Eulerian Models for Disperse Multiphase Flows

Rodney O. Fox Anson Marston Distinguished Professor in Engineering Center for Multiphase Flow Research and Education Iowa State University, Ames, IA USA

> Karlsruhe Institute of Technology (KIT) Karlsruhe, Germany February 8, 2017

Feb. 8, 2017 1 / 53

Outline

Modeling Disperse Multiphase Flows

Eulerian Models for Disperse Multiphase Flows

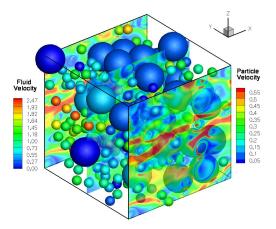
IOWA STATE UNIVERSITY < ∃→ Feb. 8, 2017

R. O. Fox (ISU)

2/53

Disperse multiphase flow

- continuous phase
- disperse phase
- size distribution
- finite particle inertia
- collisions
- variable mass loading
- multiphase turbulence



Bidisperse gas-particle flow (DNS of S. Subramaniam)

IOWA STATE UNIVERSITY

Feb. 8, 2017 3 / 53

Disperse multiphase flows: examples

Bubble columns

Power stations

Brown-out

Volcanos

Jet break up

Spray flames

イロト イロト イヨト

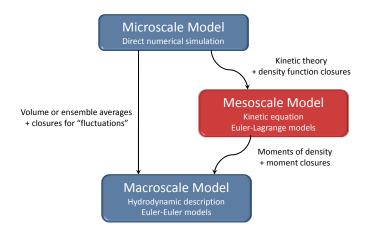
э

Modeling challenges

- Strong coupling between continuous and disperse phases
- Wide range of particle volume fractions (even in same flow!)
- Inertial particles with wide range of Stokes numbers
- Collision-dominated to collision-less regimes in same flow
- Granular temperature can be very small and very large in same flow
- Particle polydispersity (e.g. size, density, shape) is always present

Need a modeling framework that can handle all aspects!

Overview of kinetic modeling approach



Mesoscale model incorporates more microscale physics in closures!

R.	О.	Fox	(ISU)
----	----	-----	-------

Eulerian Models for Disperse Multiphase Flows

Feb. 8, 2017 6 / 53

IOWA STATE UNIVERSITY

< ∃⇒

Kinetic-based models

Types of mesoscale transport (kinetic) equations

• Population balance equation (PBE): $n(t, \mathbf{x}, \xi)$

$$\frac{\partial n}{\partial t} + \frac{\partial}{\partial x_i} \left[u_i(t, \mathbf{x}, \xi) n \right] + \frac{\partial}{\partial \xi_j} \left[G_j(t, \mathbf{x}, \xi) n \right] = \frac{\partial}{\partial x_i} \left[D(t, \mathbf{x}, \xi) \frac{\partial n}{\partial x_i} \right] + \mathbb{S}$$

with known velocity \mathbf{u} , growth \mathbf{G} , diffusivity D and source \mathbb{S}

• Kinetic equation (KE): $n(t, \mathbf{x}, \mathbf{v})$

$$\frac{\partial n}{\partial t} + \frac{\partial}{\partial x_i} (v_i n) + \frac{\partial}{\partial v_i} [A_i(t, \mathbf{x}, \mathbf{v})n] = \mathbb{C}$$

with known acceleration ${\bf A}$ and collision operator ${\mathbb C}$

• Generalized population balance equation (GPBE): $n(t, \mathbf{x}, \mathbf{v}, \xi)$

$$\frac{\partial n}{\partial t} + \frac{\partial}{\partial x_i} (v_i n) + \frac{\partial}{\partial v_i} [A_i(t, \mathbf{x}, \mathbf{v}, \xi) n] + \frac{\partial}{\partial \xi_j} [G_j(t, \mathbf{x}, \mathbf{v}, \xi) n] = \mathbb{C}$$

with accelerations $A,\,G$ and collision/aggregation $\mathbb C$

R. O. Fox (ISU)

OWA STATE UNIVERSIT

Eulerian moment transport equations

• PBE:
$$M_k = \int \xi^k n \, d\xi$$

 $\frac{\partial M_k}{\partial t} + \frac{\partial}{\partial x} \left(\int \xi^k u n \, d\xi \right) = k \int \xi^{k-1} G n \, d\xi + \frac{\partial}{\partial x} \left(\int \xi^k D \frac{\partial n}{\partial x} \, d\xi \right) + \int \xi^k \mathbb{S} \, d\xi$
• KE: $M_k = \int v^k n \, dv$

$$\frac{\partial M_k}{\partial t} + \frac{\partial M_{k+1}}{\partial x} = k \int v^{k-1} A n \, \mathrm{d}v + \int v^k \mathbb{C} \, \mathrm{d}v$$

