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Abstract. P versus NP is considered as one of the most important
open problems in computer science. This consists in knowing the answer
of the following question: Is P equal to NP? To attack the P = NP
question the concept of NP-completeness is very useful. If any single
NP-complete problem is in P, then P = NP. We prove there is a problem
in NP-complete and P. Therefore, we demonstrate P = NP.
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1 Introduction

The P versus NP problem is a major unsolved problem in computer science
[1]. This is considered by many to be the most important open problem in the
field [1]. It is one of the seven Millennium Prize Problems selected by the Clay
Mathematics Institute to carry a US$1,000,000 prize for the first correct solution
[1]. It was essentially mentioned in 1955 from a letter written by John Nash to
the United States National Security Agency [1]. However, the precise statement
of the P = NP problem was introduced in 1971 by Stephen Cook in a seminal
paper [5].

In 1936, Turing developed his theoretical computational model [13]. The
deterministic and nondeterministic Turing machines have become in two of the
most important definitions related to this theoretical model for computation [13].
A deterministic Turing machine has only one next action for each step defined
in its program or transition function [13]. A nondeterministic Turing machine
could contain more than one action defined for each step of its program, where
this one is no longer a function, but a relation [13]. Another relevant advance in
the last century has been the definition of a complexity class. A language over
an alphabet is any set of strings made up of symbols from that alphabet [6].
A complexity class is a set of problems, which are represented as a language,
grouped by measures such as the running time, memory, etc [6].

The set of languages decided by deterministic Turing machines within time
f is an important complexity class denoted TIME(f(n)) [13]. In addition, the
complexity class NTIME(f(n)) consists in those languages that can be decided
within time f by nondeterministic Turing machines [13]. The most important
complexity classes are P and NP . The class P is the union of all languages in
TIME(nk) for every possible positive fixed constant k [13]. At the same time,



NP consists in all languages in NTIME(nk) for every possible positive fixed
constant k [13]. NP is also the complexity class of languages whose solutions
may be verified in polynomial time [13]. The biggest open question in theoretical
computer science concerns the relationship between these classes: Is P equal to
NP? In 2012, a poll of 151 researchers showed that 126 (83%) believed the answer
to be no, 12 (9%) believed the answer is yes, 5 (3%) believed the question may
be independent of the currently accepted axioms and therefore impossible to
prove or disprove, 8 (5%) said either do not know or do not care or don’t want
the answer to be yes nor the problem to be resolved [9].

To attack the P = NP question the concept of NP–completeness is very
useful [1]. NP–complete problems are a set of problems to each of which any other
NP problem can be reduced in polynomial time, and whose solution may still be
verified in polynomial time [13]. That is, any NP problem can be transformed
into any of the NP–complete problems [13]. If any single NP–complete problem
can be solved in polynomial time, then every NP problem has a polynomial time
algorithm [6]. In this work, we prove there is a problem in NP–complete and P .
Thus, we demonstrate P = NP [13]. There are stunning practical consequences
when P = NP [13]. Certainly, P versus NP is one of the greatest open problems
in science and a correct solution for this incognita will have a great impact not
only for computer science, but for many other fields as well [1].

2 Theory

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of
finite strings over Σ [3]. A Turing machine M has an associated input alphabet
Σ [3]. For each string w in Σ∗ there is a computation associated with M on
input w [3]. We say that M accepts w if this computation terminates in the
accepting state, that is M(w) = “yes” [3]. Note that M fails to accept w either
if this computation ends in the rejecting state, that is M(w) = “no”, or if the
computation fails to terminate [3].

The language accepted by a Turing machine M , denoted L(M), has an as-
sociated alphabet Σ and is defined by:

L(M) = {w ∈ Σ∗ : M(w) = “yes”}.

We denote by tM (w) the number of steps in the computation of M on input w
[3]. For n ∈ N we denote by TM (n) the worst case run time of M ; that is:

TM (n) = max{tM (w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [3]. We say that M runs in
polynomial time if there is a constant k such that for all n, TM (n) ≤ nk + k [3].
In other words, this means the language L(M) can be accepted by the Turing
machine M in polynomial time. Therefore, P is the complexity class of languages
that can be accepted in polynomial time by deterministic Turing machines [6].
A verifier for a language L is a deterministic Turing machine M , where:

L = {w : M(w, c) = “yes” for some string c}.



We measure the time of a verifier only in terms of the length of w, so a polynomial
time verifier runs in polynomial time in the length of w [3]. A verifier uses
additional information, represented by the symbol c, to verify that a string w is
a member of L. This information is called certificate. NP is also the complexity
class of languages defined by polynomial time verifiers [13].

