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Multiphase Reactor Design
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Multiphase reactors
Multiphase Reactors — Modeling Challenges

Heat and mass transfer

e Continuous phase
@ Disperse phase Particle
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Multiphase turbulence
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Multiphase reactors

Multiphase Reactors
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Gas-liquid-solid reactors L
Gas-solid riser

Vertical
strand

T "
>
et
R-=§
ST _ W
3 Ofesc
E g e han
e 5 Ll
=z ffC.

Gas-liquid reactors

o = N | .
=z _ il __
[@ .|
= =]
=

Himmelsbach et al.,
2006

CFD Modeling of Multiphase Reactors Berlin, Germany 2-3 June 2016 7148



CFD modeling challenges
Multiphase Reactors — CFD Modeling Challenges

Multiphase flows with strong coupling between phases

Wide range of phase volume fractions (even in same reactor!)

Inertial particles/droplets with wide range of Stokes numbers

Polydispersity (e.g. size, density, shape) is always present

Chemical reactions in one (or all) phases

Wide range of chemical and physical time scales

Need a robust and versitile CFD modeling framework!
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CFD modeling challenges
Kinetic-Based Modeling Approach

Microscale Model

Direct numerical simulation

Kinetic theory
+ density function closures

Mesoscale Model
Volulme or efnse”r;;ble avgragt’e,s Kinetic equation
+ closures for “fluctuations’ ‘ Euler-Lagrange models

Moments of density
+ moment closures

Macroscale Model

Hydrodynamic description
Euler-Euler models

Mesoscale model incorporates more microscale physics in closures!
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OpenQBMM Project
Multiphase QBMM Framework Based on OpenFOAM

Kinetic-based multiphase models implemented in open-source CFD code

@ Consistent and widely
adopted framework

@ Multi-platform
@ Automatic parallelism:

industrial-scale
computations

@ Growing suite of single
and multiphase flow
models

@ Details at
www.opengbmm.org
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Gas-Solid Reactors Overview

Gas—Solid Reactors

solid density > gas density

fluid drag dominants momentum
exchange

particle diameter > 1 um
finite particle inertia (St > 1)
inelastic collisions

particle size distribution

Kinetic Theory of Granular Flow coupled to
gas-phase continuity and momentum balances
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Gas—Solid Reactors CFD model for gas—solid reactors

Kinetic-Based Model for Gas—Solid Flows

Particle-phase kinetic equation Fluid-phase equations

on on 0 9 _
i AT _ PeCte) + V- (po,Ug) =0
6t+v 8x+6v (An)=C 8t( eOre) (Pecr2Uy)

@ n(t,x,v): velocity NDF 0 (an)—i—V (anU)
_ oo Ug . grgYglsg

@ v: particle velocity ot

@ A: particle acceleration =V - eTg+ fs + pg0reg
(drag, gravity, ...)

@ C: rate of change of n due to ® oy = 1 — ay: gas volume fraction
particle—particle collisions @ [3,: mean particle drag

Equations coupled through moments of velocity NDF
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Gas—Solid Reactors CFD model for gas—solid reactors

Lagrangian vs. Eulerian Simulations

on on

0
at‘f‘V&—f—E(An):C

Lagrangian method Eulerian method

. Velocity moments are tracked
For large ensemble, particle y

ositions and velocities are tracked
P M° = ap = / ndv
dx(@) @ 1
dr M; = a,Up = [ vindv
dv(a)
T :A(a)+c(a) M?J:ap (UpiUpj+PiJ)

Limited by statistical “noise” and
coupling errors

/  Moments closed with QBMM
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Gas—Solid Reactors CFD model for gas—solid reactors

Cluster-Induced Turbulence

Multiphase turbulence generated by momentum coupling
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riser_Re1.mov
Media File (video/quicktime)


Gas-Solid Reactors

CFD model for gas—solid reactors

CFD Model for Gas—Solid Flows

Particle phase

0
ot (opap) + V- (ppyUp) =0

ot (PpyUp) + V - ppay, (G, + 7)

= prpp + Ppopg

ot (opp©yp) + V - ppoy, (U0 + @)

= —ppoypTyp : VU, — 70

&

Fluid phase

0
ot (Petg) + V- (pecrgUg) = 0

o1 (peagUg) + V - pyag (U, Uy + T)

= —pppfp + Peteg

@ apt+ag=1
® 5= T]T)(Ug -Up)
@ 7p: drag time scale

@ vo: granular energy dissipation

Coupled Navier—Stokes Eqs. = Fluidized-bed reactors
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Gas-Solid Reactors Electrostatics in fluidized-bed reactors

