

Aerodynamic Investigation of a Propeller-Driven Transport Aircraft with Distributed Propulsion within the Imothep Project / ECCOMAS 2024

- **D. Keller/ DLR**
- A. Visingardi/ CIRA
- L. Wiart/ Safran Tech
- Y. Maldonado/ Safran Tech

F. Morlando/ CIRA

05/06/2024

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 875006

IMOTHEP in a nutshell

Starting date

01/01/2020

Project acronym & title IMOTHEP – Investigation and Maturation of Technologies for Hybrid Electric Propulsion

Motivation & Objectives

Reduce aviation's climate impact

Hybrid electric propulsion

IMOTHEP's top level goals:

- Building the overall European development roadmap for HEP
- Achieving a key step in assessing potential benefits of HEP for emissions reductions of commercial aircraft

Aero-propulsive integration essential for overall assessment

- Investigation of aerodynamic aspects of regional propeller-driven transport aircraft with distributed propulsion
- Propeller design*
- Basic sensitivity studies to assess effects on
 - Aero-propulsive efficiency ("direct" efficiency improvements)
 - Potential of lift augmentation ("indirect" efficiency improvements)
- Integration design & performance assessment

*see: Y. Maldonado, F. Tong-Yette, L. Delcambre and B. Rodriguez, "Propeller predesign for distributed propulsion architectures," in *3AF - Towards Sustainable Aviation Summit*, Toulouse, 2022

Content

Concept / Geometry

Results

- Comparison / Capabilities of numerical methods
- Propeller Position
- Cruise Flight
- High-Lift
- Propulsor Design / Integration
- Take-Off Performance

Summary / Conclusion

Concept / Geometry

- Short range regional aircraft
- Plug-in-hybrid» with range-extender
- Overall aircraft design within IMOTHEP*
- Aero studies based on three different design loop stages
- Detailed aerodynamic high-lift design (single slotted drop-hinge flaps, no l.e. device) considering kinematics

TLARS	
Payload	40 PAX (4240 kg)
Range (Design / Typical)	600 nm / 200 nm
Cruise Mach number	0.4
Cruise Altitude	20000 ft
TOFL @ SL,ISA	1100 m
Approach Speed	115 kts

*see Atanasov, G.: "IMOTHEP Plug-In Hybrid-Electric Aircraft Concept: REG-RAD"

Comparison of Numerical Methods

Otilization of methods with varying fidelity within studies

- Mi-Fi (Unsteady): RAMSYS, FlightStream
- Hi-Fi (RANS): elsA, TAU (w/ actuator disk)

Isolated Propeller:

- Viscous codes all reflect similar trend for $\eta_{p(T)}$
- Larger discrepancies for inviscid codes

Comparison of Numerical Methods

Otilization of methods with varying fidelity within studies

- Mi-Fi (Unsteady): RAMSYS, FlightStream
- Hi-Fi (RANS): elsA, TAU (w/ actuator disk)

Isolated Propeller:

- Viscous codes all reflect similar trend for $\eta_{p(T)}$
- Larger discrepancies for inviscid codes

Installed Propeller:

- Installation effects on propellers:
- Thrust: Trends agree well between FlightStream (MiFi) & TAU (RANS), higher offset with "full conf"
- η_{prop}: Disagreement in trend
- Installation effects on wing:
 - Airframe coefficients: Generally good agreement in trends with offsets

Propeller Position: Cruise Flight

Results based on MiFi methods:

Good agreement between CIRA's and Safran Tech's methods

2200

2000

Ê 1800

160

1400

1200

Impact of streamwise propeller position:

Reduced prop-wing distance:

AoA=0°

GETTING * HYBRID * ELECTRIC

- Increased thrust / prop efficiencies
- Stronger thrust / torque oscillations

Reduced prop-wing distance / stronger oscillations

P1 (CIRA)

P2 (CIRA)
P3 (CIRA)

P4 (CIRA

📥 - P1 (ST)

- P2 (ST)

- + - P4 (ST)

80 120 160 200 240 280 320 360

Theta (°)

Propeller Position: High-Lift

Increase in maximum effective lift coefficient ΔC_{Leff,max}: 0.2 0.4 0.6 0.8 1

Impact of propeller position:

- Modest impact for moderate number of props (n) / large D_p
- Significant impact on ΔC_{L,max} for highly distributed props /small D_p
 - Best low speed performance achieved at rather unfavorable propeller positions w.r.t. cruise performance

Propeller Count: High-Lift

• $\Delta C_{L,eff,max}$ strongly dependent on propeller positions

- Maximum (effective) lift coefficient ($C_{L,eff,max}$) increases with number of propellers (n) (up to $\Delta C_{L,eff,max} = 1.14 (+42\%)$). Curve flattens at large n (most likely) due to low D_{prop}/c_{ref} ratios
- 2 prop. configuration achieves favorable $\Delta C_{L,eff,max}$ but certification requirements have to be kept in mind

Propulsor Design / Integration

Cruise Flight

- Large nacelles due to OAD requirements (accommodation of landing gear, gas turbine, batteries, etc.)
- Nacelle design with focus on performance in cruise flight (mid cruise: M=0.4, C_{L,MCR}=0.7974)
- Improvement in aerodynamic efficiency by approx. 10 %
- Reduction in required propulsive power by 6 %

Aerodynamic Efficiency

11

Propulsor Design / Integration

Propulsor Design / Integration

Low Speed

- O/B flow separation promoted by propeller slipstream
- Optimization of O/B airfoil with droop
 - Objectives: Increase α_{max} in low speed while maximizing L/D in cruise flight
 - Wing integration:
 - Improved stall pattern
 - Drag penalty (≈3 d.c. due to airfoil mod. + 4 d.c. with additionally modified twist distribution) in cruise flight based on preliminary lifting line assessment

Take-Off Performance

- Improve take-off performance by trading excessive C_{L,eff,max} for better climb ratio
- Modified high-lift design with sealed flap in take-off
- C_{L,max} target still achieved
- ♦ $\Delta L/D = +3.9\%$, $\Delta CL^{3/2}/CD = +2\%$ @ $C_{L,v2min}$
- $\Delta L/D = +15\%$, $\Delta CL^{3/2}/CD = +12\%$ @ $C_L = 1.37$
- Further potential to increase performance

Summary / Conclusion

- MiFi tools: Suitable to estimate trends under cruise flight conditions and efficient way to analyze transient effects
- Streamwise propeller positions affect magnitude of load oscillations and lift augmentation potential in low speed
- Propeller count:
 - High count: Large lift augmentation potential (up to $\Delta C_{L,eff,max} = 1.14 (+42\%)$) but at the cost of unfavorable vertical propeller position w.r.t. cruise flight performance*
 - Lower propeller count: Less potential, more robust against (vertical) propeller position*
- A Nacelles can have a meaningful impact on performance (cruise & low speed) due to their size and position and may have to be counter-acted by mitigation strategies (propeller position, strakes, ...)
- OP may promote tendencies of O/B flow separation
- Potential to trade excessive C_{L,eff,max} in take-off for improved climb-ratio

Current Work

- Impact of propulsor failures
- Lift augmentation potential in approach/landing

Thank you for your attention!

https://www.imothep-project.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 875006

