Introduction CFD for Turbulent Flo

arbulent Flows Turb

Ilent Flow Reactors

ors Bubbly Flow Reactors Pa

ow Reactors Conclusio

Chemical Reactor Modeling using Computational Fluid Dynamics

Rodney O. Fox Anson Marston Distinguished Professor in Engineering Department of Chemical and Biological Engineering Iowa State University, USA

> Saint-Gobain CREE March 3, 2017

Bubbly Flow React

Technologically Relevant Flow Reactors

Turbulent flames

Chemical reactors

Dome Sheeting

Expanded

Rising ----+ (Babbles

Flaidization Gas 🥿

Distributor Plate

Patterns (typical)

D14

Multiphase flows

Outline

- 2 CFD for Turbulent Flows
- 3 Turbulent Flow Reactors
- Bubbly Flow Reactors
- 5 Particle-Laden Flow Reactors

6 Conclusions

What is Computational Fluid Dynamics?

Principal steps:

- Create computational grid
- Select conservation eqns and closures
 - Mass
 - Chemical species
 - Momentum
 - Energy
 - multiphase, population balance, ...
- Oiscretize conservation equations
 - Finite volume for space
 - Stiff ODE solver for reactions
 - Moment method for population balance
 - Lagrangian method for particles, etc.
- Solve discretized equations
- Post-process results

Step 1: Computational Grid

Difficulty depends on flow geometry

• Academic cases: simple geometry

Fig. 4. Geometry and grids of the main mixing chamber.

- Industrial cases: complex geometry
 - Grid quality determines solution accuracy
 - Compromise between capturing geometric complexity and solver accuracy
 - Non-negligible time and cost!

Step 2: Computational Model

Difficulty depends on flow physics

- Single-phase flow
 - Direct numerical simulation (DNS)
 - Turbulence model for unresolved scales (RANS, LES)
- Reacting flow
 - DNS for gas phase
 - RANS or LES for liquid phase
 - Complex chemistry and closures for unresolved scales
- Multiphase flow
 - DNS for "simple" flows
 - Multi-fluid model with closures
 - Multi-scale model key to success

Close moment equations by reconstructing density function

Step 3: Computational Method

Difficulty depends on flow model

- Single-phase flow
 - Finite volume in space
 - Explicit/implicit in time
- Reacting flow
 - Look-up table for chemistry
 - Realizable solver for moments
- Multiphase flow
 - Coupled solver for phase exchanges (mass/momentum)
 - Operator splitting for source terms (reactions, aggregation)
 - Lagrangian and/or Eulerian solver for disperse phase

Step 4: Solver Implementation

Difficulty depends on algorithm

- Multi-CPU workstation
 - Small problems with simple models
 - Single-phase RANS
- Multi-CPU cluster
 - Larger problems with simple models
 - Single-phase LES
 - Simple multiphase flows
- Peta/Exascale computer
 - Very large problems with simple models
 - DNS of canonical single-phase turbulent flows
 - LES of disperse multiphase flows

Step 5: Post-processing

Difficulty depends on data set

- RANS simulations
 - Small data sets
 - Simple plots

• Single-phase DNS/LES

- Large data sets
- Time-dependent velocity/scalar fields
- Simple plots, 3-D animations

Multiphase DNS/LES

- Very large data sets
- Time-dependent velocity/scalar fields for each phase
- Simple plots, 3-D animations

Multiscale Modeling Approach

Mesoscale model incorporates more microscale physics in closures!

Outline

2 CFD for Turbulent Flows

3 Turbulent Flow Reactors

5 Particle-Laden Flow Reactors

6 Conclusions

Passive Scalar Mixing

Planar jet in a channel: two downstream locations

Courtesy of Dr. B Kong

Passive Scalar Mixing

Confined impinging jets

Courtesy of Dr. Y Shi

Passive Scalar Mixing

Courtesy of Dr. Z Liu and E Hitimana

Computational Model

Choice depends on Re and Sc

- Laminar flow
 - Direct numerical simulation (DNS)
 - Mixing model for unresolved scales $(Sc \gg 1)$
- Turbulent flow
 - RANS or LES for liquid phase
 - Closures for unresolved scales
- Probability density function (PDF) method
 - PDF transport equation
 - Moments of PDF: mean and variance
 - Closures for transport, mixing