A function f : Σ∗ → Σ∗ is a polynomial time computable function if some
deterministic Turing machine M , on every input w, halts in polynomial time with
just f(w) on its tape [16]. Let {0, 1}∗ be the infinite set of binary strings, we say
that a language L1 ⊆ {0, 1}∗ is polynomial time reducible to a language L2 ⊆
{0, 1}∗, written L1 ≤p L2, if there is a polynomial time computable function
f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

An important complexity class is NP–complete [8]. A language L ⊆ {0, 1}∗ is
NP–complete if

– L ∈ NP , and
– L′ ≤p L for every L′ ∈ NP .

If L is a language such that L′ ≤p L for some L′ ∈ NP–complete, then L
is NP–hard [6]. Moreover, if L ∈ NP , then L ∈ NP–complete [6]. A principal
NP–complete problem is SAT [8]. An instance of SAT is a Boolean formula φ
which is composed of

1. Boolean variables: x1, x2, . . . , xn;
2. Boolean connectives: Any Boolean function with one or two inputs and one

output, such as ∧(AND), ∨(OR), ⇁(NOT), ⇒(implication), ⇔(if and only
if);

3. and parentheses.

A truth assignment for a Boolean formula φ is a set of values for the variables
in φ. A satisfying truth assignment is a truth assignment that causes φ to be
evaluated as true. A formula with a satisfying truth assignment is a satisfiable
formula. The problem SAT asks whether a given Boolean formula is satisfiable
[8]. We define a CNF Boolean formula using the following terms. A literal in
a Boolean formula is an occurrence of a variable or its negation [6]. A Boolean
formula is in conjunctive normal form, or CNF , if it is expressed as an AND of
clauses, each of which is the OR of one or more literals [6]. A Boolean formula is
in 3-conjunctive normal form or 3CNF , if each clause has exactly three distinct
literals [6].

For example, the Boolean formula:

(x1∨⇁ x1∨⇁ x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (⇁ x1∨⇁ x3∨⇁ x4)

is in 3CNF . The first of its three clauses is (x1∨⇁ x1∨⇁ x2), which contains
the three literals x1, ⇁ x1, and ⇁ x2. Another relevant NP–complete language is



3CNF satisfiability, or 3SAT [6]. In 3SAT , it is asked whether a given Boolean
formula φ in 3CNF is satisfiable. Many problems have been proved that belong
to NP-complete by a polynomial time reduction from 3SAT [8]. For example, the
problem NAE 3SAT defined as follows: Given a Boolean formula φ in 3CNF , is
there a truth assignment such that each clause in φ has at least one true literal
and at least one false literal?

A logarithmic space Turing machine has a read-only input tape, a write-
only output tape, and a read/write work tape [16]. The work tape may contain
O(log n) symbols [16]. In computational complexity theory, LOGSPACE is the
complexity class containing those decision problems that can be decided by a
logarithmic space Turing machine which is deterministic [13]. NLOGSPACE
is the complexity class containing the decision problems that can be decided by
a logarithmic space Turing machine which is nondeterministic [13]. A Boolean
formula is in 2-conjunctive normal form, or 2CNF , if it is in CNF and each
clause has exactly two distinct literals. There is a problem called 2SAT , where
we asked whether a given Boolean formula φ in 2CNF is satisfiable. 2SAT is
complete for NLOGSPACE [13]. Another special case is the class of problems
where each clause contains XOR (i.e. exclusive or) rather than (plain) OR op-
erators. This is in P , since an XOR SAT formula can also be viewed as a system
of linear equations mod 2, and can be solved in cubic time by Gaussian elimina-
tion [12]. We denote the XOR function as ⊕. The XOR 2SAT problem will be
equivalent to XOR SAT, but the clauses in the formula have exactly two distinct
literals. XOR 2SAT is in LOGSPACE [2], [15].

3 Result

Definition 1. MINIMUM EXCLUSIVE-OR 2-UNSATISFIABILITY
INSTANCE: A positive integer K and a formula φ that is an instance of

XOR 2SAT.
QUESTION: Is there a truth assignment in φ such that at most K clauses

are unsatisfiable?
We denote this problem as MIN ⊕ 2UNSAT .

Theorem 1. MIN ⊕ 2UNSAT ∈ NP–complete.

Proof. It is trivial to see MIN⊕2UNSAT ∈ NP [13]. Given a Boolean formula
φ in 3CNF with n variables and m clauses, we create the following formulas for
each clause ci = (x ∨ y ∨ z) in φ, where x, y and z are literals,

Pi = (x⊕ y) ∧ (y ⊕ z) ∧ (x⊕ z).

We can see Pi has at most one unsatisfiable clause if and only if at least one
member of {x, y, z} is true and at least one member of {x, y, z} is false. Hence,
we can create the Boolean formula ψ as the conjunction of the Pi formulas for
every clause ci in φ, such that ψ = P1 ∧ . . . ∧ Pm. Finally, we obtain that

φ ∈ NAE 3SAT if and only if (ψ,m) ∈MIN ⊕ 2UNSAT.



