set up policies that define what can
be shared and what the entity intends to search for in other entities. These policies
contain the indicators of compromise (IoC) of interest as values. The proxy API allows
the entity's users to set up a sharing group, to which other entities instances can be
added to. This requires a peering process to be done first, where the public key of each
entity is exchanged. Once this sharing group has multiple users, it is configured to
connect to a reverse index database. This database uses trapdoors (a secure hash) of
the IoCs as the index for each row of information, of which the value is also encrypted.
The encrypted value contains a combination of the trapdoor signed and the
Universally Unique Identifier (UUID) of the entity that uploaded the value. If an entity
requests an update of the shared index, the proxy API checks the IoC's in the published
events stored in the MISP and compares them to the policies of the entity. When there
is a match, the shared index is updated with that information. Once an entity has
already accessed the shared index and found that another entity has data on an IoC
they're interested in, the entity gets in contact with that second entity and performs
a synchronization of the MISP through the proxy API. First, it checks the policies of the
requesting entity, ensuring there is an inward policy for the IoC and then sends a
request for that event to the second entity. The entity that is storing the requested
data checks if it has an outward policy for the requested IoC, ignoring the request if it
does since outward policies act as a "blacklist" of IoC's that can't be shared. As long as
there is no outward policy, the second entity accepts the first entity's request and
returns the events containing the IoC. The first entity receives this information and
then adds it to the MISP.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 61 of 91

Figure 31 - Sequence diagram of DDoS-attack detection on two of the edge nodes and consequent CTI sharing.

6.2.2 Detailed Description

The workflow for "DDoS detection by Federated NWDAF and CTI Sharing" involves two
primary stages: training and inference, each supported by the architecture depicted
in Figure 32.

Figure 32 - Workflow 2 Architecture

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 62 of 91

UE devices are the primary sources of real-time data regarding their operational
status, performance metrics, and connectivity quality. Each UE's interactions with the
network, such as signal strength, data usage, and mobility patterns, are captured and
streamed to Kafka through data producers deployed across gNB (gNodeB) devices.
This continuous data from UEs provides the dataset for the NWDAF to analyze and
optimize network performance.

The NWDAF API can interact with InfluxDB through the InfluxDB API to retrieve and
analyse time-series data, enabling the NWDAF API to access detailed network metrics
and performance indicators stored in InfluxDB. NWDAF consists of several key
components that carry out the main functionality. ZooKeeper acts as the configuration
and synchronization service for Kafka, which relies on ZooKeeper to maintain its state
and manage cluster coordination, ensuring that the Kafka brokers are functioning
properly and are synchronized. The Producer component extracts and transforms data
received from gNB and sends it to Kafka. Kafka serves as the messaging backbone,
receiving data from the Producer, which it then makes available to other components
in the system. InfluxDB Connector extracts data from Kafka and writes it into InfluxDB,
which stores the time-series data provided by the InfluxDB Connector. This database
is optimized for handling large volumes of time-stamped data, making it suitable for
analytics and monitoring tasks.

The deployment of a trained anomaly-detection model is essential for the effective
detection of DDoS attacks within our workflow. In the context of the PRIVATEER
framework, the training of such a model is implemented in a decentralized manner
using an FL scheme. NWDAF data is consumed via a data-ingestion module, which is
responsible for executing the necessary transformations to the original data to be
further consumed by the ML model. During training, the module constructs the
training and validation datasets necessary for the training process, while during
inference it provides the data in the format needed by the inference module.

The FL clients are responsible for training local models on the data they process. This
training is performed under the constraints and configurations dictated by the central
FL Server, which manages the learning process across all clients. Once the local models
are trained, the model updates—specifically, the parameters or weights of the
models—are sent to the FL Server. After the central model has been updated, it is then
sent back to the ML-Model Registry. This registry maintains the latest version of the
model, ensuring that all clients can access the most current model for their ongoing
operations. The updated model is subsequently redeployed across all participating
NWDAF Clients. The FL Client and Server modules are implemented using the Flower
Framework, which utilizes a server-client architecture that leverages gRPC protocol
for communication between clients and the server.

