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Modeling Disperse Multiphase Flows Introduction

Disperse multiphase flow

continuous phase

disperse phase

size distribution

finite particle inertia

collisions

variable mass loading

multiphase turbulence

Bidisperse gas-particle flow (DNS of S. Subramaniam)
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Modeling Disperse Multiphase Flows Introduction

Disperse multiphase flows: examples

Bubble columns

Power stations

Brown-out

Volcanos

Jet break up

Spray flames

R. O. Fox (ISU) Eulerian Models for Disperse Multiphase Flows Feb. 8, 2017 4 / 53



Modeling Disperse Multiphase Flows Introduction

Modeling challenges

Strong coupling between continuous and disperse phases

Wide range of particle volume fractions (even in same flow!)

Inertial particles with wide range of Stokes numbers

Collision-dominated to collision-less regimes in same flow

Granular temperature can be very small and very large in same flow

Particle polydispersity (e.g. size, density, shape) is always present

Need a modeling framework that can handle all aspects!
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Modeling Disperse Multiphase Flows Kinetic-based models

Overview of kinetic modeling approach

Microscale Model 
Direct numerical simulation 

Macroscale Model 
Hydrodynamic description 

Euler-Euler models 

Mesoscale Model 
Kinetic equation 

Euler-Lagrange models 

Volume or ensemble averages 
+ closures for “fluctuations” 

Kinetic theory 
+ density function closures 

Moments of density 
+ moment closures 

Mesoscale model incorporates more microscale physics in closures! 
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Modeling Disperse Multiphase Flows Kinetic-based models

Types of mesoscale transport (kinetic) equations

Population balance equation (PBE): n(t, x, ξ)

∂n
∂t

+
∂

∂xi
[ui(t, x, ξ)n] +

∂

∂ξj
[Gj(t, x, ξ)n] =

∂

∂xi

[
D(t, x, ξ) ∂n

∂xi

]
+ S

with known velocity u, growth G, diffusivity D and source S

Kinetic equation (KE): n(t, x, v)

∂n
∂t

+
∂

∂xi
(vin) +

∂

∂vi
[Ai(t, x, v)n] = C

with known acceleration A and collision operator C

Generalized population balance equation (GPBE): n(t, x, v, ξ)

∂n
∂t

+
∂

∂xi
(vin) +

∂

∂vi
[Ai(t, x, v, ξ)n] +

∂

∂ξj
[Gj(t, x, v, ξ)n] = C

with accelerations A, G and collision/aggregation C
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Modeling Disperse Multiphase Flows Kinetic-based models

Eulerian moment transport equations

PBE: Mk =
∫
ξkn dξ

∂Mk

∂t
+

∂

∂x

(∫
ξkun dξ

)
= k

∫
ξk−1Gn dξ +

∂

∂x

(∫
ξkD

∂n
∂x

dξ
)

+

∫
ξkS dξ

KE: Mk =
∫

vkn dv

∂Mk

∂t
+
∂Mk+1

∂x
= k

∫
vk−1An dv +

∫
vkC dv

GPBE: Mkl =
∫

vkξln dvdξ

∂Mkl

∂t
+
∂Mk+1l

∂x
= k

∫
vk−1ξlAn dvdξ + l

∫
vkξl−1Gn dvdξ +

∫
vkξlC dvdξ

Terms in red require mathematical closure
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Modeling Disperse Multiphase Flows Moment methods

Closure with moment methods

Kinetic Equation 

Moment Equations Moments 
M(t,x) 

Integrate over phase space 
Closure using 
quadrature 

Reconstruct using 
quadrature 

Close moment equations by reconstructing density function 

Density 
 n(t,x,v) 

Reconstructed 
density n*(t,x,v) 

Integrate over 
phase space 

6-D solver 

3-D solver 
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Modeling Disperse Multiphase Flows Quadrature-based moment methods

Quadrature-based moment methods (QBMM)

Idea: Given moments, reconstruct the number density function (NDF)

Things to consider:

Which moments should we choose?

What method should we use for reconstruction?

How can we extend method to multivariate phase space?

How should we design the numerical solver for the moments?