• GPBE:
$$M_{kl} = \int v^k \xi^l n \, \mathrm{d}v \mathrm{d}\xi$$

$$\frac{\partial M_{kl}}{\partial t} + \frac{\partial M_{k+1l}}{\partial x} = k \int v^{k-1} \xi^l A n \, \mathrm{d}v \mathrm{d}\xi + l \int v^k \xi^{l-1} G n \, \mathrm{d}v \mathrm{d}\xi + \int v^k \xi^l \mathbb{C} \, \mathrm{d}v \mathrm{d}\xi$$

Terms in red require mathematical closure

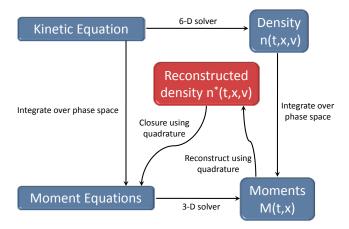
R. O. Fox (ISU)

Eulerian Models for Disperse Multiphase Flows

Feb. 8, 2017 8 / 53

э

Closure with moment methods



Close moment equations by reconstructing density function

R. O. Fox (IS

Eulerian Models for Disperse Multiphase Flows

Feb. 8, 2017 9 / 53

IOWA STATE UNIVERSITY

Quadrature-based moment methods (QBMM)

Idea: Given moments, reconstruct the number density function (NDF)

Things to consider:

- Which moments should we choose?
- What method should we use for reconstruction?
- How can we extend method to multivariate phase space?
- How should we design the numerical solver for the moments?

We must be able to demonstrate *a priori* that numerical algorithm is robust and accurate!

Feb. 8, 2017 10 / 53

Gauss quadrature in 1-D (real line)

• The formula

$$\int g(v)\mathbf{n}(v) \,\mathrm{d}v = \sum_{\alpha=1}^{N} \mathbf{n}_{\alpha}g(\mathbf{v}_{\alpha}) + \mathbf{R}_{N}(g)$$

is a Gauss quadrature iff the *N* nodes v_{α} are roots of an *N*th-order orthogonal polynomial $P_N(v)$ (\perp with respect to n(v))

• Inversion algorithm for moments $M_k = \int v^k n(v) dv$:

$$\{M_0, M_1, \ldots, M_{2N-1}\} \stackrel{\text{QMOM}}{\Longrightarrow} \{n_1, n_2, \ldots, n_N\}, \{v_1, v_2, \ldots, v_N\}$$

• Variation: Gauss–Radau quadrature fix v_0 and find n_0 from M_{2N}

$$\int g(v)n(v) \, \mathrm{d}v = \sum_{\alpha=0}^{N} n_{\alpha}g(v_{\alpha}) + R_{N}(g)$$

$$= \sum_{\alpha=0}^{N} n_{\alpha}g(v_{\alpha}) + R_{N}(g)$$
Evaluation Module for Disparse Multiplete Flow:

1-D quadrature method of moments (QMOM)

Approximate unclosed terms in moment equations:

$$\frac{\mathrm{d}\mathbf{M}}{\mathrm{d}t} = \int \mathbf{S}(v) \boldsymbol{n}(v) \mathrm{d}v \approx \sum_{\alpha=0}^{N} \boldsymbol{n}_{\alpha} \mathbf{S}(v_{\alpha})$$

where $\mathbf{M} = \{M_0, M_1, \dots, M_{2N}\}$ and \mathbf{S} is "source term"

- Exact if **S** is polynomial of order $\leq 2N$
- Provides good approximation for most other cases with small $N \approx 4$
- Complications arise in particular cases (e.g. spatial fluxes)
- In all cases, moments M must remain realizable for moment inversion

N.B. equivalent to reconstructed N-point distribution function:

$$n^*(v) = \sum_{\alpha=0}^N n_{\alpha} \delta(v - v_{\alpha})$$

 \implies realizable if $n_{\alpha} \ge 0$ for all α

Quadrature in multiple dimensions

No method equivalent to Gaussian quadrature for multiple dimensions!

• Given a realizable moment set $\mathbf{M} = \{M_{i,j,k} : i, j, k \in 0, 1, ...\}$, find n_{α} and $\mathbf{v}_{\alpha} = (u_{\alpha}, v_{\alpha}, w_{\alpha})$ such that

$$M_{i,j,k} = \int u^i v^j w^k n(\mathbf{v}) \mathrm{d}\mathbf{v} = \sum_{\alpha=0}^N n_\alpha u^i_\alpha v^j_\alpha w^k_\alpha$$

- Avoid brute-force nonlinear iterative solver (poor convergence, ill-conditioned, too slow, ...)
- Algorithm must be realizable (i.e. non-negative weights, ...)
- Strategy: choose moment set to solve with 1-D QMOM

・ロト ・ (日) ・ ・ ヨ ト ・ ヨ ト

Conditional QMOM (2-D phase space)

• Conditional density function and conditional moments (2-D)

$$n(u,v) = f(v|u)n(u) \implies M_{k|u} = \int v^k f(v|u) \, \mathrm{d}v$$

• 1-D QMOM for u direction (n = 2)

 $M_{k,0}, k \in \{0, 1, 2, 3\} \Longrightarrow$ find weights n_{α} , abscissas u_{α}