The workflow architecture includes also the CTI-Sharing Component, essential for
effective and secure sharing of threat intelligence across entities. This component

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 63 of 91

requires three key elements for deployment by each participating entity: a MISP
instance to store and organize IoCs, a CTI-sharing proxy API for managing the exchange
of information between entities, and a database to host the shared index, storing
UUIDs of entities that hold specific IoC information.

During inference, NWDAF data, processed by the data-ingestion module, are managed
by a pub/sub-messaging system implemented using Redis. The ML Module
(inference), equipped with the latest ML model distributed after the FL phase,
consumes the pre-processed data by the messaging system and executes model
inference. Upon detecting an anomaly, the workflow engages the CTI-sharing proxy
API for alert management and dissemination. These alerts are routed through the CTI
proxy to Reverse Index DB and MISP instances, ensuring a coordinated response to
detected threats.

6.2.3 APIs/Interfaces

Figure 33 shows the home page of the interface of the CTI Sharing proxy API with the
current policies registered in the database. The type, resource, value and status
(whether the policy is active or not) are shown. Buttons that allow for the deactivation
and removal of the policy are also available. The interface also provides a filter
function, to choose between inward and outward policies.

Figure 33 - User interface of CTI sharing module

All this information is retrieved with a GET request to the “/general/policies” route.
The activation/deactivation of policies is achieved with a PUT request to
“/policies/:id/activation” with the body containing a boolean variable “activated”.

Figure 34 shows that the interface also allows for users to create new policies. The
popup window requests whether the policy will apply to inward or outward

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 64 of 91

communications, the type of IoC and its’ value. This policy is added to the database of
the proxy API through a POST request to “/general/policies”. The body of this request
contains an object with a variable containing the type of IoC and its’ value.

Figure 34 - Policy creation

The shared groups page shows the list of the sharing groups the current entity belongs
to (see Figure 35). This is retrieved with a GET request to the “/shared-groups” route.
More information about the sharing group can be viewed by clicking the “View”
button. A request to update the shared index linked to a specific sharing group can be
performed as well through the “index immediate update” button. This sends a GET
request to the “/shared-groups/:id/index/immediate-update” route.

Figure 35 - Shared groups list

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 65 of 91

Figure 36 - Shared group creation

A new sharing group can be created here as well, as demonstrated in Figure 36. The
only field necessary is a name. Once the group is created, entities can be added in the
“View” page which displays more information. Shared groups are created by sending
a POST request to the “/shared-groups” route.

The page with detailed information of the sharing group, shown in Figure 37, will
present the other entities belonging to the sharing group. This information is retrieved
with a GET request to the “/shared-groups/:id/entities” route. In this page a user can
also request an update to the index associated to the sharing group but they can also
check the connection with the other entities (which can be done by sending a GET
request to the “/entities/:uuid/peer-sender” route and receiving a response without
errors) and also request a synchronization of their data with the entity. This
synchronization affects the MISP instance running on the current entity and will
update or create any events that match the policies shown in Figure 33. This is done
so by sending a GET request to the “/enitities/:uuid/immediate-sync” route.
An entity can be removed from a sharing group, but this requires that every participant
does the same to ensure the sharing group works correctly.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 66 of 91

Figure 37 - Shared group details

Figure 38 shows how users can add a new entity to a shared group. The URL (in this
case the IP address of the entity) of the entity is what is requested. Once the user
inputs that information, the UUID of the entity that matches that URL is retrieved and
the entity is linked, locally, to the sharing group by sending a POST request to the
“/shared-groups/:id/entities” route with a body containing a variable “uuid” and the
retrieved value. This requires that the entity is added to the system beforehand. It also
requires that a peering process is completed beforehand as well. This is done through
terminal instead and not available through the interface.

Figure 38 - Adding entity to shared group

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 67 of 91

6.2.4 Preliminary Results

While the implementation of the FL client and server is still in development, we
leveraged Flower's simulation capabilities to emulate FL. The results, along with a
comparison to the central model, are illustrated in Σφάλμα! Το αρχείο προέλευσης
της αναφοράς δεν βρέθηκε.. To generate federated datasets for each NWDAF client,
IMEISVs were assigned to the NWDAF clients randomly.