We must be able to demonstrate a priori that numerical algorithm is
robust and accurate!
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Modeling Disperse Multiphase Flows Quadrature-based moment methods

Gauss quadrature in 1-D (real line)

The formula ∫
g(v)n(v) dv =

N∑
α=1

nαg(vα) + RN(g)

is a Gauss quadrature iff the N nodes vα are roots of an Nth-order
orthogonal polynomial PN(v) (⊥ with respect to n(v))
Inversion algorithm for moments Mk =

∫
vkn(v)dv:

{M0,M1, . . . ,M2N−1}
QMOM
=⇒ {n1, n2, . . . , nN}, {v1, v2, . . . , vN}

Variation: Gauss–Radau quadrature fix v0 and find n0 from M2N∫
g(v)n(v) dv =

N∑
α=0

nαg(vα) + RN(g)
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Modeling Disperse Multiphase Flows Quadrature-based moment methods

1-D quadrature method of moments (QMOM)

Approximate unclosed terms in moment equations:

dM
dt

=

∫
S(v)n(v)dv ≈

N∑
α=0

nαS(vα)

where M = {M0,M1, . . . ,M2N} and S is “source term”
Exact if S is polynomial of order ≤ 2N
Provides good approximation for most other cases with small N ≈ 4
Complications arise in particular cases (e.g. spatial fluxes)
In all cases, moments M must remain realizable for moment inversion

N.B. equivalent to reconstructed N-point distribution function:

n∗(v) =

N∑
α=0

nαδ(v− vα)

=⇒ realizable if nα ≥ 0 for all α
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Modeling Disperse Multiphase Flows Quadrature in multiple dimensions

Quadrature in multiple dimensions

No method equivalent to Gaussian quadrature for multiple dimensions!

Given a realizable moment set M = {Mi,j,k : i, j, k ∈ 0, 1, . . . }, find nα
and vα = (uα, vα,wα) such that

Mi,j,k =

∫
uivjwkn(v)dv =

N∑
α=0

nαui
αvj
αwk

α

Avoid brute-force nonlinear iterative solver (poor convergence,
ill-conditioned, too slow, . . . )

Algorithm must be realizable (i.e. non-negative weights, . . . )

Strategy: choose moment set to solve with 1-D QMOM
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Modeling Disperse Multiphase Flows Quadrature in multiple dimensions

Conditional QMOM (2-D phase space)

Conditional density function and conditional moments (2-D)

n(u, v) = f (v|u)n(u) =⇒ Mk|u =

∫
vkf (v|u) dv

1-D QMOM for u direction (n = 2)

Mk,0, k ∈ {0, 1, 2, 3} =⇒ find weights nα, abscissas uα

Solve linear systems for conditional moments Mk|uα :[
1 1
u1 u2

] [
n1

n2

] [
Mk|u1

Mk|u2

]
=

[
M0,k
M1,k

]
for k ∈ {1, 2, 3}

CQMOM controls 10 moments:

M0,0 M0,1 M0,2 M0,3
M1,0 M1,1 M1,2 M1,3
M2,0
M3,0
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Modeling Disperse Multiphase Flows Quadrature in multiple dimensions

Conditional QMOM (cont.)

1-D QMOM in v direction for each α:

Mk|uα , k ∈ {0, 1, 2, 3} =⇒ find weights pαβ , abscissas vαβ

Reconstructed density: n∗(u, v) =
∑
α

∑
β nαpαβδ(u− uα)δ(v− vαβ)

Conditioning on v = vα uses 10 moments:

M0,0 M0,1 M0,2 M0,3
M1,0 M1,1
M2,0 M2,1
M3,0 M3,1

Union of two sets =⇒ CQMOM moment set

Extension to higher-dimensional phase space is straightforward
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Modeling Disperse Multiphase Flows Quadrature in multiple dimensions

CQMOM moment set

Moments needed for all CQMOM permutations

N = 4 nodes in 2-D

M0,0 M1,0 M2,0 M3,0
M0,1 M1,1 M2,1 M3,1
M0,2 M1,2
M0,3 M1,3

12 moments

N = 9 nodes in 2-D

M0,0 M1,0 M2,0 M3,0 M4,0 M5,0
M0,1 M1,1 M2,1 M3,1 M4,1 M5,1
M0,2 M1,2 M2,2 M3,2 M4,2 M5,2
M0,3 M1,3 M2,3
M0,4 M1,4 M2,4
M0,5 M1,5 M2,5

27 moments

Entire moment set is transported
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Modeling Disperse Multiphase Flows Kinetic-based finite-volume methods

Kinetic-based finite-volume methods (KBFVM)

Given transported moments, solve

∂Mk,l

∂t
+
∂Mk+1,l

∂x
= k

∫
vk−1ξlA n dv dξ + l

∫
vkξl−1G n dv dξ +

∫
vkξlC dv dξ

where RHS is closed using QBMM:

∂Mk,l

∂t
+
∂Mk+1,l

∂x
=

N∑
α=1

ρα
{

kvk−1
α ξl

αAα + lvk
αξ

l−1
α Gα + vk

αξ
l
αCα

}
Things to consider:

How do we discretize the spatial fluxes?