Electrostatics in Fluidized-Bed Reactors

@ Chemical, petrochemical, polymer, food, pharmaceutical, agricultural,
biochemical industries

@ Polyethylene (PE), Polypropylene (PP), Styrenes, Vinyl chloride
e Different grades of PE (LLDPE, LDPE, HDPE)
@ Fluidized-bed process

Low pressure and temperature

Low capital investment and operational costs
No solvent separation

Excellent heat removal

Capability to utilize different catalysts

Need to avoid agglomeration and sheeting
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Gas-Solid Reactors Electrostatics in fluidized-bed reactors

Electrostatics in Fluidized-Bed Reactors
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Typical locations for fluidized-bed sheeting
G. Hendrickson, CES 61, 1041-1064 (2006)
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Gas—Solid Reactors Experimental investigation

Classification of Particles Based on Electrostatic Behavior

HDPE particles supplied by Univation Technologies

Particles fluidized at given superficial gas velocity for set time period
After fluidization period, fluidizing gas is turned off

Elutriated Particles are collected in filter bag (FINES)

Bed particles dropped into bottom Faraday cup (DROPPED)
Particles stick to wall (WALL): thickness and height is measured

Particle size distribution and charge measurements (FINES, WALL,
DROPPED)

R. G. Rokkam et al., CES 92, 146-156 (2013)
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Gas-Solid Reactors CFD model with electrostatics

Model for Particle Size Distribution

e Continuity

1o %e"
% + V- psasUsy = 0
t
@ Momentum
Opsn0rsn U
% + V- psnasnUsnUsy =

N
- asnvpg —Vpau +V -1 _fgn + anm + PsnOsng + Fqsn

m=1

£n: volume fraction of n' solid phase
T4, stress tensor of n solid phase
Us,.: velocity of n'™ solid phase

F,: electrostatic force on n'™ solid phase
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Gas-Solid Reactors CFD model with electrostatics

Electrostatic Model

@ Gauss law for electric field
2.17
V- [ag <€g ~ 1. 20) } =—— qunasn

® (g, (i, 1s gas-phase and n™ solid-phase volume fraction
e ( is electric potential
e g, is n'™ solid-phase charge

Fqsn = —gsn0sn VP
o Electrostatic model coupled with CFD model
Rokkam et al., Powder Technology, 203, 109-124 (2010)
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Gas-Solid Reactors CFD model with electrostatics

Algorithm
@ Step 1: solve multi-fluid model at every grid point to find o, oy,
@ Step 2: solve Poisson equation
2.17
V- |:Oég <ag — 1. 20> :| = - ZQSnasn
@ Step 3: evaluate electrostatic force

Fqsn = —gsn0sn VP

@ Step 4: add electrostatic force to CFD model in Step 1 and repeat Steps
1, 2, 3, 4 for next iteration
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Gas-Solid Reactors Simulation results

Simulation Parameters

Cylindrical column
Eulerian—Eulerian KTGF model for fluidized bed
Gidaspow drag model for gas—solid interaction

Electrostatic model as user-defined function
Gas-phase properties (air)

o density: 4.93 kg/m?

e viscosity: 1.8 x 107 kg/(ms)
Particle-phase properties (HDPE)

o density: 920 kg/m?
e restitution coefficient: 0.8
e charge distribution gy, measured as function of size
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Gas—Solid Reactors Simulation results

Slug Flow Regime
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Gas-Solid Reactors Simulation results

Electric Potential and Electric Field
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Gas—Solid Reactors Simulation results

Bubbling Flow Regime
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Gas-Solid Reactors Simulation results

Electric Potential and Electric Field
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Gas-Solid Reactors Simulation results

Dropped Particles
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Simulation results

Wall Particles
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Simulation results
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Liquid Reactors

Outline

© Gas-Liquid Reactors
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Bubbly flow
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Gas-Liquid Reactors Bubbly flow

CFD Model for Bubbly Flow

Model must account for

Liquid-phase continuity and momentum

Gas-phase continuity and momentum

Coupling due to buoyancy, drag, virtual mass, lift, wall force, ...

Bubble size distribution (with size-dependent velocity)

Coalescence, breakage, mass transfer, ...