Table 2 - Privateer Security Analytics Deep Learning Anomaly Detection model performance in centralized vs
federated training

Metric Centralized
Learning

Federated Learning

Accuracy 0.9982 0.9939
Precision 1 0.9640

Recall 0.9822 0.9763
F1 Score 0.9910 0.9701

True Positives 996 990
True Negatives 8975 8938
False Positives 0 37
False Negatives 18 24

As observed, the model performance does not change considerably, as anticipated.
This is due to the small number of clients (2), which causes the federated-training
process to closely mirror the centralized approach.

6.2.5 Workflow 2 Demonstrators

6.2.5.1 Anomaly detection & IoC posting

In this section, we provide a comprehensive demonstration of the current
developments in security analytics.

As depicted in Fig 31, the workflow 2 architecture includes two primary ML modules:
one dedicated to inference and the other to training. Presently, the models are trained
using a centralized approach. The FL client has not yet been implemented. For an in-
depth explanation of the model-training process and the resulting outcomes, please
refer to “Del 3.1 - Decentralised Robust Security Analytics Enablers Rel. A”.

Regarding the Local Pub/Sub messaging system, we have implemented Redis to
facilitate communication. For data ingestion, we have developed a Python module
designed to continuously interact with the NWDAF API. This module executes the
following preprocessing steps:

• Extracts data from the NWDAF API response in a tabular format

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 68 of 91

• Applies smoothing techniques using a rolling average
• Generates the tensor input required by the model

Once processed, the data is appended to a Redis queue. The inference application
then initiates a model instance, retrieves the next items from the Redis queue, and
performs inference on these items. Upon detecting an anomaly, the system generates
an alert as depicted in Figure 39.

Figure 39 - Code snippet demonstrating the IoC generation and posting

The prerequisites for running the inference application include the model
configuration, the python classes for the developed deep-learning model, and the
model weights. For the data-ingestion application, a fitted scaler based on the training
data is necessary. In Fig 39, the structure of the deployed repository is illustrated. The
data_collector application handles the data ingestion module, while the inference
application manages the machine learning inference module. We utilized Docker and
Docker Compose to deploy the entire demonstrator system. API endpoints are
configured as environment variables within the Docker images.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 69 of 91

Figure 40 - Inference Demo repo structure

Figure 41 - Terminal view of the Workflow Demonstrator

Figure 41 provides a terminal view of the workflow. The data_collector module
outputs the time ranges during which data is acquired via the NWDAF API.
Concurrently, the inference module outputs the inference results for each IMEISV
within each time range and indicates whether an alert has been raised if an anomaly
is detected.

After an alert is generated and an IoC is posted, the IoCs become visible through the
MISP instance. An example of this can be seen in Figure 42.

Figure 42 - IoC for imeisv 8642840401624200

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 70 of 91

6.2.5.2 XAI framework

The explainable Artificial Intelligence (XAI) is being developed in a standalone module
which aims to provide insight into the decision-making process of the DDoS-detection
algorithm used in workflow 2. Leveraging the DDoS-detection algorithm, this
implementation uses optimized heuristics to produce a loss function able to provide
details on how the decision-making process operates. This is done through the
development of an XAI dashboard which uses the same dataset and model as
described in workflow 2, Figure 43. Despite this, in its current form, this work occurs
in parallel with the workflow 2 system and, although not yet fully integrated, it is able
to provide an analysis of how the decision process is done by the security-analytics
framework.

Figure 43 - XAI Framework for workflow 2

The current XAI techniques implemented are based on the SHAP framework, namely
the SHAP Kernel Explainer which allows local instance explanation based on abstract
deep-learning models. This approach still uses the detection algorithm and training
timeseries datasets to initialize and operate its internal structure.

Timeseries require specialized XAI approaches to capture the temporal data
dependencies between instances. Therefore, to capture time dependence between
instances, the initial dataset is transformed so that each XAI instance contains
information regarding the time windows in which detection is processed. This step
was then combined with different heuristic strategies to provide multiple insights into
the decision-making process.

