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Technologically Relevant Flow Reactors
Turbulent flames

Flame synthesis of TiO2 nanoparticles 

(Strobel & Pratsinis 2007) 
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What is Computational Fluid Dynamics?

Principal steps:
1 Create computational grid
2 Select conservation eqns and closures

Mass
Chemical species
Momentum
Energy
multiphase, population balance, ...

3 Discretize conservation equations
Finite volume for space
Stiff ODE solver for reactions
Moment method for population balance
Lagrangian method for particles, etc.

4 Solve discretized equations
5 Post-process results
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Step 1: Computational Grid

Difficulty depends on flow geometry
Academic cases: simple geometry

2832 Y. Liu et al. / Chemical Engineering Science 63 (2008) 2829–2842
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Turbulent diffusivity, �T , is defined as

�T = C�

ScT

k2

	
, (13)

with C� = 0.09 and ScT = 0.7. These equations are coupled to
a CFD turbulence model that computes 〈u〉, k and 	.

Table 1
Simulation model and parameter setup for FLUENT 6.2

Solver Segregated
Implicit
Steady

Viscous model 
–epsilon (two-equation) model
Near-wall treatment Enhanced wall treatment
Discretization Second-order upwind

ø0.13 cm

1.50 cm

ø0.60 cm

0.11 cm

0.15 cm

Fig. 4. Geometry and grids of the main mixing chamber.

The local turbulence level can be described by introducing a
turbulent Reynolds number, Re1 defined as

Re1 = k

(	�)1/2
. (14)

The micromixing parameter � is modeled by

� = C�

2

	

k
, (15)

with C� ≈ 2 for high-Reynolds-number flow. It has been
demonstrated by Liu and Fox that at finite turbulent Reynolds
numbers C� =2 overestimates the micromixing rate. They pro-
pose the following expression (Liu and Fox, 2006):

C� =
6∑

n=0

an(lg10 Re1)
n for Re1�0.2 (16)

to account for finite Reynolds-number effects when the Schmitt
number is large. Here, a0 = 0.4093, a1 = 0.6015, a2 = 0.5815,
a3 = 0.09472, a4 = −0.3903, a5 = 0.1461 and a6 = −0.01604.
More detailed derivation can be found from Fox’s articles as
well as others (Wang and Fox, 2004; Fox, 2003; Liu and Fox,
2006).

Case I
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Fig. 5. Conversion of DMP vs. Re in the MIVM for case I with equal
flow rates and concentrations (�, numerical simulation data; �, experimental
measurements).

Industrial cases: complex geometry

Grid quality determines solution
accuracy
Compromise between capturing
geometric complexity and solver
accuracy
Non-negligible time and cost!

Simulation setup 

ETH Zürich flame reactor (Pratsinis et 
al. 1996) 

 

 

 

Structured cylindrical grid 
system 
- 256 x 112 x 32 cells over 40D x 30D 

- Clustered near burner exit 

Low Mach-number solver with 
MPI-based parallel computing 

Ar 250 ml/min 

CH4 312 ml/min 

TiCl4 5.8E-4 mol/min 

Air 3800 ml/min 

D 

(1mm walls) 

28 

 

 

 

FIGURE 2. COMPUTATIONAL MESH OF THE REFERENCE REACTOR (LEFT) AND THE ENLARGED VIEWS OF 

THE MIDDLE PBTD (TOP RIGHT) AND THE BOTTOME DT (BOTTOM RIGHT). 

3.3 CFD SIMULATIONS OF THE REFERENCE REACTOR 

CFD simulations of the reference reactor were performed for both single-phase (liquid) and 

multiphase (gas-liquid) systems. Results are discussed below. 

3.3.1 SINGLE-PHASE CFD SIMULATIONS 
For the single-phase simulations, the whole tank was filled with water. Two impeller rotation 

speeds (3.75 rps and 5.08 rps) were used in the simulations. The flow in the reactor was 

solved using the steady-state solver simpleFoam in OpenFOAM®. The multiple reference 

frame (MRF) model, described in the previous report, was used to treat the rotating 

impellers. The flow patterns in the reactor are presented in following sections, and the power 

number at different rotation speeds is compared to experiment results. 
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Step 2: Computational Model

Difficulty depends on flow physics
Single-phase flow

Direct numerical simulation
(DNS)
Turbulence model for
unresolved scales (RANS, LES)

Reacting flow

DNS for gas phase
RANS or LES for liquid phase
Complex chemistry and
closures for unresolved scales

Multiphase flow

DNS for "simple" flows
Multi-fluid model with closures
Multi-scale model key to
success

Governing equations 

26 

Population Balance 

Moment Equations Moments 
M(t,x) 

Integrate over 1-D phase space 
Closure using 
quadrature 

Reconstruct using 
quadrature 

Close moment equations by reconstructing density function 

Density 
n(t,x,s) 

Reconstructed 
density n*(t,x,s) 

