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● Using the HPC I/O stack efficiently is a tricky problem

● Interplay of factors can affect I/O performance

● Various optimizations techniques available

● Plethora of tunable parameters

● Each layer brings a new set of parameters

Applications

High-Level I/O Libraries

Parallel I/O Middleware

Low-level I/O Libraries

I/O Forwarding Layer

Parallel File System

Storage Hardware

HDF5, NetCDF, ADIOS

MPI-IO

IBM ciod, IOFSL
Cray DVS, Cray Datawarp

 Lustre, GPFS, PVFS, 
OrangeFS, BeeGFS, PanFS

HDD, SSD, RAID

POSIX, STDIO

Complex I/O stack!



● There is still a gap between profiling and tuning

● How to convert I/O metrics to meaningful information?

○ Visualize characteristics, behavior, and bottlenecks

○ Detect root causes of I/O bottlenecks

○ Map I/O bottlenecks into actionable items

○ Guide end-user to tune I/O performance

● Towards a cross-layer I/O profiling exploration

What is the Problem?
PROFILING

TUNED APPLICATION



HPC Application
I/O Metrics

I/O Analysis
Behavior and I/O Phases

Insights
Recommendations

Interactive Plots
Plotly

Operation

Transfer Size

Spatiality

I/O Phases

Storage System

Darshan / DXT
pyDarshan

HTML
Drishti Output

Recorder
Traces

scorep / TAU
Traces



● Darshan collects I/O profiling

● It aggregates information 

● Extended tracing mode (DXT)

○ Fine grain view of I/O behavior

○ POSIX or MPI-IO, read/write

○ Rank, segment, offset, size

○ Start and end timestamp

DARSHAN DXT

# ***************************************************
# DXT_POSIX module data
# ***************************************************

# DXT, file_id: 13771918696892050919, file_name: 
/gpfs/alpine/csc300/scratch/houjun/Flash-X-apr8.gcc/FLASH_IO_hdf5_1.10.6/2366525/flash.par
# DXT, rank: 0, hostname: d11n01
# DXT, write_count: 0, read_count: 3
# DXT, mnt_pt: /gpfs/alpine, fs_type: gpfs
# Module    Rank  Wt/Rd  Segment          Offset       Length    Start(s)      End(s)
 X_POSIX       0   read        0               0             783      0.0110      0.0110
 X_POSIX       0   read        1             783               0      0.0111      0.0111
 X_POSIX       0   read        2             783               0      0.0111      0.0111

# DXT, file_id: 17855743881390289785, file_name: 
/gpfs/alpine/csc300/scratch/houjun/Flash-X-apr8.gcc/FLASH_IO_hdf5_1.10.6/2366525/flash.log
# DXT, rank: 0, hostname: d11n01
# DXT, write_count: 62, read_count: 0
# DXT, mnt_pt: /gpfs/alpine, fs_type: gpfs
# Module    Rank  Wt/Rd  Segment          Offset       Length    Start(s)      End(s)
 X_POSIX       0  write        0               0            4105      0.0518      0.0527
 X_POSIX       0  write        1            4105            4141      0.0530      0.0530
 X_POSIX       0  write        2            8246            4127      0.0532      0.0532
 X_POSIX       0  write        3           12373            4097      0.0534      0.0547
...
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● Focus on:

○ The aspects upon which the user might have control

○ Dynamic user metadata defined by the attributes API

○ Operations that go through the VOL

● Ensured timestamps (microseconds) from Darshan DXT and VOL will match

● Implemented as a passthrough VOL connector

● Designed for use in combination with Darshan DXT

● VOL traces stored in memory and persisted in a file-per-process at the end

WHAT ABOUT HDF5?



DRISHTI VOL
Operation File Operations Drishti-VOL

Datasets

H5Dcreate   ✅* ⛔
H5Dopen ⛔ ⛔
H5Dwrite ✅ ✅
H5Dread ✅ ✅
H5Dclose ⛔ ⛔

Attributes

H5Acreate ⛔ ⛔
H5Aopen ⛔ ⛔
H5Awrite ✅ ✅
H5Aread ✅ ✅
H5Aclose ⛔ ⛔

* H5Dcreate could result in I/O operations if file space allocation is set

github.com/hpc-io/vol-drishti



CROSS LAYER EXPLORATION
HDF5 Vol Connector



● Our target is exploratory/debug small-scale runs to replicate the issue

○ Tracing is expensive!

● Non-negligible overhead of collecting data from multiple layers of the I/O stack

Overhead? Yes, but…

Runtime (seconds) Overhead
(Min. %)

Combined 
Log/TraceMin. Median Max.

Baseline 5.99 7.52 8.62 - -

+ Darshan 6.59 8.03 8.57 +9.62 35.88 KB

+ DXT 6.76 7.53 8.51 +3.03 38.88 MB

+ VOL 7.09 8.73 11.19 +4.88 41.69 MB



CROSS LAYER EXPLORATION
SOURCE CODE

AMREX E3SM
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● Drishti:

○ Detects root causes based on metrics

○ Maps them to I/O bottlenecks, and

○ Recommends actionable items to tune I/O performance

● Drishti uses > 30 triggers to check how an application is accessing data

● Drishti can ingest multiple sources of I/O metrics  (e.g., Darshan, DXT, Recorder, scorep)

● Drishti VOL connector enhances the reports with HDF5-related metrics

KEY TAKEAWAYS
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