In this release, the XAI module produces explanation based on 2 different heuristic
strategies, as showed in Figure 44. Taking into consideration the nature of the
detection algorithm, two different loss functions were strategized in order to capture
feature loss and overall loss of the detection algorithm. This allows to probe which
features are behaving anomalously with the nature of the detection algorithm and
overall loss in DDoS-anomaly detection.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 71 of 91

Figure 44 - Heuristic strategies for algorithm explanation

From this point, the XAI framework supported by the SHAP XAI algorithms creates an
internal representation of the detection-algorithm workflow and information from the
training dataset used. After the setup is completed and the XAI algorithms initialized,
actual explanation is based on the following steps:

• Selection of a test instance for explanation;
• Perturbation of the instance to generate a dataset comprising similar

instances;
• Assignment of weights to the similar instances based on their resemblance to

the instance being explained;
• Training of a local, interpretable model using the weighted dataset;
• Using XAI-model weights to produce intelligible visualizations and dashboards

on the impact of features for the decision making and DDoS detection.

With this approach, it possible to produce graphical visualizations on feature
importance (see Figure 45), and general anomalous detection by feature in the
timeseries input for a local instance of data in the detection windows of the timeseries
with the timeseries algorithm.

Figure 45 - Feature relevance for anomaly detection

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 72 of 91

Figure 46 – Relevance of input features in timeseries for anomaly detection

In this context, we can affirm that the XAI framework is using:

• Instance-based counterfactual explainers by selecting the most similar
examples from a dataset and assessing how a decision changes, or which input
features modifications influence decision making in a XAI-weighted model;

• Meta-Explanation: usage of alternative XAI methods to create explanations
based on the decision model. It might involve dedicated heuristics developed
for a specific use case;

• Feature Importance: identification of the most important features for the
explanation of a decision based on a model and instance of input;

• Examples: a strategy that aims to explain decisions based on similar examples
from previous inputs.

The XAI framework is currently assessing opportunities for integration in workflow 2
and designing the integration of federation learning with local XAI explanations in a
privacy-preserving format.

6.2.5.3 Hardware-accelerated analytics

PRIVATEER leverages Field-Programmable Gate Arrays (FPGAs) to accelerate the
critical task of monitoring at runtime. Specifically, FPGAs are used to accelerate the
ML-based anomaly-detection task described above. PRIVATEER provides an FPGA-
LSTM (Long Short-Term Memory) application that targets only the inference stage of
the LSTM-autoencoder model. This targeted acceleration ensures that the

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 73 of 91

computationally intensive inference operation is handled efficiently by the FPGA,
leveraging the parallel-processing capabilities of the device, thus, providing
significantly reduced latency and increased throughput for the monitoring analytics.
While the FPGA implementation is not yet integrated into the core PRIVATEER
platform, its integration is scheduled for Release B. This integration will create a more
cohesive and robust solution, seamlessly combining the FPGA-accelerated LSTM
inference with other necessary components within PRIVATEER.

LSTM Autoencoder Details: To achieve hardware acceleration, the initial step was to
optimize the model architecture. Following the training procedures specified in the
repository, we developed a more compact LSTM autoencoder model. The original
autoencoder required a timestep window of 120 timesteps and included two LSTM
layers each for the encoder and decoder. In contrast, the compact model operates
with a timestep window of only 9 timesteps, featuring a single LSTM layer in the
encoder and an LSTM layer coupled with a fully-connected layer in the decoder. Figure
47 presents the model summary of the implemented compact autoencoder.

Figure 47 Overview of LSTM autoencoder layer architecture

We implemented the compact autoencoder model in an Alveo U280 FPGA. The
encoder and decoder components are fully pipelined in the developed hardware
architecture. Additionally, the design fully exploits the parallelism in the matrix-vector
multiplications in the fully-connected and LSTM layers.