Integrate over 
1-D phase space 

4-D GPBE+CFD solver 

3-D CFD solver 
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Step 3: Computational Method

Difficulty depends on flow model
Single-phase flow

Finite volume in space
Explicit/implicit in time

Reacting flow

Look-up table for chemistry
Realizable solver for moments

Multiphase flow

Coupled solver for phase
exchanges (mass/momentum)
Operator splitting for source
terms (reactions, aggregation)
Lagrangian and/or Eulerian
solver for disperse phase

h(n) > htol

h(n) = h(n)/2

ierr = 0

compute y(n+1), ŷ(n+1)

err ≤ 1
output: y(n+1)

h(n+1) = hnew

input: y(n), h(n)

reconstruction (TSM,
EQMOM, etc.)

and compute τi, ηi
STOP

h(n) > htol

h(n) = hnew
facmax = 1

no

yes

yes

yes
no

no

no

yes
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Step 4: Solver Implementation
Difficulty depends on algorithm

Multi-CPU workstation

Small problems with simple
models
Single-phase RANS

Multi-CPU cluster

Larger problems with simple
models
Single-phase LES
Simple multiphase flows

Peta/Exascale computer

Very large problems with simple
models
DNS of canonical single-phase
turbulent flows
LES of disperse multiphase flows


riser_Re1.mov
Media File (video/quicktime)
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Step 5: Post-processing

Difficulty depends on data set
RANS simulations

Small data sets
Simple plots

Single-phase DNS/LES

Large data sets
Time-dependent velocity/scalar
fields
Simple plots, 3-D animations

Multiphase DNS/LES

Very large data sets
Time-dependent velocity/scalar
fields for each phase
Simple plots, 3-D animations


channel_zoom.mov
Media File (video/quicktime)


CITChannel.mov
Media File (video/quicktime)
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Multiscale Modeling Approach

Microscale Model 
Direct numerical simulation 

Macroscale Model 
Hydrodynamic description 

Euler-Euler models 

Mesoscale Model 
Kinetic equation 

Euler-Lagrange models 

Volume or ensemble averages 
+ closures for “fluctuations” 

Kinetic theory 
+ density function closures 

Moments of density 
+ moment closures 

Mesoscale model incorporates more microscale physics in closures! 
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Passive Scalar Mixing

Planar jet in a channel: two downstream locations

Instantaneous Normalized Images   
 

 
Tip 

 
7cm 

 

 
13cm 

 

 
22cm 
 

 
 

Courtesy of Dr. B Kong
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Passive Scalar Mixing

Confined impinging jets

Courtesy of Dr. Y Shi
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Passive Scalar Mixing

Multi-inlet vortex mixer

 

Figure 4. Typical instantaneous passive scalar field for ½ plane at different Reynolds numbers. 

 

 

 

 

Courtesy of Dr. Z Liu and E Hitimana
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Computational Model

Choice depends on Re and Sc
Laminar flow

Direct numerical simulation (DNS)
Mixing model for unresolved scales
(Sc� 1)

Turbulent flow

RANS or LES for liquid phase
Closures for unresolved scales

Probability density function (PDF)
method

PDF transport equation
Moments of PDF: mean and variance
Closures for transport, mixing

inertial range dissipation range
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Evolution of PDFs from DNS

Ternary mixing Binary mixing

interest which are studied involve whether or not the scalar
fields reach a self-similar state~Sec. IV B! and the rate of
decay of the scalar variance and dissipation at large times
~Sec. IV C!. We shall present detailed results from the R92A
simulations, where the initial length scales and the diffusivity
for the two scalar fields are the same. For the other cases, we
shall highlight the differences~if any! in the scalar mixing
process caused by a change in either the initial length scale
or the diffusivity. Except where noted, the results are from
simulations utilizing the 1923 grid atRel592, i.e., R92.

It has been observed in some of the prior simulations
~for example, EP! and experiments that for the mixing of a
single scalar with varying initial length scales~but the same
initial pdf!, the evolution states of the scalar pdf are approxi-
mately invariant if they are computed at fixed values of
f8/f08 . Here f8 represents the root mean square~r.m.s.!
value of the scalar at the given time andf08 is the r.m.s.
value at timet50 ~initial state!, the r.m.s. values being com-
puted by taking the square root of the volume averaged sca-
lar variance. Hence in the present simulations, we output the

various statistics at fixed values of the r.m.s.F[(f8/f08)1
where the subscript 1 denotes that the ratio is computed for
the first scalar. Figure 3 shows a plot of the evolution of the
scalar r.m.s (f8) and volume averaged scalar dissipation
@^ef&[D^¹f(x,t).¹f(x,t)&# from the R92A simulations.
Time is normalized by the large eddy-turnover time, i.e.
t*5tu/ l . It can be seen that, in this case where the initial
length scales of the two scalars are identical, the evolution of
f8 and ^ef& are also quite similar—the differences being
entirely due to statistical variability.