How do we update the moments in time?

How can we ensure that the moments are always realizable?
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Modeling Disperse Multiphase Flows Kinetic-based finite-volume methods

Kinetic-based spatial fluxes

Spatial fluxes can use kinetic formulation: e.g. ∂tM00 + ∂xM10 = 0

M1,0 = Q−1,0 + Q+
1,0

=

∫ 0

−∞
v
(∫

n∗(v, ξ)dξ
)

du +

∫ ∞
0

v
(∫

n∗(v, ξ)dξ
)

dv

Using reconstructed n∗, downwind and upwind flux components are

Q−1,0 =
N∑
α=1

ραvαI(−∞,0) (vα) Q+
1,0 =

N∑
α=1

ραvαI(0,∞) (vα)

where IS(x) is the indicator function for the interval S

Kinetic-based fluxes are (weakly) hyperbolic
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Modeling Disperse Multiphase Flows Realizable time-stepping schemes

Realizable time-stepping schemes

First-order explicit:

Mn+1
i = Mn

i − λ
[
G
(

Mn
i+ 1

2 ,l
,Mn

i+ 1
2 ,r

)
−G

(
Mn

i− 1
2 ,l
,Mn

i− 1
2 ,r

)]
RK2SSP:

M∗i = Mn
i − λ

[
G
(

Mn
i+ 1

2 ,l
,Mn

i+ 1
2 ,r

)
−G

(
Mn

i− 1
2 ,l
,Mn

i− 1
2 ,r

)]
M∗∗i = M∗i − λ

[
G
(

M∗i+ 1
2 ,l
,M∗i+ 1

2 ,r

)
−G

(
M∗i− 1

2 ,l
,M∗i− 1

2 ,r

)]
Mn+1

i =
1
2

(Mn
i + M∗∗i )

High-order FV schemes: Laurent, Nguyen, https://hal.archives-ouvertes.fr/hal-01345689v2

Achieve second order in space and time on unstructured grids
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Modeling Disperse Multiphase Flows Bubbly flow

Bubbly flow simulation using QBMM and KBFVM

Loading movie. . .

Realizable finite-volume scheme on unstructured mesh
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Modeling Disperse Multiphase Flows Current Status

Current Status

QBMM are well suited for fine particles (e.g., aerosols, soot, etc.) where
principal closure problem is the source terms (e.g., aggregation, growth,
breakage, etc.)

QBMM combined with KBFVM work well for dilute disperse
multiphase flows where spatial transport is due to kinetic fluxes

However, hardest closure problem is pure kinetic transport where no
other physics (e.g., collisions, drag, etc.) modify velocity NDF

Standard QMOM/CQMOM leads to weakly hyperbolic moment systems
(i.e., delta shocks) so a hyperbolic closure would be preferable

In dense disperse multiphase flows, spatial transport is dominated by
collisional fluxes that require an iterative solver
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Conditional HyQMOM

Outline

1 Modeling Disperse Multiphase Flows

2 Conditional HyQMOM

3 Dense Collisional Flows

4 Conclusions & Outlook
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Conditional HyQMOM Mathematical formulation

Hyperbolic QMOM

Approximate velocity NDF by (N ≥ 2)

n(u) ≈ M0

N∑
α=1

pαδ(u− ū− uα)

where ū = M1/M0, and pα and uα are found from central moments:

Ci =
1

M0

∫ +∞

−∞
(u− ū)in(u) du

Fix C2N−1 such that moment system is hyperbolic

Given {1, 0,C2 . . . ,C2N−2} and constraint on C2N−1, apply QMOM

{1, 0,C2 . . . ,C2N−1}
QMOM
=⇒ {p1, p2, . . . , pN}, {u1, u2, . . . , uN}
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Conditional HyQMOM Mathematical formulation

Hyperbolic QMOM (cont.)