Preliminary Results: Figure 48 shows a terminal preview of the execution of the
accelerated LSTM autoencoder application on the U280 FPGA device.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 74 of 91

Figure 48 – Terminal preview of accelerated LSTM autoencoder execution on U280 FPGA

As shown Figure 48, the application workflow begins with loading the FPGA bitstream
(lstm.xclbin) and the necessary runtime and device libraries. This initial step is crucial
as it sets up the FPGA with the required configuration to perform the LSTM inference.
The programming of the device involves transferring the bitstream into the FPGA,
which effectively configures the hardware to perform the inference task using the
LSTM kernel. Once the device is programmed, the input data is transferred through
the Peripheral Component Interconnect Express (PCIe) interface into the Double Data
Rate (DDR) memory of the FPGA (buffer allocation). The PCIe interface is used for high-
speed data transfer between the host system and the FPGA, ensuring that the input
data is quickly and efficiently moved to where it is needed. From the DDR memory,
the data is transferred to the FPGA fabric, where the actual processing takes place.
During execution, the LSTM kernel processes the input data (lstm computation),
producing an output that is transferred back to the host system (buffer deallocation).
As shown in Figure 47 , the output closely matches the input, which is the expected
behaviour of the LSTM autoencoder. Finally, the application provides a detailed
performance summary of the end-to-end execution, with separate measurements for
each critical step, offering insights into the efficiency and speed of each process.
Overall, this setup provides a highly efficient and flexible system for accelerating LSTM
inference, ready to be fully integrated into PRIVATEER release B.

The tables below highlight the resource usage, latency, and performance metrics of
the hardware implementation. Table 4 demonstrates that our design comfortably fits
within the U280 FPGA, with additional resources available for potential performance
enhancements. Table 3 indicates a 15% reduction in latency for the hardware
implementation compared to the compact model running on a CPU. With further
optimizations, we anticipate achieving even greater speedups. Lastly, Table 5 confirms
that our compact implementation meets the required accuracy standards.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 75 of 91

Table 3 - Latency of accelerated LSTM autoencoder on U280 FPGA

Time over 1000 inferences (ms) FPGA CPU (PyTorch)
Buffer Allocation 217.72 -

LSTM Computation 441.72 -

Buffer Deallocation 175.67 -

Total 835.17 965.94

Table 4 - Resource utilization of accelerated LSTM autoencoder on U280 FPGA

Resources Utilised Utilisation %
BRAM_18K 182 4

DSP 5069 56

FF 649245 24

LUT 456010 34

URAM 0 0

Table 5 - Accuracy of accelerated LSTM autoencoder on U280 FPGA

Metric FPGA
Accuracy 0.99

Precision 0.99

Recall 0.94

F1 Score 0.97

True Positives 94.18%

True Negatives 99.90%

False Positives 0.10%

False Negatives 5.82%

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 76 of 91

7 Workflow 3: Real-Time Mitigation of
Man in the Middle Attacks

7.1 Attack models
The design and evolution of 5G towards B5G and 6G, will require the pervasive use of
Network Function Virtualization (NFV) architectures and their co-existence with
physical networking and with multiple different administrative domains with varying
levels of security. In 6G this concept will be aligned to the idea of being a network of
networks with support of dynamic domain reconfigurations that will make really
challenging to clearly identify the network traffic paths. One of the main problems
associated with this versatility will be the risk of MiTM (Man in The Middle) attack,
where a malicious actor redirects, intercepts and may even alter the communication
between two parties without them noticing. The most common MiTM attack models
are the following:

• Packet Sniffing: captures data packets traveling through the network to
extract sensitive data, shown in the following workflow (see Figure 49).

• Session Hijacking: the attacker steals the session token from the user and tries
to impersonate with the aim of gaining access to unauthorized content.

• SSL Stripping: downgrade of the HTTPS connection to an HTTP connection by
intercepting and modifying the initial request with the objective of capturing
sensitive data.

• DNS Spoofing: corruption of DNS cache or responses, redirecting the network
flow to a user non-desired malicious site.

7.2 Workflow 3 implementation
7.2.1 Short Description

For the real time mitigation of a Man in The Middle Attack, the Proof of Transit (PoT)
will act as a Path Attestation method, discarding the packets that do not follow the
trusted nodes.

