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Abstract. P versus NP is considered as one of the most important
open problems in computer science. This consists in knowing the answer
of the following question: Is P equal to NP? To attack the P = NP
question the concept of NP-completeness is very useful. If any single
NP-complete problem is in P, then P = NP. We prove there is a problem
in NP-complete and P. Therefore, we demonstrate P = NP.
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1 Introduction

The P versus NP problem is a major unsolved problem in computer science
[1]. This is considered by many to be the most important open problem in the
field [1]. It is one of the seven Millennium Prize Problems selected by the Clay
Mathematics Institute to carry a US$1,000,000 prize for the first correct solution
[1]. It was essentially mentioned in 1955 from a letter written by John Nash to
the United States National Security Agency [1]. However, the precise statement
of the P = NP problem was introduced in 1971 by Stephen Cook in a seminal
paper [5].

In 1936, Turing developed his theoretical computational model [13]. The
deterministic and nondeterministic Turing machines have become in two of the
most important definitions related to this theoretical model for computation [13].
A deterministic Turing machine has only one next action for each step defined
in its program or transition function [13]. A nondeterministic Turing machine
could contain more than one action defined for each step of its program, where
this one is no longer a function, but a relation [13]. Another relevant advance in
the last century has been the definition of a complexity class. A language over
an alphabet is any set of strings made up of symbols from that alphabet [6].
A complexity class is a set of problems, which are represented as a language,
grouped by measures such as the running time, memory, etc [6].

The set of languages decided by deterministic Turing machines within time
f is an important complexity class denoted TIME(f(n)) [13]. In addition, the
complexity class NTIM E(f(n)) consists in those languages that can be decided
within time f by nondeterministic Turing machines [13]. The most important
complexity classes are P and NP. The class P is the union of all languages in
TIME(n*) for every possible positive fixed constant k [13]. At the same time,



NP consists in all languages in NTIM E(n*) for every possible positive fixed
constant k [13]. NP is also the complexity class of languages whose solutions
may be verified in polynomial time [13]. The biggest open question in theoretical
computer science concerns the relationship between these classes: Is P equal to
NP?1In 2012, a poll of 151 researchers showed that 126 (83%) believed the answer
to be no, 12 (9%) believed the answer is yes, 5 (3%) believed the question may
be independent of the currently accepted axioms and therefore impossible to
prove or disprove, 8 (5%) said either do not know or do not care or don’t want
the answer to be yes nor the problem to be resolved [9].

To attack the P = NP question the concept of NP-completeness is very
useful [1]. NP—-complete problems are a set of problems to each of which any other
NP problem can be reduced in polynomial time, and whose solution may still be
verified in polynomial time [13]. That is, any NP problem can be transformed
into any of the NP-complete problems [13]. If any single NP-complete problem
can be solved in polynomial time, then every N P problem has a polynomial time
algorithm [6]. In this work, we prove there is a problem in NP-complete and P.
Thus, we demonstrate P = NP [13]. There are stunning practical consequences
when P = NP [13]. Certainly, P versus N P is one of the greatest open problems
in science and a correct solution for this incognita will have a great impact not
only for computer science, but for many other fields as well [1].

2 Theory

Let X be a finite alphabet with at least two elements, and let 2* be the set of
finite strings over X [3]. A Turing machine M has an associated input alphabet
X [3]. For each string w in X* there is a computation associated with M on
input w [3]. We say that M accepts w if this computation terminates in the
accepting state, that is M (w) = “yes” [3]. Note that M fails to accept w either
if this computation ends in the rejecting state, that is M(w) = “no”, or if the
computation fails to terminate [3].

The language accepted by a Turing machine M, denoted L(M), has an as-
sociated alphabet X and is defined by:

L(M)={we X" : M(w) = “yes”}.

We denote by ¢y (w) the number of steps in the computation of M on input w
[3]. For n € N we denote by Ths(n) the worst case run time of M; that is:

Ty (n) = maz{ty(w) : we X"}

where X™ is the set of all strings over X of length n [3]. We say that M runs in
polynomial time if there is a constant k such that for all n, Ths(n) < n* +k [3].
In other words, this means the language L(M) can be accepted by the Turing
machine M in polynomial time. Therefore, P is the complexity class of languages
that can be accepted in polynomial time by deterministic Turing machines [6].
A verifier for a language L is a deterministic Turing machine M, where:

L={w: M(w,c) = “yes” for some string c}.



We measure the time of a verifier only in terms of the length of w, so a polynomial
time verifier runs in polynomial time in the length of w [3]. A verifier uses
additional information, represented by the symbol ¢, to verify that a string w is
a member of L. This information is called certificate. N P is also the complexity
class of languages defined by polynomial time verifiers [13].