• Solve linear systems for conditional moments $M_{k|u_{\alpha}}$:

$$\begin{bmatrix} 1 & 1 \\ u_1 & u_2 \end{bmatrix} \begin{bmatrix} n_1 & \\ & n_2 \end{bmatrix} \begin{bmatrix} M_{k|u_1} \\ M_{k|u_2} \end{bmatrix} = \begin{bmatrix} M_{0,k} \\ M_{1,k} \end{bmatrix} \text{ for } k \in \{1,2,3\}$$

• CQMOM controls 10 moments:

$$\begin{array}{ccccc} M_{0,0} & M_{0,1} & M_{0,2} & M_{0,3} \\ M_{1,0} & M_{1,1} & M_{1,2} & M_{1,3} \\ M_{2,0} & & \\ M_{3,0} \end{array}$$

・ロト ・四ト ・ヨト ・ヨト

Conditional QMOM (cont.)

• 1-D QMOM in v direction for each α :

 $M_{k|u_{\alpha}}, k \in \{0, 1, 2, 3\} \Longrightarrow$ find weights $p_{\alpha\beta}$, abscissas $v_{\alpha\beta}$

- Reconstructed density: $n^*(u, v) = \sum_{\alpha} \sum_{\beta} n_{\alpha} p_{\alpha\beta} \delta(u u_{\alpha}) \delta(v v_{\alpha\beta})$
- Conditioning on $v = v_{\alpha}$ uses 10 moments:

Union of two sets \implies CQMOM moment set

• Extension to higher-dimensional phase space is straightforward

・ロト ・四ト ・ヨト ・ヨト

CQMOM moment set

Moments needed for all CQMOM permutations

$$N = 4$$
 nodes in 2-D

12 moments

N = 9 nodes in 2-D

27 moments

Entire moment set is transported

Feb. 8, 2017 16 / 53

Kinetic-based finite-volume methods (KBFVM)

Given transported moments, solve

$$\frac{\partial M_{k,l}}{\partial t} + \frac{\partial M_{k+1,l}}{\partial x} = k \int v^{k-1} \xi^l A \, n \, \mathrm{d}v \, \mathrm{d}\xi + l \int v^k \xi^{l-1} G \, n \, \mathrm{d}v \, \mathrm{d}\xi + \int v^k \xi^l \mathbb{C} \, \mathrm{d}v \, \mathrm{d}\xi$$

where RHS is closed using QBMM:

$$\frac{\partial M_{k,l}}{\partial t} + \frac{\partial M_{k+1,l}}{\partial x} = \sum_{\alpha=1}^{N} \rho_{\alpha} \left\{ k v_{\alpha}^{k-1} \xi_{\alpha}^{l} A_{\alpha} + l v_{\alpha}^{k} \xi_{\alpha}^{l-1} G_{\alpha} + v_{\alpha}^{k} \xi_{\alpha}^{l} \mathbb{C}_{\alpha} \right\}$$

Things to consider:

- How do we discretize the spatial fluxes?
- How do we update the moments in time?
- How can we ensure that the moments are always realizable?

R. O. Fox (ISU)

Kinetic-based spatial fluxes

Spatial fluxes can use kinetic formulation: e.g. $\partial_t M_{00} + \partial_x M_{10} = 0$

$$M_{1,0} = Q_{1,0}^{-} + Q_{1,0}^{+}$$

= $\int_{-\infty}^{0} v \left(\int n^{*}(v,\xi) d\xi \right) du + \int_{0}^{\infty} v \left(\int n^{*}(v,\xi) d\xi \right) dv$

Using reconstructed n^* , downwind and upwind flux components are

$$Q_{1,0}^{-} = \sum_{\alpha=1}^{\mathcal{N}} \rho_{\alpha} v_{\alpha} I_{(-\infty,0)}(v_{\alpha}) \qquad Q_{1,0}^{+} = \sum_{\alpha=1}^{\mathcal{N}} \rho_{\alpha} v_{\alpha} I_{(0,\infty)}(v_{\alpha})$$

where $I_{\mathbb{S}}(x)$ is the indicator function for the interval \mathbb{S}

Kinetic-based fluxes are (weakly) hyperbolic

R. O. Fox (ISU)

Eulerian Models for Disperse Multiphase Flows

Feb. 8, 2017 18 / 53

Realizable time-stepping schemes

• First-order explicit:

$$\mathbf{M}_{i}^{n+1} = \mathbf{M}_{i}^{n} - \lambda \left[\mathbf{G} \left(\mathbf{M}_{i+\frac{1}{2},l}^{n}, \mathbf{M}_{i+\frac{1}{2},r}^{n} \right) - \mathbf{G} \left(\mathbf{M}_{i-\frac{1}{2},l}^{n}, \mathbf{M}_{i-\frac{1}{2},r}^{n} \right) \right]$$