7.2.2 Workflow

The flow begins with the deployment of an SDN (Software Defined Network) and
configuration of the nodes (steps 1 to 7, in Figure 49). Following the paradigm of an
SDN, the Controller, is in responsible for calculating and sharing different parameters
to the nodes among the network through the P4Runtime API [9]. Once that all the
nodes confirm the reception of the parameters, the node configuration procedure will
conclude. Once the controller starts the collector, all the nodes will be capable of

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 77 of 91

executing and verifying the PoT logic as described on PRIVATEERs D4.1 [3] (steps 9 to
28 in Figure 49). Every time the Collector receives the PoT results and metrics, the
Collector will act as the producer, sending the parameters to be consumed by the LoT
Assessment manager through a Kafka Broker.

Figure 49 - MITM detection and mitigation sequence diagram

Figure 50 represents the PoT scenario with an evil node. The malicious node is
intercepting the traffic by impersonating the middle node expected by the previous
hop. Each component of the scenario is a Docker container. The process followed for
testing the OPoT (Ordered Proof of Transit), where an additional mask is added, is the
following one: host 1 (H1) generates traffic, IP packets, with host 2 (H2) destination.
These packets go through P4 nodes, where metrics and actions related with the OPoT
are implemented. The logic is done also by the Controller, responsible for the
configuration of the nodes with OPoT process. Following the same steps mentioned in

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 78 of 91

PRIVATEER D4.1 Section 3.2.3 [3], the cumulative value CML mismatches with the
expected value for the Egress node.

Figure 50: PoT MiTM scenario

For this case, 𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁 = (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑅𝑅𝑅𝑅𝑅𝑅) (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝) is not fulfilled, the malicious node
does not receive the necessary parameters from the controller for the PoT calculation.
Consequently, when the evil node forwards the packet back to the following node on
the established route, the OPoT parameters are not the expected ones. On the egress
node, the verification process will fail, and the packet is discarded as a result, not
arriving at the destination, H2 (see Figure 51).

Figure 51: failed ping for the PoT scenario 2

Looking at the output of the data received by the controller, in the case of the scenario
with the malicious node different parameters stand out (see Figure 52). On one hand,
the middle nodes send information every five packets to the controller, indicating the
correct operation (dropped=0). On the other, egress node sends information for each
packet to the controller reporting that the PoT has failed between H1 and H2
(dropped=1). Another parameter that differs with the output of the scenario shown
on PRIVATEERs D4.1 [3], is the Service Path Identifier, where the value is always equal
to 55, relative to the ICMP echo request. Additionally, a new parameter has been
generated for identification purposes, ServiceID, a UUID (Universally Unique

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 79 of 91

Identifier) that is generated using random numbers. In this case, as there are no
responses from H2, packets related to ICMP echo reply do not appear, which is the
case for the first scenario, with the Service Path Identifier equals to 23.

Figure 52 - Output of the data received by the controller after failed PoT on the PoT scenario 2

7.2.3 APIs/Interfaces

For the integration with the LoT Assessment manager, a Kafka broker is used to save
the metrics generated by the nodes to the collector, where the Collector is the
producer for the Kafka broker and the LoT Assessment manager, the consumer. On
Figure 53, the outcome of the “PoT-tests” Kafka topic is shown. The first lines,
highlighted in green, show the scenario working correctly with no MiTM attack every
5 packets, where the field Dropped is equal to 0. The following lines, highlighted in
pink, represent the outcome of the PoT facing the MiTM attack. The Dropped
parameter is equal to 1 for the egress node, except for every 5 packets, highlighted in
blue, where all the nodes inform of their current status. By having this information, it
can be assumed that the nodes with the IPs 10.0.0.11 and 10.0.0.12 are the expected
ones and in consequence, the attack has been done intercepting the packets for the
node 10.0.0.13.

Figure 53: Kafka PoT-tests topic outcome

7.2.4 Preliminary Results

The process described below outlines the steps involved in processing messages and
evaluating the PoT and the LoT (Level of Trust) values using fuzzy logic. This integration
allows for a robust and scalable solution for real-time data processing.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 80 of 91

Experiments:

1 Ping Sent Between Nodes: A ping is sent between nodes to initiate the PoT
execution (Figure 54).

Figure 54 - Ping address

Reading and Processing Messages: Messages produced by PoT are read, and
the input is processed (Figure 55).