A function f : X* — X* is a polynomial time computable function if some
deterministic Turing machine M, on every input w, halts in polynomial time with
just f(w) on its tape [16]. Let {0,1}* be the infinite set of binary strings, we say
that a language L; C {0,1}* is polynomial time reducible to a language Lo C
{0,1}*, written Ly <, Lo, if there is a polynomial time computable function
f:{0,1}* — {0, 1}* such that for all z € {0,1}*:

z € Ly if and only if f(x) € Lo.

An important complexity class is NP-complete [8]. A language L C {0,1}* is
NP—-complete if

— LeNP, and
— L' <, L for every L' € NP.

If L is a language such that L’ <, L for some L' € NP-complete, then L
is NP-hard [6]. Moreover, if L € NP, then L € NP-complete [6]. A principal
NP-complete problem is SAT [8]. An instance of SAT is a Boolean formula ¢
which is composed of

1. Boolean variables: x1,xs, ..., ZTy;

2. Boolean connectives: Any Boolean function with one or two inputs and one
output, such as A(AND), V(OR), —(NOT), =(implication), < (if and only
if);

3. and parentheses.

A truth assignment for a Boolean formula ¢ is a set of values for the variables
in ¢. A satisfying truth assignment is a truth assignment that causes ¢ to be
evaluated as true. A formula with a satisfying truth assignment is a satisfiable
formula. The problem SAT asks whether a given Boolean formula is satisfiable
[8]. We define a CNF Boolean formula using the following terms. A literal in
a Boolean formula is an occurrence of a variable or its negation [6]. A Boolean
formula is in conjunctive normal form, or CNF', if it is expressed as an AND of
clauses, each of which is the OR of one or more literals [6]. A Boolean formula is
in 3-conjunctive normal form or 3CN F, if each clause has exactly three distinct
literals [6].

For example, the Boolean formula:

(l‘l\/ -7 1‘1\/ —7 .132) N (l‘3 \Y i) V 1‘4) A (—/ 1‘1\/ —7 .133\/ e 1‘4)

is in 3CNF. The first of its three clauses is (z1V — @1V — 23), which contains
the three literals x1, — x1, and — x2. Another relevant NP-complete language is



3C'NF satisfiability, or 3SAT [6]. In 3S AT, it is asked whether a given Boolean
formula ¢ in 3CNF is satisfiable. Many problems have been proved that belong
to NP-complete by a polynomial time reduction from 3SAT [8]. For example, the
problem NAE 3SAT defined as follows: Given a Boolean formula ¢ in 3CNF, is
there a truth assignment such that each clause in ¢ has at least one true literal
and at least one false literal?

A logarithmic space Turing machine has a read-only input tape, a write-
only output tape, and a read/write work tape [16]. The work tape may contain
O(logn) symbols [16]. In computational complexity theory, LOGSPACE is the
complexity class containing those decision problems that can be decided by a
logarithmic space Turing machine which is deterministic [13]. NLOGSPACE
is the complexity class containing the decision problems that can be decided by
a logarithmic space Turing machine which is nondeterministic [13]. A Boolean
formula is in 2-conjunctive normal form, or 2CNF, if it is in CNF and each
clause has exactly two distinct literals. There is a problem called 25 AT, where
we asked whether a given Boolean formula ¢ in 2CNF is satisfiable. 25 AT is
complete for NLOGSPACE [13]. Another special case is the class of problems
where each clause contains XOR (i.e. exclusive or) rather than (plain) OR op-
erators. This is in P, since an XOR SAT formula can also be viewed as a system
of linear equations mod 2, and can be solved in cubic time by Gaussian elimina-
tion [12]. We denote the XOR function as @&. The XOR 2SAT problem will be
equivalent to XOR SAT, but the clauses in the formula have exactly two distinct
literals. XOR 2SAT is in LOGSPACE [2], [15].

3 Result

Definition 1. MINIMUM EXCLUSIVE-OR 2-UNSATISFIABILITY

INSTANCE: A positive integer K and a formula ¢ that is an instance of
XOR 25AT.

QUESTION: Is there a truth assignment in ¢ such that at most K clauses
are unsatisfiable?

We denote this problem as MIN @ 2UNSAT.

Theorem 1. MIN @ 2UNSAT € NP-complete.

