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What is Computational Fluid Dynamics?

Principal steps:

© Create computational grid

© Select conservation eqns and closures

e Mass

Chemical species

Momentum

Energy

multiphase, population balance, ...

© Discretize conservation equations
o Finite volume for space
o Stiff ODE solver for reactions
e Moment method for population balance
e Lagrangian method for particles, etc.

© Solve discretized equations

© Post-process results



Step 1: Computational Grid

Difficulty depends on flow geometry

@ Academic cases: simple geometry

tcu., TiCl, + Ar
(amm walls)

0.15 cm

0.11em

Fig. 4. Geometry and grids of the main mixing chamber.

@ Industrial cases: complex geometry

e Grid quality determines solution
accuracy

e Compromise between capturing
geometric complexity and solver
accuracy

e Non-negligible time and cost!




Step 2: Computational Model

Difficulty depends on flow physics LS flow saver _ P ——
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° Multlphase ﬂow Integrate over 1-D phase space
e DNS for "simple" flows
e Multi-fluid model with closures

e Multi-scale model key to Bttt



Step 3: Computational Method

Difficulty depends on flow model
@ Single-phase flow

o Finite volume in space
e Explicit/implicit in time

@ Reacting flow

e Look-up table for chemistry
e Realizable solver for moments

@ Multiphase flow

e Coupled solver for phase
exchanges (mass/momentum)

e Operator splitting for source
terms (reactions, aggregation)

e Lagrangian and/or Eulerian
solver for disperse phase
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Step 4: Solver Implementation

Difficulty depends on algorithm
@ Multi-CPU workstation

e Small problems with simple
models
e Single-phase RANS

@ Multi-CPU cluster

e Larger problems with simple
models

e Single-phase LES

e Simple multiphase flows

o Peta/Exascale computer

e Very large problems with simple
models

o DNS of canonical single-phase
turbulent flows

e LES of disperse multiphase flows
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Step 5: Post-processing

Difficulty depends on data set
@ RANS simulations

o Small data sets
e Simple plots

@ Single-phase DNS/LES

e Large data sets

e Time-dependent velocity/scalar
fields

e Simple plots, 3-D animations

@ Multiphase DNS/LES

e Very large data sets

e Time-dependent velocity/scalar
fields for each phase

e Simple plots, 3-D animations
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Multiscale Modeling Approach

Microscale Model

Direct numerical simulation

Kinetic theory
+ density function closures

Mesoscale Model
Kinetic equation
Euler-Lagrange models

Volume or ensemble averages
+ closures for “fluctuations”

Moments of density
+ moment closures

Macroscale Model

Hydrodynamic description
Euler-Euler models

Mesoscale model incorporates more microscale physics in closures!
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Passive Scalar Mixing

Planar jet in a channel: two downstream locations
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Passive Scalar Mixing

Confined impinging jets
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Passive Scalar Mixing

Multi-inlet vortex mixer
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Computational Model

Choice depends on Re and Sc
@ Laminar flow

e Direct numerical simulation (DNS)
e Mixing model for unresolved scales
(Sc>>1)

@ Turbulent flow

o RANS or LES for liquid phase
o Closures for unresolved scales

inertial range dissipation range

@ Probability density function (PDF)
method

In(E,)

e PDF transport equation
e Moments of PDF: mean and variance
e Closures for transport, mixing

L VT SRV VI



Evolution of PDFs from DNS

Ternary mixing Binary mixing

@ Means are constant (¢;) and (¢,)
e Variances decrease: (¢/?) and (¢%)

@ CFD model solves for these variables




CFD Model for Scalar Mixing
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Reactive Scalars: A+B —+ R,B+R — S

Joint PDF f(&, Y,) for mixture fraction £ and progress variable Y,

Reaction source term for Y»
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@ PDF is “discretized” using moment methods

@ CFD code solves moment transport equations



Confined Impinging-Jets Reactor
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@ % %%AD% g®§%q *aq

10°

T T TR

10"

317ms
181ms
61ms
28ms
16.7ms
9.5ms
6.5ms
4.8ms
—>— 317ms, sim
—&@— 181ms,sim
—w— 6lms,sim
—&— 28ms, sim
—A— 16.7ms, sim
| —e— 95ms,sim
—4— 6.5ms,sim

10

+2a0p04dOY

4.8ms, sim
Sl — = - 48ms.sim 1] Ll L
107 & ‘
10 10 10 10
Re

lines: CFD; symbols: Johnson & Prud’homme (2003)



Multi-Inlet Vortex Reactor

2 l A 00.13 em

«— 1 B+D

150 em

B+D 3—>

Fig. 12. Acid concentration at Re = 1371 for symmetric arrangement of the inlet streams (a) and asymmetric arrangement of the inlet streams (b).



CFD Validation for MIVR
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Fig. 10. Conversion of DMP vs. Re in the MIVM (M, numerical simulation
data for case I; A, numerical simulation data for case III; [J, experimental
measurement for case I; A, experimental measurement for case IIT).



