P versus NP

Frank Vega
Joysonic, Belgrade, Serbia
vega.frank@gmail.com

Abstract

P versus NP is considered as one of the most important open problems in computer science. This consists in knowing the answer of the following question: Is P equal to NP? To attack the $\mathrm{P}=\mathrm{NP}$ question the concept of NP-completeness is very useful. If any single NP-complete problem is in P , then $\mathrm{P}=\mathrm{NP}$. We prove there is a problem in NP-complete and P. Therefore, we demonstrate $\mathrm{P}=\mathrm{NP}$.

Keywords: Complexity classes • Completeness • Polynomial time • Boolean formula.

1 Introduction

The P versus $N P$ problem is a major unsolved problem in computer science [1]. This is considered by many to be the most important open problem in the field [1]. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US $\$ 1,000,000$ prize for the first correct solution [1]. It was essentially mentioned in 1955 from a letter written by John Nash to the United States National Security Agency [1]. However, the precise statement of the $P=N P$ problem was introduced in 1971 by Stephen Cook in a seminal paper [5].

In 1936, Turing developed his theoretical computational model [13]. The deterministic and nondeterministic Turing machines have become in two of the most important definitions related to this theoretical model for computation [13]. A deterministic Turing machine has only one next action for each step defined in its program or transition function [13]. A nondeterministic Turing machine could contain more than one action defined for each step of its program, where this one is no longer a function, but a relation [13]. Another relevant advance in the last century has been the definition of a complexity class. A language over an alphabet is any set of strings made up of symbols from that alphabet [6]. A complexity class is a set of problems, which are represented as a language, grouped by measures such as the running time, memory, etc [6].

The set of languages decided by deterministic Turing machines within time f is an important complexity class denoted $\operatorname{TIME}(f(n))$ [13]. In addition, the complexity class $\operatorname{NTIME}(f(n))$ consists in those languages that can be decided within time f by nondeterministic Turing machines [13]. The most important complexity classes are P and $N P$. The class P is the union of all languages in $\operatorname{TIME}\left(n^{k}\right)$ for every possible positive fixed constant $k[13]$. At the same time,
$N P$ consists in all languages in $\operatorname{NTIME}\left(n^{k}\right)$ for every possible positive fixed constant k [13]. $N P$ is also the complexity class of languages whose solutions may be verified in polynomial time [13]. The biggest open question in theoretical computer science concerns the relationship between these classes: Is P equal to $N P$? In 2012, a poll of 151 researchers showed that 126 (83%) believed the answer to be no, $12(9 \%)$ believed the answer is yes, $5(3 \%)$ believed the question may be independent of the currently accepted axioms and therefore impossible to prove or disprove, $8(5 \%)$ said either do not know or do not care or don't want the answer to be yes nor the problem to be resolved [9].

To attack the $P=N P$ question the concept of $N P$-completeness is very useful [1]. $N P$-complete problems are a set of problems to each of which any other $N P$ problem can be reduced in polynomial time, and whose solution may still be verified in polynomial time [13]. That is, any $N P$ problem can be transformed into any of the $N P$-complete problems [13]. If any single $N P$-complete problem can be solved in polynomial time, then every $N P$ problem has a polynomial time algorithm [6]. In this work, we prove there is a problem in $N P$-complete and P. Thus, we demonstrate $P=N P$ [13]. There are stunning practical consequences when $P=N P$ [13]. Certainly, P versus $N P$ is one of the greatest open problems in science and a correct solution for this incognita will have a great impact not only for computer science, but for many other fields as well [1].

2 Theory

Let Σ be a finite alphabet with at least two elements, and let Σ^{*} be the set of finite strings over Σ [3]. A Turing machine M has an associated input alphabet Σ [3]. For each string w in Σ^{*} there is a computation associated with M on input $w[3]$. We say that M accepts w if this computation terminates in the accepting state, that is $M(w)=$ "yes" [3]. Note that M fails to accept w either if this computation ends in the rejecting state, that is $M(w)=$ " $n o$ ", or if the computation fails to terminate [3].