Proof. Tt is trivial to see MIN @ 2UNSAT € NP [13]. Given a Boolean formula
¢ in 3CNF with n variables and m clauses, we create the following formulas for
each clause ¢; = (z Vy V z) in ¢, where z, y and z are literals,

Pi=(oyAN(yoz) Az 2)

We can see P; has at most one unsatisfiable clause if and only if at least one
member of {x,y, z} is true and at least one member of {x,y, z} is false. Hence,
we can create the Boolean formula v as the conjunction of the P; formulas for
every clause c; in ¢, such that ¢y = P, A ... A P,,. Finally, we obtain that

¢ € NAE 3SAT if and only if (v, m) € MIN @& 2UNSAT.



Consequently, we prove NAE 3SAT <, MIN ® 2UNSAT where NAE 3SAT €
NP-complete. To sum up, we show MIN @ 2UNSAT € NP-hard and MIN &
2UNSAT € NP and thus, MIN & 2UNSAT € NP-complete.

Theorem 2. MIN @ 2UNSAT € P.

This problem is solved by the algorithm ALGO which receives as input an in-
stance of MIN @2UNSAT. In this algorithm, we represent the Boolean formula
¢ as a set of clauses such that a clause (x @ y) is equal to (y ® x) where  and
y are literals. The problem is solved by an inner procedure called SOLUTION.
The algorithm SOLUTION receives the Boolean formula ¢ and a set S of
integers. The procedure SOLUTION accepts if and only if there is a truth as-
signment where there are at most K’ clauses which are unsatisfiable in ¢ and
K’ € S. We reject in SOLUTION when S is equal to the empty set @), because
in that case there could be at most K’ clauses which are unsatisfiable in ¢ but
K’ ¢ S. On the other hand, we accept when the Boolean formula ¢ is empty,
that is when ¢ = ), because for every integer K’ € S there is always at most
K’ clauses which are unsatisfiable in the empty formula. In case the number
0 is in 9, then that will mean there could be at most 0 clauses which are un-
satisfiable in ¢. This case will be true if and only if ¢ € XOR 25SAT. For that
reason, we accept when ¢ € XOR 2SAT else we remove this false case from S.
This three main conditional statements can be done in polynomial time since
XOR 25AT € LOGSPACE and LOGSPACE C P [13].

Next, we iterate from each pair of clauses c;,c; € ¢ just checking whether
¢ = (x@y) and ¢; = (2® — y). In case of these clauses exists in ¢, then for
every truth assignment one of these clauses will be satisfiable and the other will
be unsatisfiable in ¢. In this way, we can remove them from ¢ and increment
a variable num which indicates the number of obligatory unsatisfiable clauses
for every truth assignment in the original ¢ (that is the formula which exists
before removing the pair of clauses). After that, we subtract the number num
from every integer K’ € S, because for every number K’ € S there must be at
most K’ —num clauses which are unsatisfiable in ¢ since there are num clauses
that are obligatory unsatisfiable in the original ¢. We add the new elements in a
new set S’. In case of K/ € S and K’ — num < 0, then we will not consider this
number K’ —num in S’ since it cannot exist at a negative upper bound K’ —num
of at most K’ — num clauses which are unsatisfiable in ¢. This iteration can be
done in polynomial time since we iterate quadratically from the clauses of ¢ and
linear from the elements in S.

Finally, we iterate from each pair of clauses c;,c; € ¢ just checking whether
(x@y) and ¢; = (@ z). In case of these clauses exists in ¢, then for every truth
assignment

— when the two clauses are unsatisfiable in ¢ then (2® — y) is satisfiable in ¢,

— and when the two clauses are satisfiable in ¢ then (2® — y) is satisfiable in
b,

— and when one clause is unsatisfiable and the other satisfiable in ¢ then
(2 — y) is unsatisfiable in ¢.



Algorithm 1 ALGO’s Polynomial Algorithm

Proof.
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1: procedure ALGO(¢, K)
MIN @& 2UNSAT
return SOLUTION(¢,{K})
end procedure
procedure SOLUTION(¢, S)
if S=0 then
return “no”
else if ¢ = () then
return “yes”
else if 0 € S then
if ¢ € XOR 2SAT then
return “yes”
else
S+ S—{0}
end if
end if
num < 0
for ¢; € ¢ do
for c; € ¢ do
if C;
num < num + 1
¢ o—{(z@y), (2® —y)}
end if
end for
end for
S 0
for i € S do
if (i — num) > 0 then
S+ S"U{(i — num)}
end if
end for
for i € S’ do
if (i —2) > 0 then
S SuU{@lE—-2)}
end if
end for
for ¢; € ¢ do
for c; € ¢ do
if ;=(@®y)Ac; = (xzPz) then
o o—{(z@y),(z®2)}
6 — U{(z0 — )}
return SOLUTION(¢, S")
end if
end for
end for
if S’ = then
return “no”
else
return
end if
end procedure

czyesn

> Appropriate input (¢, K) for

> Convert the second parameter to a set

> A set ¢ of clauses and a set S of integers

> If the set is empty

> Reject

> If ¢ is equal to the empty set
> Accept

> If S contains the number 0

> If ¢ is satisfiable

> Accept

> Remove the number 0 from S
> Initialize num on 0

> Iterate for each clause ¢; in ¢
> Iterate for each clause c; in ¢

(z®y)ANe;j = (2@ — y) then

> Increment num by 1
> Remove the clauses from ¢

> Initialize S’ to the empty set
> Iterate for each integer ¢ in S

> Add the number (i — num) to S’