• RK2SSP:

$$\begin{split} \mathbf{M}_{i}^{*} &= \mathbf{M}_{i}^{n} - \lambda \left[\mathbf{G} \left(\mathbf{M}_{i+\frac{1}{2},l}^{n}, \mathbf{M}_{i+\frac{1}{2},r}^{n} \right) - \mathbf{G} \left(\mathbf{M}_{i-\frac{1}{2},l}^{n}, \mathbf{M}_{i-\frac{1}{2},r}^{n} \right) \right] \\ \mathbf{M}_{i}^{**} &= \mathbf{M}_{i}^{*} - \lambda \left[\mathbf{G} \left(\mathbf{M}_{i+\frac{1}{2},l}^{*}, \mathbf{M}_{i+\frac{1}{2},r}^{*} \right) - \mathbf{G} \left(\mathbf{M}_{i-\frac{1}{2},l}^{*}, \mathbf{M}_{i-\frac{1}{2},r}^{*} \right) \right] \\ \mathbf{M}_{i}^{n+1} &= \frac{1}{2} \left(\mathbf{M}_{i}^{n} + \mathbf{M}_{i}^{**} \right) \end{split}$$

• High-order FV schemes: Laurent, Nguyen, https://hal.archives-ouvertes.fr/hal-01345689v2

Achieve second order in space and time on unstructured grids

Bubbly flow simulation using QBMM and KBFVM

Loading movie...

Realizable finite-volume scheme on unstructured mesh

R. O. Fox (ISU)

Eulerian Models for Disperse Multiphase Flows

Feb. 8, 2017 20 / 53

Current Status

- QBMM are well suited for fine particles (e.g., aerosols, soot, etc.) where principal closure problem is the source terms (e.g., aggregation, growth, breakage, etc.)
- QBMM combined with KBFVM work well for dilute disperse multiphase flows where spatial transport is due to kinetic fluxes
- However, hardest closure problem is pure kinetic transport where no other physics (e.g., collisions, drag, etc.) modify velocity NDF
- Standard QMOM/CQMOM leads to weakly hyperbolic moment systems (i.e., delta shocks) so a hyperbolic closure would be preferable
- In dense disperse multiphase flows, spatial transport is dominated by collisional fluxes that require an iterative solver

・ロト ・四ト ・ヨト ・ヨト

Outline

2 Conditional HyQMOM

- 3 Dense Collisional Flows
- 4 Conclusions & Outlook

R. O. Fox (ISU)

< ∃ >

Hyperbolic QMOM

• Approximate velocity NDF by $(N \ge 2)$

$$n(u) \approx M_0 \sum_{\alpha=1}^N p_\alpha \delta(u - \bar{u} - u_\alpha)$$

where $\bar{u} = M_1/M_0$, and p_{α} and u_{α} are found from central moments:

$$C_i = \frac{1}{M_0} \int_{-\infty}^{+\infty} (u - \bar{u})^i n(u) \, \mathrm{d}u$$

- Fix C_{2N-1} such that moment system is hyperbolic
- Given $\{1, 0, C_2, \dots, C_{2N-2}\}$ and constraint on C_{2N-1} , apply QMOM

$$\{1, 0, C_2 \ldots, C_{2N-1}\} \stackrel{\text{QMOM}}{\Longrightarrow} \{p_1, p_2, \ldots, p_N\}, \{u_1, u_2, \ldots, u_N\}$$

イロト イポト イヨト イヨト

Hyperbolic QMOM (cont.)

• Moment closure for kinetic flux in 1-D:

$$\partial_t M_{2N-2} + \partial_x \overline{M}_{2N-1} = 0 \implies \overline{M}_{2N-1} = M_0 \sum_{\alpha=1}^N p_\alpha (\overline{u} + u_\alpha)^{2N-1}$$

For N = 3: $\bar{M}_5 = M_0 \left[p_1 (\bar{u} + u_1)^5 + p_2 \bar{u}^5 + p_3 (\bar{u} + u_3)^5 \right]$

• Theorem: (F. Laurent) Moment system for $\{M_0, M_1, M_2, M_3, M_4\}$ with kinetic flux \overline{M}_5 is hyperbolic with 5 distinct eigenvalues

$$\bar{u}, \, \bar{u} + \frac{\sqrt{C_2}}{2} \left(q \pm \sqrt{4\eta - 3q^2 \pm 4\sqrt{(\eta - q^2)(\eta - q^2 - 1)}} \right)$$

where $q = C_3 / C_2^{3/2}$ and $\eta = C_4 / C_2^2$

• HyQMOM is well defined for any realizable set $\{M_0, M_1, M_2, M_3, M_4\}$ (including $\eta > 3$ when q = 0), realizability $\eta \ge 1 + q^2 \Longrightarrow$ QMOM