A. Evolution of scalar jpdf and conditional diffusion

The scalar joint probability density function,P(c;t), is
computed at specified timest by dividing thec1-c2 sample
space into 60360 intervals and then forming a histogram
using the values of the two scalars at each grid point. As
there are about seven million grid points, the jpdf can be
expected to have relatively small statistical errors. The jpdf
is easily represented as a contour plot in the two-dimensional
sample space.

FIG. 9. The evolution states of the marginal pdf of~a! f1 and~b! f2 for simulation R92A. The corresponding conditional expectations of the scalar diffusion
are shown in~c! for f1 and ~d! for f2, respectively.

2178 Phys. Fluids, Vol. 8, No. 8, August 1996 A. Juneja and S. B. Pope
 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.186.1.55 On: Thu, 28 Jul 2016

17:41:42

Means are constant 〈φ1〉 and 〈φ2〉
Variances decrease: 〈φ′21 〉 and 〈φ′22 〉
CFD model solves for these variables
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CFD Model for Scalar Mixing

∂〈φ〉
∂t

+ 〈u〉 ·∇〈φ〉 = ∇ · (ΓT∇〈φ〉) =⇒ LSS: large-scale segregation

∂〈φ2〉
∂t

+〈u〉·∇〈φ2〉 = ∇·(ΓT∇〈φ2〉)−εφ =⇒ SSS: small-scale segregation

RZ

SSS

LSS&SSS

RZ

SSS

LSS&SSS

Figure 15: Distribution of the reaction (RZ) and segregation (LSS, SSS) zones for (left)Rej D 400

and (right)Rej D 1000.

37
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Reactive Scalars: A + B→ R, B + R→ S

Joint PDF f (ξ,Y2) for mixture fraction ξ and progress variable Y2

Reaction source term for Y2

PDF is “discretized” using moment methods

CFD code solves moment transport equations
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Confined Impinging-Jets Reactor

Damköhler number Conversion of undesired product
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Figure 1: The mechanical-to-scalar time-scale ration as a function of the turbulent Reynolds
number
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Figure 2: Conversion of DMP versusRej in the CIJ reactor. Open symbols: experiments.
Closed symbols: simulations.
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Multi-Inlet Vortex Reactor
2830 Y. Liu et al. / Chemical Engineering Science 63 (2008) 2829–2842

B+D 3

A
4

1

2
A

B+D

Fig. 1. Arrangement of the inlet streams for case I. All streams have the
same volumetric flow rates. Two acid streams (A) come in opposite the two
base streams (B), which contain the DMP reagent (D).

instead of two.”) (Roughton, 1930). In a previous study,
Johnson and Prud’homme (2003) determined the dependence
of mixing time on Reynolds number and geometry in a
confined impinging jet (CIJ) mixer using the conversion of
competitive reactions (the so-called “Bourne reactions”). And
Bertrand-Andrieu et al. (2006) have measured mixing times in
CIJs using visualization and iodate reactions. Mixing in the
CIJ can be as fast as milliseconds, but the CIJ mixer is lim-
ited by the requirement of equal momenta of the solvent and
anti-solvent streams. The final concentration of the effluent
is the average of the two stream concentrations which may
compromise particle stability.

To overcome the limitation of the CIJ mixer, but to retain
its ability to provide rapid micromixing, scalability, and ease
of operation, we developed a multi-inlet vortex mixer (MIVM)
(Fig. 1). The concept of the MIVM is that the momentum from
each stream contributes independently to drive micromixing in
the cell. Therefore, it is possible to have one or more streams at
high volumetric flow rate and another stream at a lower flow rate
and still get good micromixing. The design question is—how
efficiently will the mixer operate at different flow velocities and
stream ratios? How does it compare to the CIJ where two op-
posing streams impinge and all the momentum is dissipated in
the central region of the cavity? If the MIVM provides rapid
micromixing then it has the operational advantages that the fi-
nal fluid phase is predominantly anti-solvent. This increases
the stability of the nanoparticles by depressing the rate of Ost-
wald ripening (Lifshitz and Slyozov, 1961; Wang et al., 2005;
Voorhees, 1992; Hoang et al., 2004). In addition, being able to
separate inlet streams enables the introduction of reactive com-
pounds in different streams so that reactive precipitations can
be accomplished.

In this paper, we establish the functionality of the mixing time
of this MIVM with Reynolds number, inlet velocity, physical
properties of the streams and the geometry of the mixer. The
characteristic mixing time of the MIVM is measured by the
competitive Bourne reactions (Johnson and Prud’homme, 2003;
Bourne et al., 1981a,b; Belevi et al., 1981; Baldyga et al., 1998).
The characteristic mixing time of the MIVM can be in the range
of milliseconds at Re > 1600. A computational fluid dynamics
(CFD) model that was previously used to model the CIJ mixer
was used to model the MIVM mixer (Wang and Fox, 2004).
The CFD results provide additional insights as to the mixing
mechanisms in the MIVM mixer.