Moment closure for kinetic flux in 1-D:

∂tM2N−2 + ∂xM̄2N−1 = 0 =⇒ M̄2N−1 = M0

N∑
α=1

pα(ū + uα)2N−1

For N = 3: M̄5 = M0
[
p1(ū + u1)

5 + p2ū5 + p3(ū + u3)
5]

Theorem: (F. Laurent) Moment system for {M0,M1,M2,M3,M4} with kinetic flux M̄5 is
hyperbolic with 5 distinct eigenvalues

ū, ū +

√
C2

2

(
q±

√
4η − 3q2 ± 4

√
(η − q2)(η − q2 − 1)

)
where q = C3/C3/2

2 and η = C4/C2
2

HyQMOM is well defined for any realizable set {M0,M1,M2,M3,M4}
(including η > 3 when q = 0), realizability η ≥ 1 + q2 =⇒ QMOM
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Conditional HyQMOM Extension to 2-D phase space

Conditional HyQMOM

Approximate 2-D velocity NDF by (N ≥ 2)

n(u, v) ≈ M0,0

N∑
α=1

N∑
β=1

pαpαβδ(u− ū− uα)δ(v− v̄− v̄α − vαβ)

where v̄ = M0,1/M0,0 and abscissas vαβ and v̄α are found from central
moments:

Ci,j =
1

M0,0

∫
R2

(u− ū)i(v− v̄)jn(u, v) dudv

Example N2 = 9 nodes, CQMOM applied to symmetric moment sets:

10 moments 12 moments

M0,0 M1,0 M2,0 M3,0 M4,0
M0,1 M1,1
M0,2
M0,3
M0,4

M0,0 M1,0 M2,0 M3,0 M4,0
M0,1 M1,1 M2,1
M0,2 M1,2
M0,3
M0,4
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Conditional HyQMOM Extension to 2-D phase space

Conditional HyQMOM (cont.)

With 10 moments, v̄α = a0 + a1uα is found from

3∑
α=1

pαv̄α = C0,1 = 0
3∑

α=1

pαuαv̄α = C1,1

=⇒ a0 = 0 and a1 = C1,1/C2,0 captures correlation between u and v

CHyQMOM conditional moments are {1, 0,C2|uα ,C3|uα ,C4|uα} where

C2|uα = C0,2 − a2
1C2,0 C3|uα = C0,3 − a3

1C3,0 C4|uα = C0,4 − 6a2
1C2,0C2|uα − a4

1C4,0

N.B. conditional moments do not depend on α

HyQMOM applied to {1, 0,C2|uα ,C3|uα ,C4|uα} to find pαβ and vαβ

With 12 moments, v̄α = a0 + a1uα + a2u2
α and C2|uα = b0 + b1uα
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Conditional HyQMOM Extension to 2-D phase space

Conditional HyQMOM (cont.)

CHyQMOM closure for kinetic flux in 1-D spatial and 2-D velocity with
10 moments:

∂tM1,1 + ∂xM̄2,1 = 0 =⇒ M̄2,1 = M0,0

3∑
α=1

pα(ū + uα)2(v̄ + v̄α)

Theorem: (F. Laurent) 10 moment system with kinetic flux is hyperbolic
with 10 distinct eigenvectors

Extension to 3-D phase space follows same logic: Example N3 = 27
nodes uses either 16 or 23 moments

Test 3-D closure for particle trajectory crossing (PTC) with 16 moments

R. O. Fox (ISU) Eulerian Models for Disperse Multiphase Flows Feb. 8, 2017 27 / 53



Conditional HyQMOM Particle trajectory crossing

Particle trajectory crossing in 1-D

Uncorrelated moments

Loading movie. . .

16-moment, 27-node CHyQMOM
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Conditional HyQMOM Particle trajectory crossing

Particle trajectory crossing in 1-D

Quadrature weights and abscissas

Loading movie. . .

16-moment, 27-node CHyQMOM
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Conditional HyQMOM Particle trajectory crossing

Particle trajectory crossing in 1-D

Perfectly correlated moments

Loading movie. . .

16-moment, 27-node CHyQMOM
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Conditional HyQMOM Particle trajectory crossing

Particle trajectory crossing in 1-D

Quadrature weights and abscissas

Loading movie. . .

16-moment, 27-node CHyQMOM
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Conditional HyQMOM Particle trajectory crossing

Particle trajectory crossing in 1-D

Partially correlated moments

Loading movie. . .

16-moment, 27-node CHyQMOM

R. O. Fox (ISU) Eulerian Models for Disperse Multiphase Flows Feb. 8, 2017 32 / 53


crossing_jet_1D-4m.mov
Media File (video/quicktime)



Conditional HyQMOM Particle trajectory crossing

Particle trajectory crossing in 1-D

Quadrature weights and abscissas

Loading movie. . .