・ロト ・ (日) ・ ・ ヨ ト ・ ヨ ト

Conditional HyQMOM

• Approximate 2-D velocity NDF by $(N \ge 2)$

$$n(u,v) \approx M_{0,0} \sum_{\alpha=1}^{N} \sum_{\beta=1}^{N} p_{\alpha} p_{\alpha\beta} \delta(u-\bar{u}-u_{\alpha}) \delta(v-\bar{v}-\bar{v}_{\alpha}-v_{\alpha\beta})$$

where $\bar{\nu} = M_{0,1}/M_{0,0}$ and abscissas $\nu_{\alpha\beta}$ and $\bar{\nu}_{\alpha}$ are found from central moments:

$$C_{i,j} = \frac{1}{M_{0,0}} \int_{\mathbb{R}^2} (u - \bar{u})^i (v - \bar{v})^j n(u, v) \, \mathrm{d}u \mathrm{d}v$$

• Example $N^2 = 9$ nodes, CQMOM applied to symmetric moment sets:

10 moments
 12 moments

$$M_{0,0}$$
 $M_{1,0}$
 $M_{2,0}$
 $M_{3,0}$
 $M_{4,0}$
 $M_{0,0}$
 $M_{1,0}$
 $M_{2,0}$
 $M_{3,0}$
 $M_{4,0}$
 $M_{0,1}$
 $M_{1,1}$
 $M_{0,1}$
 $M_{1,1}$
 $M_{2,1}$
 $M_{4,0}$
 $M_{0,2}$
 $M_{0,2}$
 $M_{1,2}$
 $M_{0,3}$
 $M_{0,4}$
 IOWASIATE I

R. O. Fox (ISU)

Conditional HyQMOM (cont.)

• With 10 moments, $\bar{v}_{\alpha} = a_0 + a_1 u_{\alpha}$ is found from

$$\sum_{\alpha=1}^{3} p_{\alpha} \overline{v}_{\alpha} = C_{0,1} = 0 \qquad \sum_{\alpha=1}^{3} p_{\alpha} u_{\alpha} \overline{v}_{\alpha} = C_{1,1}$$

 $\implies a_0 = 0$ and $a_1 = C_{1,1}/C_{2,0}$ captures correlation between u and v

• CHyQMOM conditional moments are $\{1, 0, C_{2|u_{\alpha}}, C_{3|u_{\alpha}}, C_{4|u_{\alpha}}\}$ where

$$C_{2|u_{\alpha}} = C_{0,2} - a_1^2 C_{2,0} \quad C_{3|u_{\alpha}} = C_{0,3} - a_1^3 C_{3,0} \quad C_{4|u_{\alpha}} = C_{0,4} - 6a_1^2 C_{2,0} C_{2|u_{\alpha}} - a_1^4 C_{4,0}$$

N.B. conditional moments do not depend on α

- HyQMOM applied to $\{1, 0, C_{2|u_{\alpha}}, C_{3|u_{\alpha}}, C_{4|u_{\alpha}}\}$ to find $p_{\alpha\beta}$ and $v_{\alpha\beta}$
- With 12 moments, $\bar{v}_{\alpha} = a_0 + a_1 u_{\alpha} + a_2 u_{\alpha}^2$ and $C_{2|u_{\alpha}} = b_0 + b_1 u_{\alpha}$

R. O. Fox (ISU)

Feb. 8, 2017 26 / 53

・ロト ・ 一ト ・ モト ・ モト

Conditional HyQMOM (cont.)

• CHyQMOM closure for kinetic flux in 1-D spatial and 2-D velocity with 10 moments:

$$\partial_t M_{1,1} + \partial_x \overline{M}_{2,1} = 0 \quad \Longrightarrow \quad \overline{M}_{2,1} = M_{0,0} \sum_{\alpha=1}^3 p_\alpha (\overline{u} + u_\alpha)^2 (\overline{v} + \overline{v}_\alpha)$$

- Theorem: (F. Laurent) 10 moment system with kinetic flux is hyperbolic with 10 distinct eigenvectors
- Extension to 3-D phase space follows same logic: Example $N^3 = 27$ nodes uses either 16 or 23 moments
- Test 3-D closure for particle trajectory crossing (PTC) with 16 moments

R. O. Fox (ISU)

Feb. 8, 2017 27 / 53

Uncorrelated moments

Loading movie...

16-moment, 27-node CHyQMOM

IOWA STATE UNIVERSITY

R. O. Fox (ISU)

Eulerian Models for Disperse Multiphase Flows

Feb. 8, 2017 28 / 53

O > <
 O >

Quadrature weights and abscissas

Loading movie...

16-moment, 27-node CHyQMOM

IOWA STATE UNIVERSITY

R. O. Fox (ISU)

Eulerian Models for Disperse Multiphase Flows

Feb. 8, 2017 29 / 53

Perfectly correlated moments

Loading movie...

16-moment, 27-node CHyQMOM

IOWA STATE UNIVERSITY

R. O. Fox (ISU)

Eulerian Models for Disperse Multiphase Flows

Feb. 8, 2017 30 / 53

э

Quadrature weights and abscissas

Loading movie...

16-moment, 27-node CHyQMOM

IOWA STATE UNIVERSITY

R. O. Fox (ISU)

Eulerian Models for Disperse Multiphase Flows

Feb. 8, 2017 31 / 53

Partially correlated moments

Loading movie...