2. Reaction kinetics

Baldyga et al. (1981a, b) developed a competitive reaction
scheme that is fast enough to probe the mixing performance
of mixing in the MIVM. This “fourth Bourne reaction” has
stable reactants and products, and is easily quantified by gas
chromatography (GC). Conceptually, the scheme works in this
way. The reagents for the competitive reactions are segregated
in two (or more) flow streams. If the micromixing is faster than
the reaction kinetics of the slow reaction then the conversion of
the limiting reagent in the slow reaction will correspond to the
ratio of the two reaction rate constants; that is, the conversion
can be calculated from the conversion from a homogeneous
initial state. However, if the reacting streams are not well mixed,
then diffusion limitations will decrease the conversion of the
limiting reagent (Johnson and Prud’homme, 2003).

The fast reaction of the competitive reactions is the neutral-
ization of sodium hydroxide with a second-order rate constant
k1 = 1.4 × 108 m3/mol s

OH− + H+ → H2O.

The slow reaction is the acid catalyzed hydrolysis of 2,2-
dimethoxypropane (DMP) to form one mole of acetone and
two moles of methanol

CH3C(OCH3)2CH3 + H+(+H2O)

→ CH3COCH3 + 2CH3OH + H+.

The rate constant of this reaction is k2 = 0.63 m3/mol s.
Since the rate constant of the fast reaction is more than 108

times the rate constant of the slow reaction, the reaction time
can be expressed as a pseudo-first-order time constant of the
slow reaction:

�rxn = 1

k2CDMP0
. (1)

The mixing effectiveness is measured by the fraction of DMP
reacted

X = 1 − NDMP

NDMP0
. (2)

For the experiments, Eq. (2) was cast in the form

X = CMeOH,outlet

2D0

(
1 + 1

F

)
. (3)

CMeOH,outlet can be accurately measured by GC. The constant
“2” in front of CDMP,inlet comes from the fact that every mole
of DMP that reacts will generate 2 mol of methanol.

Conceptually, mixing can be described by a mixture fraction
�, which is independent of chemistry (Fox, 2003). By conven-
tion, we will set �=0 in the streams containing acid, and �=1
in the streams containing base and DMP. The value of the av-
erage mixture fraction at the outlet is

� = m2

m1 + m2
. (4)

2832 Y. Liu et al. / Chemical Engineering Science 63 (2008) 2829–2842

�(�p2�2)

�t
+ ∇ · (�〈−→U 〉p2�2)

= ∇ · [��T ∇(p2�2)] + ��p1p2(�1 − �2)

+ ��T

�2 − �1
(p1|∇�1|2 + p2|∇�2|2), (10)

�(�p1Y1)

�t
+ ∇ · (�〈−→U 〉p1Y1)

= ∇ · [��T ∇(p1Y21)] + ��p1p2(Y2 − Y1)

+ ��T

Y1−Y2
(p1|∇Y1|2+p2|∇Y2|2)+�p1S∞(�1, Y1),

(11)

�(�p2Y2)

�t
+ ∇ · (�〈−→U 〉p2Y2)

= ∇ · [��T ∇(p2Y2)] + ��p1p2(Y1 − Y2)

+ ��T

Y2−Y1
(p1|∇Y1|2+p2|∇Y2|2)+�p2S∞(�2, Y2).

(12)

Turbulent diffusivity, �T , is defined as

�T = C�

ScT

k2

	
, (13)

with C� = 0.09 and ScT = 0.7. These equations are coupled to
a CFD turbulence model that computes 〈u〉, k and 	.

Table 1
Simulation model and parameter setup for FLUENT 6.2

Solver Segregated
Implicit
Steady

Viscous model 
–epsilon (two-equation) model
Near-wall treatment Enhanced wall treatment
Discretization Second-order upwind

ø0.13 cm

1.50 cm

ø0.60 cm

0.11 cm

0.15 cm

Fig. 4. Geometry and grids of the main mixing chamber.

The local turbulence level can be described by introducing a
turbulent Reynolds number, Re1 defined as

Re1 = k

(	�)1/2
. (14)

The micromixing parameter � is modeled by

� = C�

2

	

k
, (15)

with C� ≈ 2 for high-Reynolds-number flow. It has been
demonstrated by Liu and Fox that at finite turbulent Reynolds
numbers C� =2 overestimates the micromixing rate. They pro-
pose the following expression (Liu and Fox, 2006):

C� =
6∑

n=0

an(lg10 Re1)
n for Re1�0.2 (16)

to account for finite Reynolds-number effects when the Schmitt
number is large. Here, a0 = 0.4093, a1 = 0.6015, a2 = 0.5815,
a3 = 0.09472, a4 = −0.3903, a5 = 0.1461 and a6 = −0.01604.
More detailed derivation can be found from Fox’s articles as
well as others (Wang and Fox, 2004; Fox, 2003; Liu and Fox,
2006).