Figure 55 - PoT in JSON format

Task Creation: A new task is created based on the processed messages (Figure
56) and insert to a new row in the MongoDB Database (Figure 57).

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 81 of 91

Figure 56 - Task creation process

Figure 57 - Task table, specific Row related to PoT

Fuzzy Logic Evaluation (Stage 1): The first step of fuzzy logic is the evaluation
of the inputs that we receive based on Time-driven or Event-driven logic
(Figure 58), the result saved on DB (Figure 59).

Figure 58 - Result of the first step of LoT Assessment

Figure 59 - Dimensions table

LoT Evaluation: The LoT evaluation is completed, providing an overall
assessment (Figure 60), eventually saved on DB (Figure 61).

Figure 60 - Final results of the LoT assessment shown in different ways

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 82 of 91

Figure 61 - Final_Trust Result

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 83 of 91

8 Conclusion & next steps
The demonstration of the Release A of the PRIVATEER Framework shows the
significant progress made toward addressing the project’s objectives. The three
workflows serve as verification and evidence of the interoperability between
components and comprise a stepping stone toward the project’s Release B.

These workflows also showcase the progress and achievements of the initial
integration activities between components of the different Work Packages. Each
workflow was chosen to implement specific parts of the originally identified
PRIVATEER Use Cases originally identified in D2.2. This mapping is described in Annex
B in detail. Future work will focus on expanding the functionalities and integration
capabilities, leading up to the second -and final- release scheduled for M36 of the
project.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 84 of 91

References

[1] PRIVATEER project "Deliverable D2.2 - Use cases, requirements and design
report".

[2] PRIVATEER project "Deliverable D3.1 - Decentralised Robust Security Analytics
Enablers Rel. A".

[3] PRIVATEER project "Deliverable 4.1 - Privacy-aware slicing and orchestration
enablers – Rel. A".

[4] PRIVATEER project "Deliverable D5.1 - Distributed attestation, identity and threat
sharing enablers – Rel. A. - ToC and next steps".

[5] “A Technical Analysis of Confidential Computing,” Confidential Computing
Consortium, 2022.

[6] S. Kapil, K. Veronika, S. Jon, L. David, O. Seosamh, C. Darragh and K. Lorek, Intel®
Software Guard Extensions (Intel® SGX) – Key Management Reference
Application (KMRA) on the 3rd and 4th Gen Intel® Xeon® Scalable Processors,
2022.

[7] ETSI, “Network Functions Virtualisation (NFV): Trust: Report on Attestation
Technologies and Practices for Secure Deployments, 2017.

[9] “P4 Runtime Specification,” [Online]. Available: https://p4.org/p4-
spec/p4runtime/main/P4Runtime-Spec.html.

[10] “Whitepaper Reference Architecture for Confidential Computing on SKT 5G
MEC,” Intel, 2021.

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 85 of 91

Annex A: Mapping of Workflows to
PRIVATEER Use Cases

The workflows presented in this deliverable constitute an initial step towards the
implementation of the PRIVATEER Use Cases, described in D2.2. The Table 6 summarizes the
mapping of the Workflows to the Use Cases as of Release A of the PRIVATEER Demonstrator.
Below, we also present in detail the parts of the UCs sequence diagrams that are currently
covered by the Workflows. The remaining integrations for implementing the UCs sequence
diagrams and scenarios detailed in D2.2 will take place and be fully demonstrated in Release
B.