16-moment, 27-node CHyQMOM

IOWA STATE UNIVERSITY

R. O. Fox (ISU)

Eulerian Models for Disperse Multiphase Flows

Feb. 8, 2017 32 / 53

э

Quadrature weights and abscissas

Loading movie...

16-moment, 27-node CHyQMOM

IOWA STATE UNIVERSITY

R. O. Fox (ISU)

Eulerian Models for Disperse Multiphase Flows

Feb. 8, 2017 33 / 53

Loading movie...

10-moment, 9-node CHyQMOM

IOWA STATE UNIVERSITY

R. O. Fox (ISU)

Eulerian Models for Disperse Multiphase Flows

Feb. 8, 2017 34 / 53

Loading movie...

16-moment, 27-node CHyQMOM

IOWA STATE UNIVERSITY

R. O. Fox (ISU)

Eulerian Models for Disperse Multiphase Flows

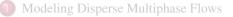
Feb. 8, 2017 35 / 53

CHyQMOM future developments

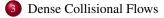
- CHyQMOM can be extended to higher-order velocity moments (e.g., N = 4), but 16 moments already suffices to capture PTC in 3-D
- Size-conditioned CHyQMOM for inertial particles with different sizes is needed for aggregation, growth, breakage, etc.
- CHyQMOM combined with KBFVM works well for dilute disperse multiphase flows where spatial transport is due to kinetic fluxes
- For dense disperse multiphase flows, need to combine CHyQMOM with implicit solver for collisional fluxes
- For KBFVM need realizable high-order spatial reconstructions for fluxes

A (1) > A (1) > A

Outline



2 Conditional HyQMOM



R. O. Fox (ISU)

Feb. 8, 2017 37 / 53

イロト イポト イヨト イヨト

Gas-particle flow model for monodisperse particles

Particle-phase KE

$$\frac{\partial n}{\partial t} + \mathbf{v} \cdot \frac{\partial n}{\partial \mathbf{x}} + \frac{\partial}{\partial \mathbf{v}} \cdot \mathbf{A}n = \mathbb{C}$$

- *n*(*t*, **x**, **v**): number density function (NDF)
- v: particle velocity
- A: particle acceleration (drag, gravity, ...)
- C: rate of change of *n* due to particle–particle collisions

Fluid-phase equations

$$\frac{\partial}{\partial t} \alpha_{g} \rho_{g} + \nabla \cdot \alpha_{g} \rho_{g} \mathbf{U}_{g} = 0$$

$$\begin{aligned} \frac{\partial}{\partial t} \alpha_{\mathbf{g}} \rho_{\mathbf{g}} \mathbf{U}_{\mathbf{g}} + \nabla \cdot \alpha_{\mathbf{g}} \rho_{\mathbf{g}} \mathbf{U}_{\mathbf{g}} \mathbf{U}_{\mathbf{g}} \\ &= \nabla \cdot \alpha_{\mathbf{g}} \boldsymbol{\tau}_{\mathbf{g}} + \beta_{\mathbf{g}} + \alpha_{\mathbf{g}} \rho_{\mathbf{g}} \mathbf{g} \end{aligned}$$

• $\alpha_{g} = 1 - \alpha_{p}$: gas volume fraction

• β_g : mean particle drag

Boltzmann-Enskog inelastic, hard-sphere collision integral

Boltzmann-Enskog collision integral:

$$\mathbb{C} = \frac{6}{\pi d_p} \int_{\mathbb{R}^3} \int_{\mathbb{S}^+} \left[\chi f^{(2)}(\mathbf{x}, \mathbf{v}_1''; \mathbf{x} - d_p \mathbf{n}, \mathbf{v}_2'' - f^{(2)}(\mathbf{x}, \mathbf{v}_1; \mathbf{x} + d_p \mathbf{n}, \mathbf{v}_2) \right] |\mathbf{g} \cdot \mathbf{n}| \, \mathrm{d}\mathbf{n} \mathrm{d}\mathbf{v}_2$$

where $f^{(2)}$ is two-particle density and

- $d_{\rm p}$ particle diameter
 - g relative velocity vector
 - n unit vector along the direction of particles centers
- \mathbb{S}^+ unit half sphere where $\mathbf{g} \cdot \mathbf{n} > 0$
 - χ factor relating pre- and post-collisional velocities

Closure yields two terms: point collisions + collisional flux

Feb. 8, 2017 39 / 53

Complexity of solutions to kinetic equation

3-D Periodic flow

- J. S. Capecelatro & O. Desjardins, Cornell
 - Average volume fraction: α_p = 0.01

•
$$\rho_{\rm p}/\rho_{\rm g} = 1500, {\rm Re}_{\rm p} = 1$$

- elastic collisions
- full 2-way coupling

Eulerian model should yield identical results (if closure is accurate)! Loading movie...