Case I
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Fig. 5. Conversion of DMP vs. Re in the MIVM for case I with equal
flow rates and concentrations (�, numerical simulation data; �, experimental
measurements).

2838 Y. Liu et al. / Chemical Engineering Science 63 (2008) 2829–2842

Fig. 12. Acid concentration at Re = 1371 for symmetric arrangement of the inlet streams (a) and asymmetric arrangement of the inlet streams (b).

the reaction time is dependent on the initial DMP conc-
entration.

The experimental and numerical simulation results with re-
action time 48.1 and 96.2 ms are shown in (Fig. 17) for case I.

At high Re, for both reaction times, the conversion of DMP
reaches the same limit, which is set by the sensitivity of the
competitive reactions. That is the mixing time is faster than
the reaction time and the compositions appear essentially
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CFD Validation for MIVR

2836 Y. Liu et al. / Chemical Engineering Science 63 (2008) 2829–2842
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Fig. 10. Conversion of DMP vs. Re in the MIVM (�, numerical simulation
data for case I; �, numerical simulation data for case III; �, experimental
measurement for case I; 
, experimental measurement for case III).

Case III. The experimental and numerical simulation data of
the DMP conversion versus Reynolds number are reported in
Fig. 10. A comparison of case I and case III shows that at low
Re the symmetric arrangement of the inlet streams results in
somewhat better mixing; that is the conversion of DMP is al-
ways lower for the symmetric arrangement. Concentrating the
reagents in a single stream (case III) results in somewhat worse
mixing. The three-dimensional depiction of the acid concentra-
tion in Figs. 11 and 12 shed light on the origin of the effect.
In case I, Fig. 11(a), the two acid streams swirl down the exit
tube as thin filaments. For case III, Fig. 11(b), with the single
concentrated acid stream the length scale of acid segregation
is obviously larger, and therefore mixing poorer. At the lower
Reynolds number (Fig. 12) the effect is even more pronounced.

5.1. Mixing scales

At high Re, there is generally a separation of mixing scales.
The large-scale motions are mainly influenced by the geometry
of the reactor, and the small-scale motions are determined by
energy dissipation rate and viscosity.

For the case of two types of inlet streams, the mixture-
fraction mean, 〈�〉, can be written as

〈�〉 = p1�1 + p2�2. (21)

Likewise, the mixture-fraction variance, 〈�′2〉, can be written as

〈�′2〉 = p1�
2
1 + p2�

2
2 − 〈�〉2. (22)

Large-scale segregation (LSS) in the reactor can be described
by introducing an LSS variance,

〈�′2〉LSS = (〈�〉 − �)2, (23)

where � is the average mixture fraction after complete mixing,
which is equal to 0.5 in our cases.

The LSS zone can be determined using 〈�′2〉LSS > �2

and 〈�′2〉 < �2. The reactions are controlled by SSS alone

if 〈�′2〉LSS < �2 and 〈�′2〉��2. And in the condition that
〈�′2〉LSS��2 and 〈�′2〉��2, the reactions are controlled by
both LSS and SSS.

From the transport equations of 〈�′2〉LSS reported by Liu, the
characteristic decay time for 〈�′2〉LSS is given by (Belevi et al.,
1981)

tLSS = 〈�′2〉LSS

2�T |∇〈�〉|2 . (24)

The characteristic decay time for SSS variance, also known
as the micromixing time in turbulent-mixing theory, is
given by

tSSS = 1

2�
. (25)

Then, the characteristic mixing time is obtained by

tmix = tLSS + tSSS. (26)

Considering case I (the case with one opposing pair of inlets
containing acid and the other containing base and DMP), ex-
tracting data at different heights of the reactor can provide more
detailed information about the change of 〈�′2〉LSS and 〈�′2〉.
The heights are chosen to emphasize the changes in mixing
variables. In the reactor chamber, 〈�〉 is not equal to �, indicat-
ing the presence of LSS. As seen in Fig. 13, 〈�′2〉LSS decays
quickly after inlet streams enter the reactor. At Z = 0, where
Z =Z/ZH and H is the half thickness of the reactor chamber,
〈�′2〉LSS remains 0, indicating that mixing is mainly affected by
SSS in this zone. On the other hand, 〈�′2〉LSS has slight vari-
ations at Z = −0.8 and 0.8, indicating mixing is affected by
LSS in these regions.

Considering the change of 〈�′2〉 at Z = 0 in Fig. 14, the SSS
mixture-fraction variance is slightly lower at the edge area for
the lower Re than higher Re; on the other hand, it changes
faster and is higher near the reactor center (Z = 0) for lower
Re. The same characteristics are also shown at Z =−0.8, 〈�′2〉
is much larger for lower Re than higher Re. These differences
arise when Re is small—the flow motions are more laminar like
and thus C� is smaller. The flow streams are mostly dominated
by the geometry of the reactor as they enter and swirl from
periphery to the center, where the velocity is the highest and
therefore the change of mixture fraction is greatest. Compared
to a low Re case, better mixing takes place at higher Re. Since
the flow motions tend to be more turbulent, the variation of
mixture fraction is not as great.