Consequently, we prove NAE 3SAT ≤p MIN ⊕ 2UNSAT where NAE 3SAT ∈
NP–complete. To sum up, we show MIN ⊕ 2UNSAT ∈ NP–hard and MIN ⊕
2UNSAT ∈ NP and thus, MIN ⊕ 2UNSAT ∈ NP–complete.

Theorem 2. MIN ⊕ 2UNSAT ∈ P .

This problem is solved by the algorithm ALGO which receives as input an in-
stance of MIN⊕2UNSAT . In this algorithm, we represent the Boolean formula
φ as a set of clauses such that a clause (x ⊕ y) is equal to (y ⊕ x) where x and
y are literals. The problem is solved by an inner procedure called SOLUTION .
The algorithm SOLUTION receives the Boolean formula φ and a set S of
integers. The procedure SOLUTION accepts if and only if there is a truth as-
signment where there are at most K ′ clauses which are unsatisfiable in φ and
K ′ ∈ S. We reject in SOLUTION when S is equal to the empty set ∅, because
in that case there could be at most K ′ clauses which are unsatisfiable in φ but
K ′ /∈ S. On the other hand, we accept when the Boolean formula φ is empty,
that is when φ = ∅, because for every integer K ′ ∈ S there is always at most
K ′ clauses which are unsatisfiable in the empty formula. In case the number
0 is in S, then that will mean there could be at most 0 clauses which are un-
satisfiable in φ. This case will be true if and only if φ ∈ XOR 2SAT. For that
reason, we accept when φ ∈ XOR 2SAT else we remove this false case from S.
This three main conditional statements can be done in polynomial time since
XOR 2SAT ∈ LOGSPACE and LOGSPACE ⊆ P [13].

Next, we iterate from each pair of clauses ci, cj ∈ φ just checking whether
ci = (x ⊕ y) and cj = (x⊕ ⇁ y). In case of these clauses exists in φ, then for
every truth assignment one of these clauses will be satisfiable and the other will
be unsatisfiable in φ. In this way, we can remove them from φ and increment
a variable num which indicates the number of obligatory unsatisfiable clauses
for every truth assignment in the original φ (that is the formula which exists
before removing the pair of clauses). After that, we subtract the number num
from every integer K ′ ∈ S, because for every number K ′ ∈ S there must be at
most K ′− num clauses which are unsatisfiable in φ since there are num clauses
that are obligatory unsatisfiable in the original φ. We add the new elements in a
new set S′. In case of K ′ ∈ S and K ′ − num < 0, then we will not consider this
number K ′−num in S′ since it cannot exist at a negative upper bound K ′−num
of at most K ′ − num clauses which are unsatisfiable in φ. This iteration can be
done in polynomial time since we iterate quadratically from the clauses of φ and
linear from the elements in S.

Finally, we iterate from each pair of clauses ci, cj ∈ φ just checking whether
(x⊕ y) and cj = (x⊕ z). In case of these clauses exists in φ, then for every truth
assignment

– when the two clauses are unsatisfiable in φ then (z⊕⇁ y) is satisfiable in φ,
– and when the two clauses are satisfiable in φ then (z⊕⇁ y) is satisfiable in
φ,

– and when one clause is unsatisfiable and the other satisfiable in φ then
(z⊕⇁ y) is unsatisfiable in φ.



Algorithm 1 ALGO’s Polynomial Algorithm

Proof. 1: procedure ALGO(φ,K) . Appropriate input (φ,K) for
MIN ⊕ 2UNSAT

2: return SOLUTION(φ, {K}) . Convert the second parameter to a set
3: end procedure
4: procedure SOLUTION(φ, S) . A set φ of clauses and a set S of integers
5: if S = ∅ then . If the set is empty
6: return “no” . Reject
7: else if φ = ∅ then . If φ is equal to the empty set
8: return “yes” . Accept
9: else if 0 ∈ S then . If S contains the number 0

10: if φ ∈ XOR 2SAT then . If φ is satisfiable
11: return “yes” . Accept
12: else
13: S ← S − {0} . Remove the number 0 from S
14: end if
15: end if
16: num← 0 . Initialize num on 0
17: for ci ∈ φ do . Iterate for each clause ci in φ
18: for cj ∈ φ do . Iterate for each clause cj in φ
19: if ci = (x⊕ y) ∧ cj = (x⊕⇁ y) then
20: num← num+ 1 . Increment num by 1
21: φ← φ− {(x⊕ y), (x⊕⇁ y)} . Remove the clauses from φ
22: end if
23: end for
24: end for
25: S′ ← ∅ . Initialize S′ to the empty set
26: for i ∈ S do . Iterate for each integer i in S
27: if (i− num) ≥ 0 then
28: S′ ← S′ ∪ {(i− num)} . Add the number (i− num) to S′