The language accepted by a Turing machine M, denoted $L(M)$, has an associated alphabet Σ and is defined by:

$$
L(M)=\left\{w \in \Sigma^{*}: M(w)=" y e s "\right\}
$$

We denote by $t_{M}(w)$ the number of steps in the computation of M on input w [3]. For $n \in \mathbb{N}$ we denote by $T_{M}(n)$ the worst case run time of M; that is:

$$
T_{M}(n)=\max \left\{t_{M}(w): w \in \Sigma^{n}\right\}
$$

where Σ^{n} is the set of all strings over Σ of length n [3]. We say that M runs in polynomial time if there is a constant k such that for all $n, T_{M}(n) \leq n^{k}+k[3]$. In other words, this means the language $L(M)$ can be accepted by the Turing machine M in polynomial time. Therefore, P is the complexity class of languages that can be accepted in polynomial time by deterministic Turing machines [6]. A verifier for a language L is a deterministic Turing machine M, where:

$$
L=\{w: M(w, c)=\text { "yes" for some string } c\} .
$$

We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs in polynomial time in the length of $w[3]$. A verifier uses additional information, represented by the symbol c, to verify that a string w is a member of L. This information is called certificate. $N P$ is also the complexity class of languages defined by polynomial time verifiers [13].

A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is a polynomial time computable function if some deterministic Turing machine M, on every input w, halts in polynomial time with just $f(w)$ on its tape $[16]$. Let $\{0,1\}^{*}$ be the infinite set of binary strings, we say that a language $L_{1} \subseteq\{0,1\}^{*}$ is polynomial time reducible to a language $L_{2} \subseteq$ $\{0,1\}^{*}$, written $L_{1} \leq_{p} L_{2}$, if there is a polynomial time computable function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that for all $x \in\{0,1\}^{*}:$

$$
x \in L_{1} \text { if and only if } f(x) \in L_{2} .
$$

An important complexity class is $N P$-complete [8]. A language $L \subseteq\{0,1\}^{*}$ is $N P$-complete if

- $L \in N P$, and
- $L^{\prime} \leq_{p} L$ for every $L^{\prime} \in N P$.

If L is a language such that $L^{\prime} \leq_{p} L$ for some $L^{\prime} \in N P$-complete, then L is $N P$-hard [6]. Moreover, if $L \in N P$, then $L \in N P$-complete [6]. A principal $N P$-complete problem is $S A T$ [8]. An instance of $S A T$ is a Boolean formula ϕ which is composed of

1. Boolean variables: $x_{1}, x_{2}, \ldots, x_{n}$;
2. Boolean connectives: Any Boolean function with one or two inputs and one output, such as $\wedge(\mathrm{AND}), \vee(\mathrm{OR}), \rightharpoondown(\mathrm{NOT}), \Rightarrow($ implication $), \Leftrightarrow($ if and only if);
3. and parentheses.

A truth assignment for a Boolean formula ϕ is a set of values for the variables in ϕ. A satisfying truth assignment is a truth assignment that causes ϕ to be evaluated as true. A formula with a satisfying truth assignment is a satisfiable formula. The problem $S A T$ asks whether a given Boolean formula is satisfiable [8]. We define a $C N F$ Boolean formula using the following terms. A literal in a Boolean formula is an occurrence of a variable or its negation [6]. A Boolean formula is in conjunctive normal form, or $C N F$, if it is expressed as an AND of clauses, each of which is the OR of one or more literals [6]. A Boolean formula is in 3 -conjunctive normal form or $3 C N F$, if each clause has exactly three distinct literals [6].

For example, the Boolean formula:

$$
\left(x_{1} \vee \rightharpoondown x_{1} \vee \rightharpoondown x_{2}\right) \wedge\left(x_{3} \vee x_{2} \vee x_{4}\right) \wedge\left(\rightharpoondown x_{1} \vee \rightharpoondown x_{3} \vee \rightharpoondown x_{4}\right)
$$

is in $3 C N F$. The first of its three clauses is $\left(x_{1} \vee \rightharpoondown x_{1} \vee \rightharpoondown x_{2}\right)$, which contains the three literals $x_{1}, \rightharpoondown x_{1}$, and $\rightharpoondown x_{2}$. Another relevant $N P$-complete language is
$3 C N F$ satisfiability, or $3 S A T$ [6]. In $3 S A T$, it is asked whether a given Boolean formula ϕ in $3 C N F$ is satisfiable. Many problems have been proved that belong to $N P$-complete by a polynomial time reduction from $3 S A T$ [8]. For example, the problem NAE $3 S A T$ defined as follows: Given a Boolean formula ϕ in $3 C N F$, is there a truth assignment such that each clause in ϕ has at least one true literal and at least one false literal?