Table 6 Workflows to PRIVATEER Use Cases Mapping

Use Case Related Workflows
UC1 – Edge Service Compromise W2
UC2 - Privacy-friendly security service orchestration for logistics W1, W3
UC3 - Verification of Mass Transportation application (phase 2) W1
UC4 - Onboarding of neutral host edge network W2
UC5 - Multi-domain infrastructure verification and PoT W3

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 86 of 91

UC1 & Workflow 2 Mapping

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 87 of 91

UC2 to Workflows 1 and 3 Mapping

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 88 of 91

UC3 to Workflow 1 Mapping

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 89 of 91

UC4 to Workflow 2 Mapping

D2.3 – PRIVATEER framework demonstrator – Rel. A

www.privateer-project.eu © PRIVATEER Consortium Page 90 of 91

UC5 to Workflow 3 Mapping

D2.3 – PRIVATEER framework demonstrator – Rel. A

Contact Us
privateer-contact@spacemaillist.eu

PRIVATEER has received funding from the Smart Networks and
Services Joint Undertaking (SNS JU) under the European
Union’s Horizon Europe research and innovation programme
under Grant Agreement No. 101096110

Consortium

Space Hellas
www.space.gr NCSR Demokritos

www.demokritos.gr Telefonica I&D
www.telefonica.com

RHEA SYSTEM SA
www.rheagroup.com INESC TEC

www.inesctec.pt Infili Technologies PC
www.infili.com

UBITECH LTD
www.ubitech.eu IQUADRAT R&D

www.ucm.es ICCS
www.iccs.gr

FORSVARETS
FORSKNINGSINSTITUTT
www.ffi.no

UNIVERSIDAD
COMPLUTENSE DE MADRID
www.ucm.es

INSTITUTO POLITÉCNICO
DO PORTO
www.ipp.pt

 ERTICO ITS EUROPE
www.ertico.com

	1 Introduction
	1.1 Purpose of the document
	1.2 Relation to other project work
	1.3 Structure of the document

	2 PRIVATEER Architecture
	3 Integration Methodology
	3.1 GitHub
	3.2 Harbor
	3.3 Slack

	4 Integration Environment
	5 Workflow 1: Enhanced Security for Virtualized Infrastructures & Level of Trust Assessment
	5.1 Attack models
	5.2 Workflow 1 implementation
	5.2.1 Short Description
	5.2.2 Detailed Description
	5.2.2.1 Deployment of the infrastructure and containerised applications including Security Probes and μProbes
	5.2.2.2 Runtime LoT Assessment based on Attestation results from Security Probes and μProbes

	5.2.3 APIs/interfaces
	5.2.3.1 Step #1 API-ID: INT_SCB_DLT Storage and consumption of DLT Information.
	5.2.3.2 Step #2 API-ID: INT_ORC Service Deployment to the underlying infrastructure
	5.2.3.3 Step #3 API-ID: INT_ORC_LOT Service deployment notification (including service graph chain) & Consume service deployment notification
	5.2.3.4 Step #4 API-ID: INT_LOT_SCB Trust policy specification.
	5.2.3.5 Step #5 API-ID: INT_SCB_SP Request for attestation.
	5.2.3.6 Step #6 API-ID: INT_SP_SCB Attestation report
	5.2.3.7 Step #7 API-ID: INT_LOT_SCB Consume JSON structure from Smart Contract and Report LoT new value
	5.2.3.8 Step #8 API-ID: INT_ORC_SCB Consume LoT value and Migration decision.

	5.2.4 Preliminary Results

	5.3 FPGA attestation
	5.3.1 APIs – Interfaces
	5.3.2 Preliminary Results

	6 Workflow 2: DDoS detection by Federated NWDAF & CTI Sharing and SLA Management
	6.1 Attack models
	6.2 Workflow 2 implementation
	6.2.1 Short Description
	6.2.2 Detailed Description
	6.2.3 APIs/Interfaces
	6.2.4 Preliminary Results
	6.2.5 Workflow 2 Demonstrators
	6.2.5.1 Anomaly detection & IoC posting
	6.2.5.2 XAI framework
	6.2.5.3 Hardware-accelerated analytics

	7 Workflow 3: Real-Time Mitigation of Man in the Middle Attacks
	7.1 Attack models
	7.2 Workflow 3 implementation
	7.2.1 Short Description
	7.2.2 Workflow
	7.2.3 APIs/Interfaces
	7.2.4 Preliminary Results

	8 Conclusion & next steps
	References
	Annex A: Mapping of Workflows to PRIVATEER Use Cases