16-moment, 27-node CHyQMOM
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Conditional HyQMOM Particle trajectory crossing

Particle trajectory crossing in 2-D

Loading movie. . .

10-moment, 9-node CHyQMOM
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Conditional HyQMOM Particle trajectory crossing

Particle trajectory crossing in 3-D

Loading movie. . .

16-moment, 27-node CHyQMOM
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Conditional HyQMOM CHyQMOM future developments

CHyQMOM future developments

CHyQMOM can be extended to higher-order velocity moments (e.g.,
N = 4), but 16 moments already suffices to capture PTC in 3-D

Size-conditioned CHyQMOM for inertial particles with different sizes is
needed for aggregation, growth, breakage, etc.

CHyQMOM combined with KBFVM works well for dilute disperse
multiphase flows where spatial transport is due to kinetic fluxes

For dense disperse multiphase flows, need to combine CHyQMOM with
implicit solver for collisional fluxes

For KBFVM need realizable high-order spatial reconstructions for fluxes
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Dense Collisional Flows
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Dense Collisional Flows Gas–particle flow

Gas–particle flow model for monodisperse particles

Particle-phase KE

∂n
∂t

+ v · ∂n
∂x

+
∂

∂v
· An = C

n (t, x, v): number density
function (NDF)

v: particle velocity

A: particle acceleration (drag,
gravity, . . . )

C: rate of change of n due to
particle–particle collisions

Fluid-phase equations

∂

∂t
αgρg +∇ · αgρgUg = 0

∂

∂t
αgρgUg +∇ · αgρgUgUg

= ∇ · αgτg + βg + αgρgg

αg = 1− αp: gas volume fraction

βg: mean particle drag
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Dense Collisional Flows Gas–particle flow

Boltzmann–Enskog inelastic, hard-sphere collision integral

Boltzmann–Enskog collision integral:

C =
6
πdp

∫
R3

∫
S+

[
χ f (2)(x, v′′1 ; x− dpn, v′′2 − f (2)(x, v1; x + dpn, v2)

]
|g · n| dndv2

where f (2) is two-particle density and

dp particle diameter

g relative velocity vector

n unit vector along the direction of particles centers

S+ unit half sphere where g · n > 0

χ factor relating pre- and post-collisional velocities

Closure yields two terms: point collisions + collisional flux
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Dense Collisional Flows Gas–particle flow

Complexity of solutions to kinetic equation

3-D Periodic flow
J. S. Capecelatro & O. Desjardins, Cornell

Average volume
fraction: αp = 0.01

ρp/ρg = 1500, Rep = 1

elastic collisions

full 2-way coupling

Eulerian model should yield
identical results
(if closure is accurate)!

Loading movie. . .
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Dense Collisional Flows Gas–particle model for all flow regimes

Governing equations: Particle velocity moments
Ten velocity moments (dilute regime):

∂M
∂t

+∇ · F = S Mγ
ijk =

∫
uivjwk f (v)dv

M0
000 = αp,

M1
100

M1
010

M1
001

 = αpUp,

M2
200 M2

110 M2
101

M2
110 M2

020 M2
011

M2
101 M2

011 M2
002

 = αpUp ⊗ Up + αpPp.

Particle-phase equations (dense regime =⇒ 3Θp = trace(Pp)):

∂ρpαp

∂t
+∇ · ρpαpUp = 0

∂ρpαpUp

∂t
+∇ · ρpαp (Up ⊗ Up + Pp + Gp + Zp) = ρpαpg + ρpαpMpg

∂ρpαpPp

∂t
+∇ · ρpαp (Up ⊗ Pp + Qp + Hp) + ρpαp

[
(Pp + Gp) · ∇Up + (∇Up)

T · (Pp + Gp)
]

= ρpαpEpg + ρpαpCp
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Dense Collisional Flows Gas–particle model for all flow regimes

Kinetic, collisional and frictional fluxes: Dense regime

Kinetic flux:
Up ⊗ Up + Pp

Pp = ΘpI− σp = ΘpI− 2νp,kSp

Sp =
1
2

[
∇Up + (∇Up)

T − 2
3

(∇ · Up) I
]

Collisional flux (pressure infinite for finite αp ≈ 0.63):

Gp =
pp,c

ρpαp
I− 2νp,cSp

Frictional flux (pressure infinite for finite αp ≈ 0.63, null when αp < 0.55):