A logarithmic space Turing machine has a read-only input tape, a writeonly output tape, and a read/write work tape [16]. The work tape may contain $O(\log n)$ symbols [16]. In computational complexity theory, $L O G S P A C E$ is the complexity class containing those decision problems that can be decided by a logarithmic space Turing machine which is deterministic [13]. NLOGSPACE is the complexity class containing the decision problems that can be decided by a logarithmic space Turing machine which is nondeterministic [13]. A Boolean formula is in 2-conjunctive normal form, or $2 C N F$, if it is in $C N F$ and each clause has exactly two distinct literals. There is a problem called $2 S A T$, where we asked whether a given Boolean formula ϕ in $2 C N F$ is satisfiable. $2 S A T$ is complete for $N L O G S P A C E$ [13]. Another special case is the class of problems where each clause contains $X O R$ (i.e. exclusive or) rather than (plain) $O R$ operators. This is in P, since an $X O R S A T$ formula can also be viewed as a system of linear equations mod 2 , and can be solved in cubic time by Gaussian elimination [12]. We denote the $X O R$ function as \oplus. The $X O R$ 2SAT problem will be equivalent to $X O R S A T$, but the clauses in the formula have exactly two distinct literals. XOR 2SAT is in LOGSPACE [2], [15].

3 Result

Definition 1. MAXIMUM EXCLUSIVE-OR 2-UNSATISFIABILITY

INSTANCE: A positive integer K and a formula ϕ that is an instance of XOR 2SAT.

QUESTION: Is there a truth assignment in ϕ such that at most K clauses are unsatisfiable?

We denote this problem as $M A X \oplus 2 U N S A T$.
Theorem 1. $M A X \oplus 2 U N S A T \in N P$-complete.
Proof. It is trivial to see $M A X \oplus 2 U N S A T \in N P$ [13]. Given a Boolean formula ϕ in $3 C N F$ with n variables and m clauses, we create the following formulas for each clause $c_{i}=(x \vee y \vee z)$ in ϕ, where x, y and z are literals,

$$
P_{i}=(x \oplus y) \wedge(y \oplus z) \wedge(x \oplus z)
$$

We can see P_{i} has at most one unsatisfiable clause if and only if at least one member of $\{x, y, z\}$ is true and at least one member of $\{x, y, z\}$ is false. Hence, we can create the Boolean formula ψ as the conjunction of the P_{i} formulas for every clause c_{i} in ϕ, such that $\psi=P_{1} \wedge \ldots \wedge P_{m}$. Finally, we obtain that

$$
\phi \in N A E 3 S A T \text { if and only if }(\psi, m) \in M A X \oplus 2 U N S A T \text {. }
$$

Consequently, we prove $N A E 3 S A T \leq_{p} M A X \oplus 2 U N S A T$ where $N A E 3 S A T \in$ $N P$-complete. To sum up, we show $M A X \oplus 2 U N S A T \in N P$-hard and MAX \oplus $2 U N S A T \in N P$ and thus, $M A X \oplus 2 U N S A T \in N P$-complete.