Governing equations: Particle velocity moments

Ten velocity moments (dilute regime):

$$\begin{aligned} \frac{\partial \mathbf{M}}{\partial t} + \nabla \cdot \mathbf{F} &= \mathbf{S} \qquad M_{ijk}^{\gamma} = \int u^{i} v^{j} w^{k} f(\mathbf{v}) d\mathbf{v} \\ M_{000}^{0} &= \alpha_{p}, \qquad \begin{bmatrix} M_{100}^{1} \\ M_{010}^{1} \\ M_{001}^{1} \end{bmatrix} = \alpha_{p} \boldsymbol{U}_{p}, \qquad \begin{bmatrix} M_{200}^{2} & M_{110}^{2} & M_{101}^{2} \\ M_{110}^{2} & M_{020}^{2} & M_{011}^{2} \\ M_{101}^{2} & M_{011}^{2} & M_{002}^{2} \end{bmatrix} = \alpha_{p} \boldsymbol{U}_{p} \otimes \boldsymbol{U}_{p} + \alpha_{p} \mathbf{P}_{p}. \end{aligned}$$

Particle-phase equations (dense regime $\implies 3\Theta_p = trace(\mathbf{P}_p)$):

$$\frac{\partial \rho_p \alpha_p}{\partial t} + \nabla \cdot \rho_p \alpha_p \boldsymbol{U}_p = 0$$

$$\frac{\partial \rho_p \alpha_p \boldsymbol{U}_p}{\partial t} + \nabla \cdot \rho_p \alpha_p \left(\boldsymbol{U}_p \otimes \boldsymbol{U}_p + \mathbf{P}_p + \mathbf{G}_p + \mathbf{Z}_p \right) = \rho_p \alpha_p \boldsymbol{g} + \rho_p \alpha_p \boldsymbol{M}_{pg}$$

$$\frac{\partial \rho_p \alpha_p \mathbf{P}_p}{\partial t} + \nabla \cdot \rho_p \alpha_p \left(\mathbf{U}_p \otimes \mathbf{P}_p + \mathbf{Q}_p + \mathbf{H}_p \right) + \rho_p \alpha_p \left[\left(\mathbf{P}_p + \mathbf{G}_p \right) \cdot \nabla \mathbf{U}_p + \left(\nabla \mathbf{U}_p \right)^T \cdot \left(\mathbf{P}_p + \mathbf{G}_p \right) \right]$$
$$= \rho_p \alpha_p \mathbf{E}_{pg} + \rho_p \alpha_p \mathbf{C}_p$$

4 E 5

A B > A B >

Kinetic, collisional and frictional fluxes: Dense regime

Kinetic flux:

$$U_{p} \otimes U_{p} + \mathbf{P}_{p}$$
$$\mathbf{P}_{p} = \Theta_{p}\mathbf{I} - \boldsymbol{\sigma}_{p} = \Theta_{p}\mathbf{I} - 2\nu_{p,k}\mathbf{S}_{p}$$
$$\mathbf{S}_{p} = \frac{1}{2}\left[\nabla U_{p} + (\nabla U_{p})^{T} - \frac{2}{3}\left(\nabla \cdot U_{p}\right)\mathbf{I}\right]$$

Collisional flux (pressure infinite for finite $\alpha_p \approx 0.63$):

$$\mathbf{G}_p = \frac{p_{p,c}}{\rho_p \alpha_p} \mathbf{I} - 2\nu_{p,c} \mathbf{S}_p$$

Frictional flux (pressure infinite for finite $\alpha_p \approx 0.63$, null when $\alpha_p < 0.55$):

$$\mathbf{Z}_p = \frac{p_{p,f}}{\rho_p \alpha_p} \mathbf{I} - 2\nu_{p,f} \mathbf{S}_p$$

Energy fluxes: $U_p \otimes \mathbf{P}_p + \mathbf{Q}_p + \mathbf{H}_p = U_p \otimes \mathbf{P}_p - \frac{2}{3} k_{\Theta} \nabla \otimes \mathbf{P}_p$

IOWA STATE UNIVERSITY

Kinetic flux-splitting scheme for all flow regimes

$$\frac{\partial \mathbf{M}}{\partial t} + \nabla \cdot h_1 \mathbf{F} + \nabla \cdot (h_2 \mathbf{F} + \mathbf{G} + \mathbf{Z}) = \mathbf{S}$$

$$h_1 + h_2 = 1$$

$$h_2 = \left(\frac{p_{p,c} + p_{p,f}}{p_{p,k} + p_{p,c} + p_{p,f} + \varepsilon}\right)^p$$

$$\frac{\mathbf{Step 1: \mathbf{KBFVM}}{\partial t} + \nabla \cdot h_1 \mathbf{F} = \mathbf{0}$$

$$\frac{\partial \mathbf{M}}{\partial t} + \nabla \cdot (h_2 \mathbf{F} + \mathbf{G} + \mathbf{Z}) = \mathbf{S}$$

ERSITY

0.4 0.5 0.6

 α_p

= = 4

Solution Procedure

- Initialize all variables \mathbf{M} , $\{\alpha_p, U_p, \Theta_p, \sigma_p\}$, and $\{\alpha_g, U_g, p_g\}$
- 2 Calculate h_1 and h_2
- S Explicit Free-transport solver:

Compute kinetic-based moment fluxes to transport the moments Update $\{\alpha_p, U_p, \Theta_p, \sigma_p\}$ using moments **M**

Iterative Hydrodynamic solver:

Solve $\{\alpha_p, U_p, \Theta_p\}$ hydrodynamic transport equations Solve gas-phase velocity and pressure, $\{U_g, p_g\}$, equations

- Solve σ_p transport equation
- Update moment set **M** using $\{\alpha_p, U_p, \Theta_p, \sigma_p\}$
- Advance in time by repeating from Step 2 until simulation is complete

・ロト ・ 一ト ・ モト ・ モト

2-D bubbling fluidized bed

 $U_{p,y}$ Θ_p h_2 α_p $\sigma_{p,xy}$

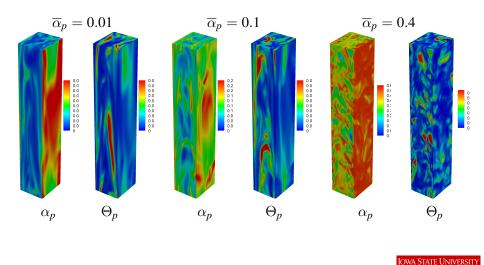
イロト イポト イヨト イヨト

R. O. Fox (ISU)

Eulerian Models for Disperse Multiphase Flows

Feb. 8, 2017 45 / 53

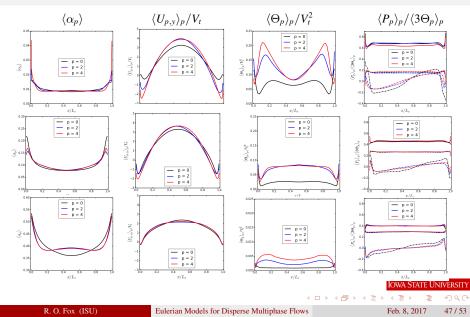
3-D wall-bounded vertical channel: Instantaneous fields



R. O. Fox (ISU)

Feb. 8, 2017 46 / 53

Wall-bounded vertical channel: Statistical results



Future developments

• Dense-dilute flow solver will be extended to fourth-order velocity moments using CHyQMOM to capture PTC

• Dense-dilute flow solver will be extended to polydisperse particles (e.g., sprays) using size-conditioned CHyQMOM

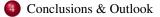
• Dense-dilute flow solver will be adapted to monokinetic flows, such as disperse bubbly flow, using size-conditioned CHyQMOM and additional interphase forces (e.g., virtual mass, lift, etc.)

Outline

Modeling Disperse Multiphase Flows

2 Conditional HyQMOM

3 Dense Collisional Flows



R. O. Fox (ISU)

 IOWA STATE UNIVERSITY

 ▲ 重 ▶ 重 ∽ 𝔅

 Feb. 8, 2017
 49 / 53

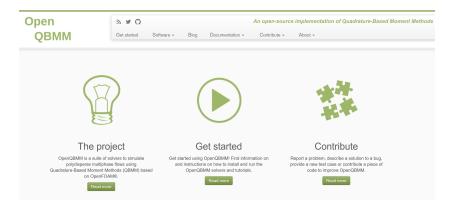
イロト イポト イヨト イヨト

Conclusions & Outlook

- Mesoscale models have direct link with underlying physics and result in a kinetic equation
- QBMM solves kinetic equation by reconstructing distribution function from moments
- For fine particles, QBMM provides an accurate closure for source terms
- For inertial particles, use CHyQMOM for velocity NDF reconstruction for dilute flows
- For dense flows, CHyQMOM is used for kinetic flux and source terms, while a "two-fluid" hydrodynamic solver is used for collisional fluxes
- Extension to size-conditioned CHyQMOM will allow for polydisperse inertial particles

OpenQBMM project (www.openqbmm.org)

Please contribute to the advancement of computational fluid dynamics!



Funded by the US NSF Division of Advanced Cyberinfrastructure

R. O. Fox (ISU)

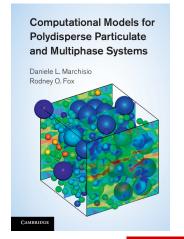
Eulerian Models for Disperse Multiphase Flows

Feb. 8, 2017 51 / 53

< ∃⇒

Principal collaborators and funding

- Iowa State University: B. Kong, A. Passalacqua
- CentraleSupélec: F. Laurent, M. Massot, T. T. Nguyen, A. Vié
- Cornell University: O. Desjardins, R. Patel
- University of Michigan: J. Capecelatro
- US Department of Energy (DE-AC02-07CH113588)
- US National Science Foundation (ACI-1440443, CBET-1437865)



Thanks for your attention!

Questions?

R. O. Fox (ISU)

Eulerian Models for Disperse Multiphase Flows

Feb. 8, 2017 53 / 53