> Iterate for each integer 4 in S’
> Add the number (i —2) to S’
> Iterate for each clause ¢; in ¢
> Iterate for each clause ¢; in ¢

> Remove the clauses from ¢

> Add a new clause into ¢
> Recursively

> If the set S’ is empty
> Reject

> Otherwise accept




In the new formula ¢ after removing the two clauses and adding the new one,
we can consider for each integer K’ € S” only the two cases K/ — 2 (which is
when the two clauses are unsatisfiable in ¢) and K’ (for the other cases). Since
the number K’ is already in the set, then we will only need to add K’ —2 to S’.
In case of K’ — 2 is negative, then we ignore it since it cannot exist at a negative
upper bound K’ — 2 of at most K’ — 2 clauses which are unsatisfiable in ¢.
Hence, we call recursively to the procedure SOLUTION with the new Boolean
formula ¢ and the set S’. In the final step, when there is no a pair of clauses
¢i,¢j € ¢ which contain the same literal, then we can accept if S’ # () because
all the clauses in ¢ could be arbitrarily unsatisfiable or satisfiable and therefore,
we can guarantee there is a truth assignment where there are at most K’ clauses
which are unsatisfiable in ¢ and K’ € S’. We also reject in SOLUTION when
S’ is equal to the empty set (J, because in that case there could be at most K’
clauses which are unsatisfiable in ¢ but K’ ¢ S’. This last iteration can be done
in polynomial time since we iterate quadratically from the clauses of ¢ and linear
from the elements in S’. At the end, we solve MIN @ 2UNSAT in polynomial
time and thus, MIN ® 2UNSAT € P.

Lemma 1. P= NP.

Proof. If any single NP-complete problem can be solved in polynomial time,
then every NP problem has a polynomial time algorithm [6]. Hence, this is a
direct consequence of Theorems 1 and 2.

4 Conclusion

No one has been able to find a polynomial time algorithm for any of more than
300 important known NP-complete problems [8]. A proof of P = NP will have
stunning practical consequences, because it leads to efficient methods for solving
some of the important problems in N P [5]. The consequences, both positive and
negative, arise since various NP-complete problems are fundamental in many
fields [5]. This result explicitly concludes with the answer of the P versus NP
problem: P = NP.

Cryptography, for example, relies on certain problems being difficult. A con-
structive and efficient solution to an NP-complete problem such as 3SAT will
break most existing cryptosystems including: Public-key cryptography [10], sym-
metric ciphers [11] and one-way functions used in cryptographic hashing [7].
These would need to be modified or replaced by information-theoretically secure
solutions not inherently based on P-NP equivalence.

There are enormous positive consequences that will follow from rendering
tractable many currently mathematically intractable problems. For instance,
many problems in operations research are NP-complete, such as some types
of integer programming and the traveling salesman problem [8]. Efficient solu-
tions to these problems have enormous implications for logistics [5]. Many other
important problems, such as some problems in protein structure prediction, are
also NP-complete, so this will spur considerable advances in biology [4].



But such changes may pale in significance compared to the revolution an
efficient method for solving NP-complete problems will cause in mathematics
itself. Stephen Cook says: “...it would transform mathematics by allowing a
computer to find a formal proof of any theorem which has a proof of a reasonable
length, since formal proofs can easily be recognized in polynomial time.” [5].

Indeed, this proof of P = N P could solve not merely one Millennium Problem
but all seven of them [1]. This observation is based on once we fix a formal system
such as the first-order logic plus the axioms of ZF' set theory, then we can find
a demonstration in time polynomial in n when a given statement has a proof
with at most n symbols long in that system [1]. This is assuming that the other
six Clay conjectures have ZF' proofs that are not too large such as it was the
Perelman’s case [14].

Besides, a P = N P proof reveals the existence of an interesting relationship
between humans and machines [1]. For example, suppose we want to program
a computer to create new Mozart-quality symphonies and Shakespeare-quality
plays. When P = NP, this could be reduced to the easier problem of writing a
computer program to recognize great works of art [1].
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