Theorem 2. $M A X \oplus 2 U N S A T \in P$.
This problem is solved by the algorithm $A L G O$ which receives as input an instance of $M A X \oplus 2 U N S A T$. In this algorithm, we represent the Boolean formula ϕ as a set of clauses such that a clause $(x \oplus y)$ is equal to $(y \oplus x)$ where x and y are literals. The problem is solved by an inner procedure called SOLUTION. The algorithm SOLUTION receives the Boolean formula ϕ and a set S of integers. The procedure SOLUTION accepts if and only if there is a truth assignment where there are at most K^{\prime} clauses which are unsatisfiable in ϕ and $K^{\prime} \in S$. We reject in SOLUTION when S is equal to the empty set \emptyset, because in that case there could be at most K^{\prime} clauses which are unsatisfiable in ϕ but $K^{\prime} \notin S$. On the other hand, we accept when the Boolean formula ϕ is empty, that is when $\phi=\emptyset$, because for every integer $K^{\prime} \in S$ there is always at most K^{\prime} clauses which are unsatisfiable in the empty formula. In case the number 0 is in S, then that will mean there could be at most 0 clauses which are unsatisfiable in ϕ. This case will be true if and only if $\phi \in X O R 2 S A T$. For that reason, we accept when $\phi \in X O R 2 S A T$ else we remove this false case from S. This three main conditional statements can be done in polynomial time since $X O R 2 S A T \in L O G S P A C E$ and LOGSPACE $\subseteq P$ [13].

Next, we iterate from each pair of clauses $c_{i}, c_{j} \in \phi$ just checking whether $c_{i}=(x \oplus y)$ and $c_{j}=(x \oplus \rightharpoondown y)$. In case of these clauses exists in ϕ, then for every truth assignment one of these clauses will be satisfiable and the other will be unsatisfiable in ϕ. In this way, we can remove them from ϕ and increment a variable num which indicates the number of obligatory unsatisfiable clauses for every truth assignment in the original ϕ (that is the formula which exists before removing the pair of clauses). After that, we subtract the number num from every integer $K^{\prime} \in S$, because for every number $K^{\prime} \in S$ there must be at most $K^{\prime}-$ num clauses which are unsatisfiable in ϕ since there are num clauses that are obligatory unsatisfiable in the original ϕ. We add the new elements in a new set S^{\prime}. In case of $K^{\prime} \in S$ and $K^{\prime}-n u m<0$, then we will not consider this number $K^{\prime}-$ num in S^{\prime} since it cannot exist at a negative upper bound $K^{\prime}-n u m$ of at most $K^{\prime}-$ num clauses which are unsatisfiable in ϕ. This iteration can be done in polynomial time since we iterate quadratically from the clauses of ϕ and linear from the elements in S.

Finally, we iterate from each pair of clauses $c_{i}, c_{j} \in \phi$ just checking whether $(x \oplus y)$ and $c_{j}=(x \oplus z)$. In case of these clauses exists in ϕ, then for every truth assignment