5.2. Segregation zones

In case I, both LSS + SSS and SSS overlap with the reaction
zone at the center planes as shown in Fig. 15, where the cut-
off standard deviation was defined as the distance in mixture-
fraction space from the end of the reactions (�s1) to complete
mixing (�); i.e., � = � − �s1 = 0.0122.

While in case I the reaction zone overlaps with both SSS
and LSS + SSS zones, in case III, 〈�′2〉LSS decays much more
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Large-Eddy Simulation of MIVR

LES PLIF
 

 

 

 

Courtesy of Dr. Z Liu
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LES of MIVR

Bypassing fluid arrives from bottom of mixer

Courtesy of Dr. Z Liu
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Scale Up of MIVR

Excellent predictions compared to SPIV

simulation onto the inlets of MIVR. Using this technique, the
simulation of the MIVR will have a steady inlet condition. It is
easy to implement this boundary condition, but the potential
disadvantage is that it may not provide the correct fluctuation
level for the inlets. The second technique is to generate an
unsteady inlet condition based on the profile given in the pre-
cursor simulation, which can still preserve the essential proper-
ties of the flow. For this purpose, the digital filter method of
Klein et al is used.34 This method has also been used to simulate
flow in a confined jet reactor using LES.35,36 For fluctuating
inlet conditions, this turbulent inlet method can give a good esti-
mation of the inflow profile. The turbulent inlet velocity is con-
structed based on the mean velocity and Reynolds stresses
obtained from the precursor simulation as follows:

Ui5 �Ui1aijUj (13)

where �Ui is the mean inflow velocity, Uj is a provisional
three-dimensional signal that possesses prescribed two-point
statistics, and

aij5

ffiffiffiffiffiffiffi
R11

p
0 0

R21=a11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR112a2

21Þ
p

0

R31=a11 ðR322a21a31Þ=a22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR332a2

312a2
32Þ

p
2664

3775
(14)

Ujðm; nÞ5
XNx

i052Nx

XNy

j052Ny

XNz

k052Nz

bði0; j0; k0Þ<ði0;m1j0; n1k0Þ

(15)

where < is a series of three-dimensional random fields and the
filter coefficient b has the form

bði; j; kÞ5bibjbk (16)

By assuming the autocorrelation function of Uj to have the
same form as homogeneous turbulence, the filter coefficient b
can be approximated as

bk � ~bk=
XN

j52N

~b
2

j

 !1=2

and ~bk5exp 2
pk2

2n2

� �
(17)

The length scale in each dimension should be provided as
input values with Lx5nxDx; Ly5nyDy, and Lz5nzDz. To guar-
antee the approximation accuracy of the filter coefficient, the
dimension of the random fields should satisfy
Na � 2na; a5x; y; z. This turbulent inlet method has been
implemented into OpenFOAM and applied to all four inlets of
the MIVR in the unsteady inflow case.

At the outlet, boundary conditions for most terms are zero
gradient except for the pressure, since the outlet pipe in the
experiment is long enough (about 1000 mm) to have flow field
fully developed. The pressure condition in the outlet has a
fixed mean value, which allows for radial variation of pressure
due to the swirling motion. The no-slip boundary condition is
applied on the walls. The low-Reynolds-number wall function
implemented in OpenFOAM was used for turbulent kinetic
energy near the wall as the mesh size cannot guarantee y-plus
less than 1 everywhere.

Figure 5. Comparison of inlet Reynolds stresses (left: xx, center: yy, right: xy) between PIV measurement and
dynamic DDES model.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 6. Instantaneous velocity field (left: contour plot of velocity magnitude, middle left: vertical crosssection
through center of outlet, middle right: horizontal cross-section through center of inlets, right: horizontal
cross-section at outlet).

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

2574 DOI 10.1002/aic Published on behalf of the AIChE July 2016 Vol. 62, No. 7 AIChE Journal
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Nanoparticles in Turbulent Flow Reactors

Flash Nanoprecipitation

Copolymer

Organic Active
Solvent

Non Solvent

Reactor

Supersaturation

Mixing Nucleation

Growth

Stablization

Nanoparticle
Stable

(Unused polymer)

(Aggregation)

Produced in CIJR & MIVR
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Nanoparticles in Turbulent Flames

Soot Metal oxides

Limitations of univariate PBE modeling 

Morphology of nanoparticles is hardly described by 
a single parameter  
- Additional information is needed (e.g. particle surface area) 

TiO2 BaF2 

CeO2 ZnO 

(Strobel & Pratsinis 2007) 

Volume-based univariate 
QMOM is unable to account for 
surface area change 
- Unable to consider sintering of 

particle aggregates 

  → Significant over prediction of 
particle specific surface area 

Bivariate expansion of NDF is 
highly desirable 

34 

Produced in turbulent flames
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Computational Model

