
The performance profiling and tracing HDF5 VOL connector

Jean Luca Bez <jlbez@lbl.gov>

Drishti Copyright (c) 2022, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved.

VOL

2024 HDF5 USER GROUp (HUG) MEETING

● Using the HPC I/O stack efficiently is a tricky problem

● Interplay of factors can affect I/O performance

● Various optimizations techniques available

● Plethora of tunable parameters

● Each layer brings a new set of parameters

Applications

High-Level I/O Libraries

Parallel I/O Middleware

Low-level I/O Libraries

I/O Forwarding Layer

Parallel File System

Storage Hardware

HDF5, NetCDF, ADIOS

MPI-IO

IBM ciod, IOFSL
Cray DVS, Cray Datawarp

 Lustre, GPFS, PVFS,
OrangeFS, BeeGFS, PanFS

HDD, SSD, RAID

POSIX, STDIO

Complex I/O stack!

● There is still a gap between profiling and tuning

● How to convert I/O metrics to meaningful information?

○ Visualize characteristics, behavior, and bottlenecks

○ Detect root causes of I/O bottlenecks

○ Map I/O bottlenecks into actionable items

○ Guide end-user to tune I/O performance

● Towards a cross-layer I/O profiling exploration

What is the Problem?
PROFILING

TUNED APPLICATION

HPC Application
I/O Metrics

I/O Analysis
Behavior and I/O Phases

Insights
Recommendations

Interactive Plots
Plotly

Operation

Transfer Size

Spatiality

I/O Phases

Storage System

Darshan / DXT
pyDarshan

HTML
Drishti Output

Recorder
Traces

scorep / TAU
Traces

● Darshan collects I/O profiling

● It aggregates information

● Extended tracing mode (DXT)

○ Fine grain view of I/O behavior

○ POSIX or MPI-IO, read/write

○ Rank, segment, offset, size

○ Start and end timestamp

DARSHAN DXT

DXT_POSIX module data

DXT, file_id: 13771918696892050919, file_name:
/gpfs/alpine/csc300/scratch/houjun/Flash-X-apr8.gcc/FLASH_IO_hdf5_1.10.6/2366525/flash.par
DXT, rank: 0, hostname: d11n01
DXT, write_count: 0, read_count: 3
DXT, mnt_pt: /gpfs/alpine, fs_type: gpfs
Module Rank Wt/Rd Segment Offset Length Start(s) End(s)
 X_POSIX 0 read 0 0 783 0.0110 0.0110
 X_POSIX 0 read 1 783 0 0.0111 0.0111
 X_POSIX 0 read 2 783 0 0.0111 0.0111

DXT, file_id: 17855743881390289785, file_name:
/gpfs/alpine/csc300/scratch/houjun/Flash-X-apr8.gcc/FLASH_IO_hdf5_1.10.6/2366525/flash.log
DXT, rank: 0, hostname: d11n01
DXT, write_count: 62, read_count: 0
DXT, mnt_pt: /gpfs/alpine, fs_type: gpfs
Module Rank Wt/Rd Segment Offset Length Start(s) End(s)
 X_POSIX 0 write 0 0 4105 0.0518 0.0527
 X_POSIX 0 write 1 4105 4141 0.0530 0.0530
 X_POSIX 0 write 2 8246 4127 0.0532 0.0532
 X_POSIX 0 write 3 12373 4097 0.0534 0.0547
...

HPC Application
I/O Metrics

I/O Analysis
Behavior and I/O Phases

Insights
Recommendations

Interactive Plots
Plotly

Operation

Transfer Size

Spatiality

I/O Phases

Storage System

Darshan / DXT
pyDarshan

HTML
Drishti Output

Recorder
Traces

scorep / TAU
Traces

Drishti VOL
Traces

● Focus on:

○ The aspects upon which the user might have control

○ Dynamic user metadata defined by the attributes API

○ Operations that go through the VOL

● Ensured timestamps (microseconds) from Darshan DXT and VOL will match

● Implemented as a passthrough VOL connector

● Designed for use in combination with Darshan DXT

● VOL traces stored in memory and persisted in a file-per-process at the end

WHAT ABOUT HDF5?

DRISHTI VOL
Operation File Operations Drishti-VOL

Datasets

H5Dcreate ✅* ⛔
H5Dopen ⛔ ⛔
H5Dwrite ✅ ✅
H5Dread ✅ ✅
H5Dclose ⛔ ⛔

Attributes

H5Acreate ⛔ ⛔
H5Aopen ⛔ ⛔
H5Awrite ✅ ✅
H5Aread ✅ ✅
H5Aclose ⛔ ⛔

* H5Dcreate could result in I/O operations if file space allocation is set

github.com/hpc-io/vol-drishti

CROSS LAYER EXPLORATION
HDF5 Vol Connector

● Our target is exploratory/debug small-scale runs to replicate the issue

○ Tracing is expensive!

● Non-negligible overhead of collecting data from multiple layers of the I/O stack

Overhead? Yes, but…

Runtime (seconds) Overhead
(Min. %)

Combined
Log/TraceMin. Median Max.

Baseline 5.99 7.52 8.62 - -

+ Darshan 6.59 8.03 8.57 +9.62 35.88 KB

+ DXT 6.76 7.53 8.51 +3.03 38.88 MB

+ VOL 7.09 8.73 11.19 +4.88 41.69 MB

CROSS LAYER EXPLORATION
SOURCE CODE

AMREX E3SM

CROSS LAYER EXPLORATION
SOURCE CODE

AMREX E3SM

CROSS LAYER EXPLORATION
SOURCE CODE

AMREX E3SM

● Drishti:

○ Detects root causes based on metrics

○ Maps them to I/O bottlenecks, and

○ Recommends actionable items to tune I/O performance

● Drishti uses > 30 triggers to check how an application is accessing data

● Drishti can ingest multiple sources of I/O metrics (e.g., Darshan, DXT, Recorder, scorep)

● Drishti VOL connector enhances the reports with HDF5-related metrics

KEY TAKEAWAYS

github.com/hpc-io/drishti

Jean Luca Bez <jlbez@lbl.gov>, SUREN BYNA <byna.1@osu.edu>
HAMMAD ATHER, YANKUN XIA, JOEL TONY

github.com/hpc-io/vol-drishti2024 HDF5 USER GROUp (HUG) MEETING