29: end if
30: end for
31: for i ∈ S′ do . Iterate for each integer i in S′

32: if (i− 2) ≥ 0 then
33: S′ ← S′ ∪ {(i− 2)} . Add the number (i− 2) to S′

34: end if
35: end for
36: for ci ∈ φ do . Iterate for each clause ci in φ
37: for cj ∈ φ do . Iterate for each clause cj in φ
38: if ci = (x⊕ y) ∧ cj = (x⊕ z) then
39: φ← φ− {(x⊕ y), (x⊕ z)} . Remove the clauses from φ
40: φ← φ ∪ {(z⊕⇁ y)} . Add a new clause into φ
41: return SOLUTION(φ, S′) . Recursively
42: end if
43: end for
44: end for
45: if S′ = ∅ then . If the set S′ is empty
46: return “no” . Reject
47: else
48: return “yes” . Otherwise accept
49: end if
50: end procedure



In the new formula φ after removing the two clauses and adding the new one,
we can consider for each integer K ′ ∈ S′ only the two cases K ′ − 2 (which is
when the two clauses are unsatisfiable in φ) and K ′ (for the other cases). Since
the number K ′ is already in the set, then we will only need to add K ′− 2 to S′.
In case of K ′−2 is negative, then we ignore it since it cannot exist at a negative
upper bound K ′ − 2 of at most K ′ − 2 clauses which are unsatisfiable in φ.
Hence, we call recursively to the procedure SOLUTION with the new Boolean
formula φ and the set S′. In the final step, when there is no a pair of clauses
ci, cj ∈ φ which contain the same literal, then we can accept if S′ 6= ∅ because
all the clauses in φ could be arbitrarily unsatisfiable or satisfiable and therefore,
we can guarantee there is a truth assignment where there are at most K ′ clauses
which are unsatisfiable in φ and K ′ ∈ S′. We also reject in SOLUTION when
S′ is equal to the empty set ∅, because in that case there could be at most K ′

clauses which are unsatisfiable in φ but K ′ /∈ S′. This last iteration can be done
in polynomial time since we iterate quadratically from the clauses of φ and linear
from the elements in S′. At the end, we solve MIN ⊕ 2UNSAT in polynomial
time and thus, MIN ⊕ 2UNSAT ∈ P .

Lemma 1. P = NP .

Proof. If any single NP–complete problem can be solved in polynomial time,
then every NP problem has a polynomial time algorithm [6]. Hence, this is a
direct consequence of Theorems 1 and 2.

4 Conclusion

No one has been able to find a polynomial time algorithm for any of more than
300 important known NP–complete problems [8]. A proof of P = NP will have
stunning practical consequences, because it leads to efficient methods for solving
some of the important problems in NP [5]. The consequences, both positive and
negative, arise since various NP–complete problems are fundamental in many
fields [5]. This result explicitly concludes with the answer of the P versus NP
problem: P = NP .

Cryptography, for example, relies on certain problems being difficult. A con-
structive and efficient solution to an NP–complete problem such as 3SAT will
break most existing cryptosystems including: Public-key cryptography [10], sym-
metric ciphers [11] and one-way functions used in cryptographic hashing [7].
These would need to be modified or replaced by information-theoretically secure
solutions not inherently based on P–NP equivalence.

There are enormous positive consequences that will follow from rendering
tractable many currently mathematically intractable problems. For instance,
many problems in operations research are NP–complete, such as some types
of integer programming and the traveling salesman problem [8]. Efficient solu-
tions to these problems have enormous implications for logistics [5]. Many other
important problems, such as some problems in protein structure prediction, are
also NP–complete, so this will spur considerable advances in biology [4].



But such changes may pale in significance compared to the revolution an
efficient method for solving NP–complete problems will cause in mathematics
itself. Stephen Cook says: “ . . .it would transform mathematics by allowing a
computer to find a formal proof of any theorem which has a proof of a reasonable
length, since formal proofs can easily be recognized in polynomial time.” [5].

Indeed, this proof of P = NP could solve not merely one Millennium Problem
but all seven of them [1]. This observation is based on once we fix a formal system
such as the first-order logic plus the axioms of ZF set theory, then we can find
a demonstration in time polynomial in n when a given statement has a proof
with at most n symbols long in that system [1]. This is assuming that the other
six Clay conjectures have ZF proofs that are not too large such as it was the
Perelman’s case [14].

Besides, a P = NP proof reveals the existence of an interesting relationship
between humans and machines [1]. For example, suppose we want to program
a computer to create new Mozart-quality symphonies and Shakespeare-quality
plays. When P = NP , this could be reduced to the easier problem of writing a
computer program to recognize great works of art [1].
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