Particle size distribution
(PSD)

Population balance
equation

Solve for NDF n(v)
Coupled to velocity
and reactive scalars
Non-linear
integro-PDE

Moment methods

Solve for moments
of NDF
Close by
reconstructing n(v)

Modeling of nanoparticle evolution 

Univariate population balance equation (PBE) 

, 

- One-point, one-time particle number density function (NDF) in 
terms of particle volume (i.e. size distribution)High dimensional 
→ needs a closure in terms of  

where 

20 

Figure 3: Reconstruction of two experimentally measured, normalized NDFs from rich,

premixed ethylene flames (left: [13]; right: [22]) using gamma EQMOM (upper row) and

lognormal EQMOM (lower row) with three kernel functions.

reconstructed initial NDFs using gamma and lognormal EQMOM with three

kernel functions, i.e. seven moments need to be transported. The reconstruc-

tions of the NDFs at different times during the simulation are provided in

the Supplementary Material.

Both the unimodal and the bimodal NDF can be very well approximated

using two (not shown here) or three gamma distributions, while lognormal

EQMOM is less accurate. The lognormal kernels do not overlap very much,

which leads to a bimodal shape for both NDFs; also the experimentally

bimodal NDF is not well approximated in the region of small particles. Log-

normal EQMOM has difficulties to capture finite values at the minimum

particle size, because the lognormal distribution always starts at zero. In

gamma EQMOM, depending on the parameters of the gamma distributions,

a smooth transition occurs between the NDF starting at zero and at a fi-

nite value. This enables an accurate approximation of the NDF, especially

for small particle sizes, which is important for an accurate prediction of the

15
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Quadrature-Based Moment Methods

Population Balance 

Moment Equations Moments 
M(t,x) 

Integrate over 1-D phase space 
Closure using 
quadrature 

Reconstruct using 
quadrature 

Close moment equations by reconstructing density function 

Density 
n(t,x,s) 

Reconstructed 
density n*(t,x,s) 

Integrate over 
1-D phase space 

4-D GPBE+CFD solver 

3-D CFD solver 
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Flame Synthesis of Metal Oxide Nanoparticles
Flame synthesis of TiO2 nanoparticles 

(Strobel & Pratsinis 2007) 

Aggregation 

Growth & surface 
oxidation 

Nucleation 
(precursor oxidation)  

Precursor 
molecules 

Sintering, 
coagulation 

High-T turb. flame 

 CH4 + TiCl4        Air    
(precursor of TiO2)   6 

Governing equations 

26 

Flamelet model for combustion

Moment closure for volume–surface NDF n(v, a)

Account for nucleation, growth, aggregation, and sintering
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LES Results

Results - normalized particle volume & area 

40 

m10 mean particle volume

m01 mean particle surface area

Npp primary particles (nuclei)


T_LES_nano.mov
Media File (video/quicktime)
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Bubbly Flow Reactors

Homogeneous Heterogeneous


Bubble_Volume_Fraction_with_Streamline.mov
Media File (video/quicktime)
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Polydisperse Bubbly Flows
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Computational Model

Two phases: gas and liquid
Mass & momentum balances

Buoyancy & drag forces
Added mass & lift forces
Strong phase coupling
Flow regime depends on forces

Bubble size distribution (BSD)
Population balance equation

Solve for NDF n(v)
Size-conditioned bubble velocity
Non-linear integro-PDE

Moment methods

Solve for moments of NDF
Close by reconstructing n(v)


Bubble_unstable1.mov
Media File (video/quicktime)
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Stirred Reactor with Gas Sparger

Sparge
r

R
T

PBTD 
1

PBTD 
2
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Stirred Reactor with Bubble Size DistributionComputational
Models for

Polydisperse

Daniele L.
Marchisio

Introduction

The Generalized
Population
Balance
Equation

Mesoscale
Models for
Physical and
Chemical
Processes

Solution
Methods: CM
and MCM

Solution
Methods: MOM

Solution
Methods: QBMM
(uni)

Solution
Methods: QBMM
(multi)

Applications

QMOM/CQMOM for stirred tanks

Results and comparison with experimental data

Daniele L. Marchisio Computational Models for Polydisperse

Computational
Models for

Polydisperse

Daniele L.
Marchisio

Introduction

The Generalized
Population
Balance
Equation

Mesoscale
Models for
Physical and
Chemical
Processes

Solution
Methods: CM
and MCM

Solution
Methods: MOM

Solution
Methods: QBMM
(uni)

Solution
Methods: QBMM
(multi)

Applications

QMOM/CQMOM for stirred tanks

Results and comparison with experimental data

Daniele L. Marchisio Computational Models for Polydisperse

Courtesy of Dr. DL Marchisio
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Particle-Laden Flow Reactors