Evolution of PDFs from DNS

- Means are constant $\langle \phi_1 \rangle$ and $\langle \phi_2 \rangle$
- Variances decrease: $\langle \phi_1'^2 \rangle$ and $\langle \phi_2'^2 \rangle$
- CFD model solves for these variables

CFD Model for Scalar Mixing

$$\frac{\partial \langle \phi \rangle}{\partial t} + \langle \mathbf{u} \rangle \cdot \boldsymbol{\nabla} \langle \phi \rangle = \boldsymbol{\nabla} \cdot (\Gamma_T \boldsymbol{\nabla} \langle \phi \rangle) \implies \text{LSS: large-scale segregation}$$

$$\frac{\partial \langle \phi^2 \rangle}{\partial t} + \langle \mathbf{u} \rangle \cdot \boldsymbol{\nabla} \langle \phi^2 \rangle = \boldsymbol{\nabla} \cdot (\Gamma_T \boldsymbol{\nabla} \langle \phi^2 \rangle) - \varepsilon_{\phi} \quad \Longrightarrow \quad \text{SSS: small-scale segregation}$$

Reactive Scalars: $A + B \rightarrow R, B + R \rightarrow S$

Joint PDF $f(\xi, Y_2)$ for mixture fraction ξ and progress variable Y_2

- PDF is "discretized" using moment methods
- CFD code solves moment transport equations

Confined Impinging-Jets Reactor

lines: CFD; symbols: Johnson & Prud'homme (2003)

Multi-Inlet Vortex Reactor

Fig. 12. Acid concentration at Re = 1371 for symmetric arrangement of the inlet streams (a) and asymmetric arrangement of the inlet streams (b).

CFD Validation for MIVR

Fig. 10. Conversion of DMP vs. Re in the MIVM (\blacksquare , numerical simulation data for case I; \blacktriangle , numerical simulation data for case III; \Box , experimental measurement for case I; \triangle , experimental measurement for case III).

Large-Eddy Simulation of MIVR

Courtesy of Dr. Z Liu

cle-Laden Flow Reactors Concl

LES of MIVR

C 0 100

Bypassing fluid arrives from bottom of mixer

Courtesy of Dr. Z Liu

Scale Up of MIVR

Excellent predictions compared to SPIV

Figure 6. Instantaneous velocity field (left: contour plot of velocity magnitude, middle left: vertical crosssection through center of outlet, middle right: horizontal cross-section through center of inlets, right: horizontal cross-section at outlet).

Outline

- 4 Bubbly Flow Reactor
- 5 Particle-Laden Flow Reactors

6 Conclusions

Nanoparticles in Turbulent Flow Reactors

Flash Nanoprecipitation

Produced in CIJR & MIVR

Bubbly Flow Reactors

Nanoparticles in Turbulent Flames

Soot

Metal oxides

(Strobel & Pratsinis 2007)

Produced in turbulent flames

Computational Model

Particle size distribution (PSD)

- Population balance equation
 - Solve for NDF n(v)
 - Coupled to velocity and reactive scalars
 - Non-linear integro-PDE
- Moment methods
 - Solve for moments of NDF
 - Close by reconstructing *n*(*v*)

Quadrature-Based Moment Methods

Close moment equations by reconstructing density function

Flame Synthesis of Metal Oxide Nanoparticles

- Flamelet model for combustion
- Moment closure for volume–surface NDF n(v, a)
- Account for nucleation, growth, aggregation, and sintering

LES Results

- m_{10} mean particle volume
- m_{01} mean particle surface area
- *N_{pp}* primary particles (nuclei)

Outline

- CFD for Turbulent Flows

4 Bubbly Flow Reactors

Bubbly Flow Reactors

Homogeneous

Heterogeneous

Bubbly Flow Reactor

Polydisperse Bubbly Flows

Computational Model

Two phases: gas and liquid

- Mass & momentum balances
 - Buoyancy & drag forces
 - Added mass & lift forces
 - Strong phase coupling
 - Flow regime depends on forces

Bubble size distribution (BSD)

