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Motivation & Objectives

€& Reduce aviation’s climate impact
® Hybrid electric propulsion

& IMOTHEP’s top level goals:
® Building the overall European development roadmap for HEP

® Achieving a key step in assessing potential benefits of HEP for emissions reductions
of commercial aircraft

& Aero-propulsive integration essential for overall assessment
® Investigation of aerodynamic aspects of regional propeller-driven transport aircraft
with distributed propulsion
® Propeller design* :
) ] ) Trade-off in aero-
€® Basic sensitivity studies to assess effects on propulsive assessment:
®  Aero-propulsive efficiency (“direct” efficiency improvements) (LD).es I
©® Potential of lift augmentation (“indirect” efficiency improvements) iy lisdats
® Integration design & performance assessment .

performance
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Content

& Concept / Geometry

& Results
® Comparison / Capabilities of numerical methods
® Propeller Position
® Cruise Flight
® High-Lift
©® Propulsor Design / Integration
® Take-Off Performance

¢ Summary / Conclusion
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Concept / Geometry

® Short range regional aircraft

® «Plug-in-hybrid» with range-extender

@ Overall aircraft design within IMOTHEP*

® Aero studies based on three different design
loop stages

©® Detailed aerodynamic high-lift design (single slotted
drop-hinge flaps, no l.e. device) considering
kinematics
Payload 40 PAX (4240 kqg)
Range (Design / Typical) 600 nm / 200 nm
Cruise Mach number 0.4
Cruise Altitude 20000 ft
TOFL @ SL,ISA 1100 m
Approach Speed 115 kts

IMOT WFIEIR

EEEEEEEEEEEEEEEEEEEEEEE

Loop O design*
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*see Atanasov, G.: ,IMOTHEP Plug-In Hybrid-Electric Aircraft Concept: REG-RAD”




Comparison of Numerical Methods

¢ Utilization of methods with varying fidelity within
studies I

-
- -

® Mi-Fi (Unsteady): RAMSYS, FlightStream o.zI ')—;—.—'ﬂ

® Hi-Fi (RANS): elsA, TAU (w/ actuator disk)

& Isolated Propeller:
@ Viscous codes all reflect similar trend for nq,
® Larger discrepancies for inviscid codes

Design thrust

1
----- RAMSYS (inviscid)
----- FlightStream (inviscid)

nprop

----- elsA euler (inviscid)

elsA Navier Stokes

FlightStream Viscous

TAU AD from viscous airfoil polars
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Thrust [N]
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Comparison of Numerical Methods

¢ Utilization of methods with varying fidelity within T s somos 79
studies Nl T
® Mi-Fi (Unsteady): RAMSYS, FlightStream ’\ S

® Hi-Fi (RANS): elsA, TAU (w/ actuator disk)

& Isolated Propeller:
@ Viscous codes all reflect similar trend for nq, — ,-
® Larger discrepancies for inviscid codes 1300 ——5——+——— S

- -

1400}

prop id
& Installed Propeller:
@ Installation effects on propellers: I D
¢ - 4-0.01
® Thrust: Trends agree well between FlightStream (MiFi) & S G DU 1o
TAU (RANS), higher offset with “full conf” i ) .
@ npp: Disagreement in trend e e 00'015‘::‘::72:3225
® Installation effects on wing: ol T )L e | ]
® Airframe coefficients: Generally good agreement in trends with 2ol o o00sk |~ 1o 7 ooss
Oﬁsets | | ———— POnN (w/ blade forces) [l POn (w/blade forces)|

L ! . ! L ! J . ! ! 1 L L L
i 0 1 & 0 17004
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Propeller Position: Cruise Flight

l [l Baseline
P4 Tk B wid
] . ”/7 . Close
& Results based on MiFi methods: |
® Good agreement between CIRA’s and Safran Tech’s T
methods |
P2
¢ Impact of streamwise propeller position: 1l
©® Reduced prop-wing distance: p1 |“
® Increased thrust / prop efficiencies |11
® Stronger thrust / torque oscillations
AOAZD’ Reduced prop-wing distance / stronger oscillations