Volume fraction Fluid velocity


st0_5_alpha.mov
Media File (video/quicktime)


st0_5_vel.mov
Media File (video/quicktime)
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Computational Model

Two phases: solid and gas
Mass, momentum & energy balances
from Kinetic Theory of Granular Flow

Buoyancy & drag forces
Granular temperature
Strong phase coupling due to drag

Euler-Euler (EE) & Euler-Lagrange (EL)
Kinetic equation

NDF of particle velocity
EL solver tracks individual particles

EE solver finds moments of NDF
Use more moments to capture high
Knudsen number flows
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Quadrature-Based Moment Method

Kinetic Equation 

Moment Equations Moments 
M(t,x) 

Integrate over phase space 
Closure using 
quadrature 

Reconstruct using 
quadrature 

Close moment equations by reconstructing density function 

Density 
 n(t,x,v) 

Reconstructed 
density n*(t,x,v) 

Integrate over 
phase space 

6-D solver 

3-D solver 
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Particle Trajectory Crossing

Kinetic equation without collisions

Courtesy of R Patel


jet_9node_10mom_2d_o1_400x400.mpg
Media File (video/mpeg)


jet_27node_16mom_2d_o1_32x32x32.mpg
Media File (video/mpeg)
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Cluster-Induced Turbulence

Particles fall due to gravity

Fluid velocity in zero due
to pressure gradient

Clusters form
spontaneously

Clusters drag fluid
downward, create wakes

Fluid turbulence breaks up
clusters
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Do Eulerian and Lagrangian Models Agree?

Cluster-induced turbulence
Average volume fraction: αp = 0.01

ρp/ρg = 1000, Rep = 0.5

terminal velocity: V = 0.1 m/s

cluster length: L = 2.5 mm

Lx/L = 129 (2048× 512× 512)

Euler-Lagrange and Euler-Euler simulations
performed on same grid, but not with same

numerical schemes
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Qualitative Comparison of Clustering

Case 2 Case 4 Case 6

Similar shapes, but EE has slightly longer/wider clusters
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Quantitative Comparison

αp PDF Inhomogeneity Drift velocity

EE has slightly fewer high αp values (due to numerics?)

EE has slightly higher drift velocity (due to larger clusters?)
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Quantitative Comparison of TKE Statistics

Θp kp kf

EE has lower uncorrelated TKE (due to EL post-processing?)

EE has higher correlated TKE (due to larger clusters?)
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Quantitative comparison of energy spectra

αp Up Uf

Good agreement at small wavenumbers (κdp < 0.1)

EE has less energy than EL at large wavenumbers
(due to EL filter for coupling, numerics?)



Introduction CFD for Turbulent Flows Turbulent Flow Reactors Bubbly Flow Reactors Particle-Laden Flow Reactors Conclusions

Particle-Laden Channel Flow

αp = 0.01 αp = 0.1 αp = 0.4

αp Θp αp Θp αp Θp

Transition from clusters to bubbles
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Effect of Increasing Particle Mass Loading

0.2 1.2

20

Courtesy of Dr. J Capecelatro
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Bubbling Fluidized Bed Reactor

αp h2 Up,y Θp σp,xy


alphap.swf
Media File (application/x-shockwave-flash)


h2.swf
Media File (application/x-shockwave-flash)


Upy.swf
Media File (application/x-shockwave-flash)


thetap.swf
Media File (application/x-shockwave-flash)


sigmaxy.swf
Media File (application/x-shockwave-flash)
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Conclusions

Computational fluid dynamics can be applied to a wide range of
technologically relevant flow reactors

Multi-scale modeling is required to treat the disparate length and
time scales present in most applications

Development of computational models based on fundamental
physics and chemistry is a key step

Computational methods targeted at accurately solving the
computational models are equally important

Successful CFD modeling requires a team effort
with complementary skill sets
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OpenQBMM Project (www.openqbmm.org)

Polydisperse flow simulation tools in OpenFOAM

Funded by the NSF Division of Advanced Cyberinfrastructure
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Further Reading
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PRINTED IN THE UNITED KINGDOM

Designed by Joanne Barker

Computational
Models for Turbulent
Reacting Flows

Rodney O. Fox

This book presents the current state of the art 

in computational models for turbulent reacting

flows, and analyzes carefully the strengths and

weaknesses of the various techniques described.

The focus is on formulation of practical models 

as opposed to numerical issues arising from their

solution. A theoretical framework based on the

one-point, one-time joint probability density

function (PDF) is developed. It is shown that

all commonly employed models for turbulent

reacting flows can be formulated in terms of the

joint PDF of the chemical species and enthalpy.

Models based on direct closures for the chemical

source term, as well as transported PDF

methods, are covered in detail. An introduction 

to the theory of turbulent and turbulent scalar

transport is provided for completeness. The book

is aimed at chemical, mechanical, and aerospace

engineers in academia and industry, as well as

developers of computational fluid dynamics 

codes for reacting flows.
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Thanks for your attention!

Questions?
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