- Population balance equation
 - Solve for NDF n(v)
 - Size-conditioned bubble velocity
 - Non-linear integro-PDE
- Moment methods
 - Solve for moments of NDF
 - Close by reconstructing *n*(*v*)

Stirred Reactor with Gas Sparger

Stirred Reactor with Bubble Size Distribution

Courtesy of Dr. DL Marchisio

Outline

- 2 CFD for Turbulent Flows
- 3 Turbulent Flow Reactors
- 4 Bubbly Flow Reactor
- 5 Particle-Laden Flow Reactors

Conclusions

Particle-Laden Flow Reactors

Volume fraction

Fluid velocity

Computational Model

Two phases: solid and gas

- Mass, momentum & energy balances from Kinetic Theory of Granular Flow
 - Buoyancy & drag forces
 - Granular temperature
 - Strong phase coupling due to drag

Euler-Euler (EE) & Euler-Lagrange (EL)

- Kinetic equation
 - NDF of particle velocity
 - EL solver tracks individual particles
 - EE solver finds moments of NDF
 - Use more moments to capture high Knudsen number flows

Quadrature-Based Moment Method

Close moment equations by reconstructing density function

Particle Trajectory Crossing

Kinetic equation without collisions

Courtesy of R Patel

Cluster-Induced Turbulence

- Particles fall due to gravity
- Fluid velocity in zero due to pressure gradient
- Clusters form spontaneously
- Clusters drag fluid downward, create wakes
- Fluid turbulence breaks up clusters

Do Eulerian and Lagrangian Models Agree?

Cluster-induced turbulence

- Average volume fraction: $\alpha_p = 0.01$
- $\rho_{\rm p}/\rho_{\rm g} = 1000, {\rm Re}_{\rm p} = 0.5$
- terminal velocity: $\mathcal{V} = 0.1$ m/s
- cluster length: $\mathcal{L} = 2.5 \text{ mm}$
- $L_x/\mathcal{L} = 129 \ (2048 \times 512 \times 512)$

Euler-Lagrange and Euler-Euler simulations performed on same grid, but not with same numerical schemes

1000

Sector and

Qualitative Comparison of Clustering

Case 2

Case 4

Case 6

Similar shapes, but EE has slightly longer/wider clusters

Quantitative Comparison

EE has slightly fewer high α_p values (due to numerics?)

EE has slightly higher drift velocity (due to larger clusters?)

Quantitative Comparison of TKE Statistics

EE has lower uncorrelated TKE (due to EL post-processing?)

EE has higher correlated TKE (due to larger clusters?)

Quantitative comparison of energy spectra

Good agreement at small wavenumbers ($\kappa d_p < 0.1$)

EE has less energy than EL at large wavenumbers (due to EL filter for coupling, numerics?)

Particle-Laden Channel Flow

Transition from clusters to bubbles

Bubbly Flow React

cle-Laden Flow Reactors Conc

Effect of Increasing Particle Mass Loading

0.2

1.2

20

Courtesy of Dr. J Capecelatro

Bubbling Fluidized Bed Reactor

 $U_{p,y}$ Θ_p h_2 α_p $\sigma_{p,xy}$

Outline

- 2 CFD for Turbulent Flows
- 3 Turbulent Flow Reactors
- 4 Bubbly Flow Reactors
- 5 Particle-Laden Flow Reactors

6 Conclusions

Conclusions

- Computational fluid dynamics can be applied to a wide range of technologically relevant flow reactors
- Multi-scale modeling is required to treat the disparate length and time scales present in most applications
- Development of computational models based on fundamental physics and chemistry is a key step
- Computational methods targeted at accurately solving the computational models are equally important

Successful CFD modeling requires a team effort with complementary skill sets

OpenQBMM Project (www.openqbmm.org)

Polydisperse flow simulation tools in OpenFOAM

Funded by the NSF Division of Advanced Cyberinfrastructure

s Bubbly Flow Reac

Further Reading

Computational Models for Turbulent Reacting Flows

Rodney O. Fox

CAMBRIDGE

Computational Models for Polydisperse Particulate and Multiphase Systems

Daniele L. Marchisio Rodney O. Fox CAMBRIDGE

Thanks for your attention!

Questions?