A 4
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Propeller Position: High-Lift

€& Results based on RANS computations

& Impact of propeller position:
® Modest impact for moderate number of props (n) /
large D,
@ Significant impact on AC_ ., for highly distributed
props /small D,

® Best low speed performance achieved at rather
unfavorable propeller positions w.r.t. cruise performance
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Increase in maximum
effective lift coefficient
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Propeller Count: High-Lift

Maximum lift coefficient Maximum effective lift coefficient
4 . . 4
| o w/0 wing tip I
. BSL prop

Cl max
CL,eff,max

| I | | I |
2.3 4 6 8 10 12 14 16 2% 72 4 & 8

10 12 14 16

®  AC_ ¢ max Strongly dependent on propeller positions

@ Maximum (effective) lift coefficient (C_ . max) iNcreases with number of propellers (n) (up to AC| o max =
1.14 (+42%)). Curve flattens at large n (most likely) due to low D,,,/C ratios

@& 2 prop. configuration achieves favorable AC_ .« ., but certification requirements have to be kept in mind
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Propulsor Design / Integration

Cruise Flight

& Large nacelles due to OAD requirements (accommodation of
landing gear, gas turbine, batteries, etc.)

@ Nacelle design with focus on performance in cruise flight
(mld CI"UISG: M=O.4, CL,MCR:O'7974)

& Improvement in aerodynamic efficiency by approx. 10 %
© Reduction in required propulsive power by 6 %

Aerodynamic Efficiency
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Propulsor Design / Integration

Low Speed | w/0 strakes | | w/ strakes |

& High-lift performance degraded due to “long
nacelle”
©® Reduction in H/L device surface size

© Delay of flow separation due to

nacelle 1 & 4 strake (AC_ ,.x=0.09)
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Propulsor Design / Integration

Low Speed
100
® O/B flow separation promoted by propeller T .
slipstream 15} sok-
& Optimization of O/B airfoil with droop Bl o
. . . . S Q L
® Objectives: Increase qa,,,, in low speed while © 5 2 —
maximizing L/D in cruise flight o5r T
©® Wing integration: of E— g ! rmod il
© Improved stall pattern e ;33:::2::&?3:22&::; or : rod irol w choop v2
©® Drag penalty (=3 d.c. due to airfoil mod. + 4 d.c. A M e B
with additionally modified twist distribution) in
cruise flight based on preliminary lifting line )
Baseline Modified airfoil v2

[
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Take-Off Performance
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Modified high-lift design with sealed flap in take-off
C| max target still achieved
AL/D=+3.9% , ACL32/CD=+2% @ C_,2min
AL/D=+15% , ACL32/CD=+4+12% @ C,=1.37
Further potential to increase performance

Improve take-off performance by trading excessive C| .y fOr better climb
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Summary / Conclusion

€& MiFi tools: Suitable to estimate trends under cruise flight conditions and efficient
way to analyze transient effects

& Streamwise propeller positions affect magnitude of load oscillations and lift
augmentation potential in low speed

& Propeller count:

® High count: Large lift augmentation potential (up to AC ¢ ., = 1.14 (+42%)) but
at the cost of unfavorable vertical propeller position w.r.t. cruise flight performance*

©® Lower propeller count: Less potential, more robust against (vertical) propeller
position*

¢® Nacelles can have a meaningful impact on performance (cruise & low speed) due
to their size and position and may have to be counter-acted by mitigation
strategies (propeller position, strakes, ...)

® DP may promote tendencies of O/B flow separation
@ Potential to trade excessive C . max IN take-off for improved climb-ratio

\ = =
HIHMHW%”E”@ *see D. Keller, Aerodynamic Investigation of the High-Lift Performance of a Propeller-Driven 15
Regional Transport Aircraft with Distributed Propulsion, J. Phys. Conf. Ser. 2526 (2023)



Current Work

& Impact of propulsor failures
& Lift augmentation potential in approach/landing
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Thank you for
your attention!

https://www.imothep-project.eu

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 875006

IMOT IAIEIR

EEEEEEEEEEEEEEEEEEEEE