- when the two clauses are unsatisfiable in ϕ then $(z \oplus \rightharpoondown y)$ is satisfiable in ϕ,
- and when the two clauses are satisfiable in ϕ then $(z \oplus \rightharpoondown y)$ is satisfiable in ϕ,
- and when one clause is unsatisfiable and the other satisfiable in ϕ then $(z \oplus \rightharpoondown y)$ is unsatisfiable in ϕ.

```
Algorithm 1 ALGO's Polynomial Algorithm
Proof. 1: procedure \(A L G O(\phi, K) \quad \triangleright \operatorname{Appropriate~input~}(\phi, K)\) for
    \(M A X \oplus 2 U N S A T\)
        return \(\operatorname{SOLUTION}(\phi,\{K\}) \quad\) Convert the second parameter to a set
    end procedure
    procedure \(\operatorname{SOLUTION}(\phi, S) \quad \triangleright\) A set \(\phi\) of clauses and a set \(S\) of integers
        if \(S=\emptyset\) then \(\quad \triangleright\) If the set is empty
            return " \(n o\) "
        else if \(\phi=\emptyset\) then
            return "yes"
        else if \(0 \in S\) then
            if \(\phi \in X O R 2 S A T\) then
                    return "yes"
            else
                    \(S \leftarrow S-\{0\} \quad \triangleright\) Remove the number 0 from \(S\)
            end if
        end if
        num \(\leftarrow 0 \quad \triangleright\) Initialize num on 0
        for \(c_{i} \in \phi\) do \(\quad \triangleright\) Iterate for each clause \(c_{i}\) in \(\phi\)
            for \(c_{j} \in \phi\) do \(\quad \triangleright\) Iterate for each clause \(c_{j}\) in \(\phi\)
                    if \(c_{i}=(x \oplus y) \wedge c_{j}=(x \oplus \rightharpoondown y)\) then
                                    num \(\leftarrow\) num \(+1 \quad \triangleright\) Increment num by 1
                                    \(\phi \leftarrow \phi-\{(x \oplus y),(x \oplus \rightharpoondown y)\} \quad \triangleright\) Remove the clauses from \(\phi\)
                    end if
            end for
        end for
        \(S^{\prime} \leftarrow \emptyset \quad \triangleright\) Initialize \(S^{\prime}\) to the empty set
        for \(i \in S\) do \(\quad \triangleright\) Iterate for each integer \(i\) in \(S\)
            if \((i-n u m) \geq 0\) then
                    \(S^{\prime} \leftarrow S^{\prime} \cup\{(i-n u m)\} \quad \triangleright\) Add the number \((i-n u m)\) to \(S^{\prime}\)
            end if
        end for
        for \(i \in S^{\prime}\) do \(\quad \triangleright\) Iterate for each integer \(i\) in \(S^{\prime}\)
            if \((i-2) \geq 0\) then
                \(S^{\prime} \leftarrow \overline{S^{\prime}} \cup\{(i-2)\} \quad \triangleright\) Add the number \((i-2)\) to \(S^{\prime}\)
            end if
        end for
        for \(c_{i} \in \phi\) do \(\quad \triangleright\) Iterate for each clause \(c_{i}\) in \(\phi\)
            for \(c_{j} \in \phi\) do \(\quad \triangleright\) Iterate for each clause \(c_{j}\) in \(\phi\)
                if \(c_{i}=(x \oplus y) \wedge c_{j}=(x \oplus z)\) then
                    \(\phi \leftarrow \phi-\{(x \oplus y),(x \oplus z)\} \quad \triangleright\) Remove the clauses from \(\phi\)
                    \(\phi \leftarrow \phi \cup\{(z \oplus \rightharpoondown y)\} \quad \triangleright\) Add a new clause into \(\phi\)
                    return \(\operatorname{SOLUTION}\left(\phi, S^{\prime}\right) \quad \triangleright\) Recursively
                    end if
            end for
        end for
        if \(S^{\prime}=\emptyset\) then \(\quad \triangleright\) If the set \(S^{\prime}\) is empty
            return " \(n o\) " \(\triangleright\) Reject
        else
            return "yes" \(\triangleright\) Otherwise accept
        end if
    end procedure
```

In the new formula ϕ after removing the two clauses and adding the new one, we can consider for each integer $K^{\prime} \in S^{\prime}$ only the two cases $K-2$ (which is when the two clauses are unsatisfiable in ϕ) and K (for the other cases). Since the number K^{\prime} is already in the set, then we will only need to add $K^{\prime}-2$ to S^{\prime}. In case of $K^{\prime}-2$ is negative, then we ignore it since it cannot exist at a negative upper bound $K^{\prime}-2$ of at most $K^{\prime}-2$ clauses which are unsatisfiable in ϕ. Hence, we call recursively to the procedure SOLUTION with the new Boolean formula ϕ and the set S^{\prime}. In the final step, when there is no a pair of clauses $c_{i}, c_{j} \in \phi$ which contain the same literal, then we can accept if $S^{\prime} \neq \emptyset$ because all the clauses in ϕ could be arbitrarily unsatisfiable or satisfiable and therefore, we can guarantee there is a truth assignment where there are at most K^{\prime} clauses which are unsatisfiable in ϕ and $K^{\prime} \in S^{\prime}$. We also reject in SOLUTION when S^{\prime} is equal to the empty set \emptyset, because in that case there could be at most K^{\prime} clauses which are unsatisfiable in ϕ but $K^{\prime} \notin S^{\prime}$. This last iteration can be done in polynomial time since we iterate quadratically from the clauses of ϕ and linear from the elements in S^{\prime}. At the end, we solve $M A X \oplus 2 U N S A T$ in polynomial time and thus, $M A X \oplus 2 U N S A T \in P$.

Lemma 1. $P=N P$.
Proof. If any single $N P$-complete problem can be solved in polynomial time, then every $N P$ problem has a polynomial time algorithm [6]. Hence, this is a direct consequence of Theorems 1 and 2 .