Describe bubble phase using Population Balance Equation
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Gas-Liquid Reactors Generalized population balance equation

Generalized Population Balance Equation

@ GPBE has 4-D phase space: bubble velocity v and bubble size s
0 0 0 0
57 Y. aT,Z + 5y AlLx V.S + (Gl x v n] = C

with known acceleration A, growth G and coalescence C functions

In principle, a 4-D reconstruction of n(v, s) is required

However, bubbles have small inertia relative to liquid

@ Use a monokinetic NDF approximation (unique velocity for each size)

Complex momentum coupling with drag, virtual mass, lift, ...
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Gas-Liquid Reactors Generalized population balance equation

CFD with Population Balance Equation

. 7-D GPBE+CFD solver
Generalized PBE ]

Reconstructed

Integrate over 4-D phase space

Closure using
quadrature

quadrature

[ Moment Equations
: ) 3-D CFD solver

| density n(t,x,v,s) |

Reconstruct using

Density

n(tIXIVIS)

Integrate over
4-D phase space

Moments

M(t,x)

Close moment equations by reconstructing density function
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CFD simulations of gas—liquid flows

Application to Bubble Column

Volume fraction, bubble-phase velocity, and liquid-phase velocity

CoMFRE) CFD Modeling of Multiphase Reactors Berlin, Germany 2-3 June 2016 36/48



alphab.swf
Media File (application/x-shockwave-flash)


Ub.swf
Media File (application/x-shockwave-flash)


Ul.swf
Media File (application/x-shockwave-flash)


Gas-Liquid Reactors CFD simulations of gas—liquid flows

Application to Bubble Column

Volume fraction, mean bubble diameter, and standard deviation
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alphab.swf
Media File (application/x-shockwave-flash)


meanSize.swf
Media File (application/x-shockwave-flash)


massStdDev.swf
Media File (application/x-shockwave-flash)


CFD simulations of gas—liquid flows

Reactor configuration 1
N =250 RPM; 0.093 vvm 2 "a -

B Experimental data .
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CFD simulations of gas—liquid flows

m/s
. 1.9+
E Elb
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Gas-Liquid Reactors Summary

Summary of CFD Models for Gas—Liquid Reactors

Generalized PBE includes the velocity of the bubble phase

@ Monokinetic NDF approximation valid due to small inertia of bubbles

Quadrature-Based Moment Methods applied to reconstruct the NDF

e CFD solver modified to treat size-dependent velocity of bubble phase

Applications to bubble columns and stirred tanks yield good results

R. O. Fox (Iowa State University — COMFRE) CFD Modeling of Multiphase Reactors Berlin, Germany 2-3 June 2016
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lid Reactors
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© Gas-Liquid-Solid Reactors
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Gas-Liquid—Solid Reactors Slurry flow

Sparged Slurry Reactor

3-fluid CFD model implemented in OpenFOAM:
@ Gas phase
e Monomer with mass transfer to liquid
o Injected from a sparger
e Liquid phase
e Solvent containing catalyst
e Density similar to water
@ Solid phase
e Polymer (growing on catalyst particle)
e Density slightly larger than water
e Average particle diameter 150 microns
Interested in solid and gas distribution in reactor
and catalyst residence time distribution

R. O. Fox (Iowa State University — COMFRE) CFD Modeling of Multiphase Reactors Berlin, Germany 2-3 June 2016
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Gas-Liquid—Solid Reactors Slurry flow

Average Phase Distribution at Centerline

Gas Solid

o Gas phase

e Above sparger 10-15%

e Similar to gas-liquid system
@ Solid phase

e Mostly well mixed: 20%

e Slightly larger below impellers
e Does not settle on bottom

0.60

poer

045

Impellers work as designed
to suspend solids

s

Mummw\mum
T L L.
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Slurry flow

Average Velocity Distribution at Centerline

Gas: upflow Liquid (solid): downflow
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Gas-Liquid—Solid Reactors Summary

Summary of CFD for Gas—Liquid—Solid Reactors

Gas-liquid flow dominates momentum coupling

Impeller placement keeps solid phase suspended

Phase-specific RTD computed in post-processing step

Complex geometry near impellers requires high-quality mesh

General flow patterns, power input agree with plant measurements
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Outline

© Conclusions
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Conclusions Final remarks

Final Remarks

CFD modeling capabilities have grown enormously in last 25+ years

Kinetic-based modeling approach uses mesoscale models

@ CFD models for multiphase reacting systems solve a Generalized PBE

Quadrature-based moment methods lead to tractable CFD models

Simplified electrostatic model for fluidized beds was developed to
investigate sheeting

Predictive multiphase turbulence models are still an open problem

Efficient and accessible computational framework is now available
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