Zp =
pp,f

ρpαp
I− 2νp,f Sp

Energy fluxes: Up ⊗ Pp + Qp + Hp = Up ⊗ Pp − 2
3 kΘ∇⊗ Pp
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Dense Collisional Flows Solution algorithm for all flow regimes

Kinetic flux-splitting scheme for all flow regimes

∂M
∂t

+∇ · h1F +∇ · (h2F + G + Z) = S

h1 + h2 = 1

h2 =

(
pp,c + pp,f

pp,k + pp,c + pp,f + ε

)p

Step 1: KBFVM
∂M
∂t

+∇ · h1F = 0

Step 2: Hydrodynamic solver
∂M
∂t

+∇ · (h2F + G + Z) = S
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Dense Collisional Flows Solution algorithm for all flow regimes

Solution Procedure

1 Initialize all variables M, {αp,Up,Θp,σp}, and {αg,Ug, pg}
2 Calculate h1 and h2

3 Explicit Free-transport solver:
Compute kinetic-based moment fluxes to transport the moments
Update {αp,Up,Θp,σp} using moments M

4 Iterative Hydrodynamic solver:
Solve {αp,Up,Θp} hydrodynamic transport equations
Solve gas-phase velocity and pressure, {Ug, pg} , equations

5 Solve σp transport equation

6 Update moment set M using {αp,Up,Θp,σp}
7 Advance in time by repeating from Step 2 until simulation is complete
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Dense Collisional Flows Bubbling fluidized bed

2-D bubbling fluidized bed

αp h2 Up,y Θp σp,xy
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alphap.swf
Media File (application/x-shockwave-flash)


h2.swf
Media File (application/x-shockwave-flash)


Upy.swf
Media File (application/x-shockwave-flash)


thetap.swf
Media File (application/x-shockwave-flash)


sigmaxy.swf
Media File (application/x-shockwave-flash)



Dense Collisional Flows Wall-bounded vertical channel

3-D wall-bounded vertical channel: Instantaneous fields

αp = 0.01 αp = 0.1 αp = 0.4

αp Θp αp Θp αp Θp
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Dense Collisional Flows Wall-bounded vertical channel

Wall-bounded vertical channel: Statistical results
〈αp〉 〈Up,y〉p/Vt 〈Θp〉p/V2

t 〈Pp〉p/〈3Θp〉p
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Dense Collisional Flows Dense–dilute flow solver

Future developments

Dense–dilute flow solver will be extended to fourth-order velocity
moments using CHyQMOM to capture PTC

Dense–dilute flow solver will be extended to polydisperse particles (e.g.,
sprays) using size-conditioned CHyQMOM

Dense–dilute flow solver will be adapted to monokinetic flows, such as
disperse bubbly flow, using size-conditioned CHyQMOM and additional
interphase forces (e.g., virtual mass, lift, etc.)
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Conclusions & Outlook

Outline

1 Modeling Disperse Multiphase Flows

2 Conditional HyQMOM

3 Dense Collisional Flows

4 Conclusions & Outlook
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Conclusions & Outlook Eulerian multiphase models

Conclusions & Outlook

Mesoscale models have direct link with underlying physics and result in
a kinetic equation

QBMM solves kinetic equation by reconstructing distribution function
from moments

For fine particles, QBMM provides an accurate closure for source terms

For inertial particles, use CHyQMOM for velocity NDF reconstruction
for dilute flows

For dense flows, CHyQMOM is used for kinetic flux and source terms,
while a “two-fluid” hydrodynamic solver is used for collisional fluxes

Extension to size-conditioned CHyQMOM will allow for polydisperse
inertial particles
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Conclusions & Outlook Eulerian multiphase models

OpenQBMM project (www.openqbmm.org)

Please contribute to the advancement of computational fluid dynamics!

Funded by the US NSF Division of Advanced Cyberinfrastructure
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Conclusions & Outlook Collaborators and funding

Principal collaborators and funding

Iowa State University: B. Kong,
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M. Massot, T. T. Nguyen, A. Vié

Cornell University:
O. Desjardins, R. Patel

University of Michigan:
J. Capecelatro

US Department of Energy
(DE-AC02-07CH113588)

US National Science Foundation
(ACI-1440443, CBET-1437865)
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Conclusions & Outlook The end

Thanks for your attention!

Questions?

R. O. Fox (ISU) Eulerian Models for Disperse Multiphase Flows Feb. 8, 2017 53 / 53


	Modeling Disperse Multiphase Flows
	Conditional HyQMOM
	Dense Collisional Flows
	Conclusions & Outlook