Large-Eddy Simulation of MIVR
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LES of MIVR

Bypassing fluid arrives from bottom of mixer

Courtesy of Dr. Z Liu



Scale Up of MIVR

Excellent predictions compared to SPIV

Z=0.06 m

o

Xim

Figure 6. Instantaneous velocity field (left: contour plot of velocity magnitude, middle left: vertical crosssection

through center of outlet, middle right: horizontal cross-section through center of inlets, right: horizontal
cross-section at outlet).
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Nanoparticles in Turbulent Flow Reactors
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Nanoparticles in Turbulent Flames

Soot Metal oxides

(Strobel & Pratsinis 2007)

Produced in turbulent flames



Computational Model

Particle size distribution
(PSD)

@ Population balance
equation

e Solve for NDF n(v)

e Coupled to velocity
and reactive scalars

e Non-linear
integro-PDE

@ Moment methods

e Solve for moments
of NDF

e Close by
reconstructing n(v)
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Quadrature-Based Moment Methods

. 4-D GPBE+CFD solver Densit
| Population Balance )
_ ) n(t,x,s)

Reconstructed

density n*(t,x,s)
h Integrate over
1-D phase space

Integrate over 1-D phase space
Closure using
quadrature

Reconstruct using
quadrature

' - ‘ Moments
| Moment Equations W M(t.x)

Close moment equations by reconstructing density function




Flame Synthesis of Metal Oxide Nanoparticles
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@ Flamelet model for combustion

@ Moment closure for volume—surface NDF n(v, a)

@ Account for nucleation, growth, aggregation, and sintering



LES Results
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@ mjo mean particle volume
@ mp| mean particle surface area

@ N,, primary particles (nuclei)
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Bubbly Flow Reactors

Homogeneous Heterogeneous



Bubble_Volume_Fraction_with_Streamline.mov
Media File (video/quicktime)


Polydisperse Bubbly Flows




Computational Model

Two phases: gas and liquid
@ Mass & momentum balances

Buoyancy & drag forces
Added mass & lift forces
Strong phase coupling

Flow regime depends on forces

Bubble size distribution (BSD)

@ Population balance equation

e Solve for NDF n(v)
e Size-conditioned bubble velocity
o Non-linear integro-PDE

@ Moment methods

e Solve for moments of NDF
e Close by reconstructing n(v)
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Stirred Reactor with Gas Sparger
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Stirred Reactor with Bubble Size Distribution

N=250 RPM; 0.093 vvm 2 "u .

4 4
Reactor configuration 1 s al

Experimental data
Simulation results

Courtesy of Dr. DL Marchisio
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Particle-Laden Flow Reactors

Volume fraction Fluid velocity
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Computational Model

Two phases: solid and gas

@ Mass, momentum & energy balances
from Kinetic Theory of Granular Flow
o Buoyancy & drag forces

e Granular temperature
e Strong phase coupling due to drag

Euler-Euler (EE) & Euler-Lagrange (EL)
@ Kinetic equation
e NDF of particle velocity

e EL solver tracks individual particles

e EE solver finds moments of NDF
e Use more moments to capture high
Knudsen number flows

0.03

0.01

0.00



Quadrature-Based Moment Method

6-D solver Density

\_ Kinetic Equation \

n(t,x,v)

Reconstructed

| density n*(t,x,v) |
. Integrate over

Integrate over phase space
phase space

Closure using
quadrature

Reconstruct using

quadrature
: Moments
Moment Equations |pessmm——
L 3-D solver M(t,x)

Close moment equations by reconstructing density function



Particle Trajectory Crossing

Kinetic equation without collisions

Courtesy of R Patel
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Cluster-Induced Turbulence

o Particles fall due to gravity

@ Fluid velocity in zero due
to pressure gradient

@ Clusters form
spontaneously

@ Clusters drag fluid
downward, create wakes

@ Fluid turbulence breaks up
clusters




Do Eulerian and Lagrangian Models Agree?

Cluster-induced turbulence

@ Average volume fraction: o, = 0.01
® pp/ps = 1000, Rep = 0.5

e terminal velocity: V = 0.1 m/s

@ cluster length: £ = 2.5 mm

o L,/L =129 (2048 x 512 x 512)

Euler-Lagrange and Euler-Euler simulations
performed on same grid, but not with same
numerical schemes
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Qualitative Comparison of Clustering

Case 4 Case 6

Similar shapes, but EE has slightly longer/wider clusters



Quantitative Comparison

ap PDF Inhomogeneity Drift velocity
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EE has slightly fewer high «;, values (due to numerics?)

EE has slightly higher drift velocity (due to larger clusters?)




Quantitative Comparison of TKE Statistics
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EE has lower uncorrelated TKE (due to EL post-processing?)

EE has higher correlated TKE (due to larger clusters?)



Quantitative comparison of energy spectra
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Good agreement at small wavenumbers (kd, < 0.1)

EE has less energy than EL at large wavenumbers
(due to EL filter for coupling, numerics?)



Particle-Laden Channel Flow

@, = 0.01

Qp O Qp

Transition from clusters to bubbles



Effect of Increasing Particle Mass Loading
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Courtesy of Dr. J Capecelatro



Bubbling Fluidized Bed Reactor
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Conclusions

@ Computational fluid dynamics can be applied to a wide range of
technologically relevant flow reactors

@ Multi-scale modeling is required to treat the disparate length and
time scales present in most applications

@ Development of computational models based on fundamental
physics and chemistry is a key step

@ Computational methods targeted at accurately solving the
computational models are equally important

Successful CFD modeling requires a team effort
with complementary skill sets



OpenQBMM Project (www.opengbmm.org)

Polydisperse flow simulation tools in OpenFOAM

Open ANV O An op of Q B: Moment Methods
Q B M M Get started Software ~ Blog Documentation ~ Contribute ~ About ~

® ® %=

The project Get started Contribute

OpenQBMM is a suite of solvers to simulate Get started using OpenQBMM! Find information on Report a problem, describe a solution to a bug,
polydisperse multiphase flows using and instructions on how to install and run the provide a new test case or contribute a piece of
Quadrature-Based Moment Methods (QBMM) based OpenQBMM solvers and tutorials. code to improve OpenQBMM.

on OpenFOAM®.

Funded by the NSF Division of Advanced Cyberinfrastructure



Further Reading
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Thanks for your attention!

Questions?
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