4 Conclusion

No one has been able to find a polynomial time algorithm for any of more than 300 important known $N P$-complete problems [8]. A proof of $P=N P$ will have stunning practical consequences, because it leads to efficient methods for solving some of the important problems in $N P$ [5]. The consequences, both positive and negative, arise since various $N P$-complete problems are fundamental in many fields [5]. This result explicitly concludes with the answer of the P versus $N P$ problem: $P=N P$.

Cryptography, for example, relies on certain problems being difficult. A constructive and efficient solution to an $N P$-complete problem such as $3 S A T$ will break most existing cryptosystems including: Public-key cryptography [10], symmetric ciphers [11] and one-way functions used in cryptographic hashing [7]. These would need to be modified or replaced by information-theoretically secure solutions not inherently based on $P-N P$ equivalence.

There are enormous positive consequences that will follow from rendering tractable many currently mathematically intractable problems. For instance, many problems in operations research are NP-complete, such as some types of integer programming and the traveling salesman problem [8]. Efficient solutions to these problems have enormous implications for logistics [5]. Many other important problems, such as some problems in protein structure prediction, are also $N P$-complete, so this will spur considerable advances in biology [4].

But such changes may pale in significance compared to the revolution an efficient method for solving $N P$-complete problems will cause in mathematics itself. Stephen Cook says: "...it would transform mathematics by allowing a computer to find a formal proof of any theorem which has a proof of a reasonable length, since formal proofs can easily be recognized in polynomial time." [5].

Indeed, this proof of $P=N P$ could solve not merely one Millennium Problem but all seven of them [1]. This observation is based on once we fix a formal system such as the first-order logic plus the axioms of $Z F$ set theory, then we can find a demonstration in time polynomial in n when a given statement has a proof with at most n symbols long in that system [1]. This is assuming that the other six Clay conjectures have $Z F$ proofs that are not too large such as it was the Perelman's case [14].

Besides, a $P=N P$ proof reveals the existence of an interesting relationship between humans and machines [1]. For example, suppose we want to program a computer to create new Mozart-quality symphonies and Shakespeare-quality plays. When $P=N P$, this could be reduced to the easier problem of writing a computer program to recognize great works of art [1].

References

1. Aaronson, S.: P $\stackrel{?}{=}$ NP. Electronic Colloquium on Computational Complexity, Report No. 4 (2017)
2. Alvarez, C., Greenlaw, R.: A compendium of problems complete for symmetric logarithmic space. Computational Complexity 9(2), 123-145 (2000)
3. Arora, S., Barak, B.: Computational complexity: a modern approach. Cambridge University Press (2009)
4. Berger, B., Leighton, T.: Protein folding in the hydrophobic-hydrophilic (HP) model is NP-complete. Journal of Computational Biology 5(1), 27-40 (1998)
5. Cook, S.A.: The P versus NP Problem (April 2000), available at http://www. claymath.org/sites/default/files/pvsnp.pdf
6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The MIT Press, 3rd edn. (2009)
7. De, D., Kumarasubramanian, A., Venkatesan, R.: Inversion attacks on secure hash functions using SAT solvers. In: International Conference on Theory and Applications of Satisfiability Testing. pp. 377-382. Springer (2007)
8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edn. (1979)
9. Gasarch, W.I.: Guest column: The second $\mathrm{P} \stackrel{?}{=}$ NP poll. ACM SIGACT News 43(2), 53-77 (2012)
10. Horie, S., Watanabe, O.: Hard instance generation for SAT. Algorithms and Computation pp. 22-31 (1997)
11. Massacci, F., Marraro, L.: Logical cryptanalysis as a SAT problem. Journal of Automated Reasoning 24(1), 165-203 (2000)
12. Moore, C., Mertens, S.: The Nature of Computation. Oxford University Press (2011)
13. Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)
14. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications (November 2002), available at http://www.arxiv.org/abs/math.DG/0211159
15. Reingold, O.: Undirected connectivity in log-space. Journal of the ACM 55(4), 1-24 (2008)
16. Sipser, M.: Introduction to the Theory of Computation, vol. 2. Thomson Course Technology Boston (2006)
