
Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Computational Models for Polydisperse
Particulate and Multiphase Systems

Rodney O. Fox
International Francqui Professor

Department of Chemical and Biological Engineering
Iowa State University

February 21 – April 6, 2017

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Lecture Topics

1 Introduction to Disperse Multiphase Flows

2 Mesoscale Description of Polydisperse Flows

3 Quadrature-Based Moment Methods

4 Generalized Population Balance Equation

5 Mesoscale Models for Physical and Chemical Processes

6 Solution Methods for Homogeneous Systems
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7 QBMM for Spatially Inhomogeneous Systems

8 High-Order, Realizable, Kinetic-Based, Finite-Volume Methods

9 Application to Fine-Particle Formation

10 Application to Bubbly Flows

11 Application to Gas–Particle Flows

12 Turbulence Modeling for Disperse Multiphase Flows
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INTRODUCTION TO DISPERSE
MULTIPHASE FLOWS
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Working Definition of Polydisperse Particulate &
Multiphase Systems

• Systems we consider are constituted by multiple phases of
which one phase is continuous

• Others are dispersed, namely composed of discrete elements
• Discrete elements can be solid particles, droplets or bubbles
• Relevant properties of disperse phase(s), such as mass,

momentum, or energy, change from element to element,
generating distributions or number density functions

• Typical examples are crystal size distribution (CSD), particle size
distribution (PSD), and particle velocity distribution (PVD)

• Elements of disperse phase(s) continuously evolve due to phase
coupling (one-, two-, three- and four-way coupling)
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Overview of Different Simulation Methods

Treatment of disperse phase in turbulent fluid

• Fully resolved approach (e.g.
Discrete element method): see
for example work of
Subramaniam group at ISU

• Lagrangian point-particle
approach: see for example
work of Soldati group at the
Univ. of Udine (Italy)

• Eulerian approach: disperse
phase is treated as a continuum
through concept of number
density function

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Introduction to
Disperse
Multiphase Flows
Definition and
Examples

Simulation Methods

Number Density
Functions

Different Types of
NDF

Mesoscale
Description of
Polydisperse
Flows
Population Balance
Equation

Generalized
Population Balance
Equation

Simple Example

Working Definition of Polydisperse Particulate &
Multiphase Systems

• Problem of describing evolution (in space and time) of these
systems in Eulerian framework (in terms of number density
functions or distributions) has been treated in many ways by
different scientific communities

• Crystallization and precipitation (often neglecting spatial
inhomogeneities): crystal or particle size, population balance
equation (PBE)

• Evaporating (and non-evaporating) sprays: droplet surface area,
Williams–Boltzmann equation (WBE)

• Aerosols and ultra-fine particles: particle mass, particle
dynamics equation (PDE)

• Particulate systems involved in granular flows: particle velocity,
Boltzmann equation (BE)

• Although these apparently different theoretical frameworks are
referred to by different names, underlying theory (which has its
foundation in classical statistical mechanics) is exactly the same!
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Microscale versus Mesoscale

• Microscale description resolves all details:

Fluid velocity: Navier–Stokes eq. no-slip
BC on particle surface

M(n)
p

d2X(n)

dt2 = Fluid force + collisions

Very fine grid needed to predict forces

• Mesoscale description works with distributions:

Fluid velocity: Navier–Stokes eq. with
coupling terms
Population balance equation for
distribution

Figure 3: Reconstruction of two experimentally measured, normalized NDFs from rich,

premixed ethylene flames (left: [13]; right: [22]) using gamma EQMOM (upper row) and

lognormal EQMOM (lower row) with three kernel functions.

reconstructed initial NDFs using gamma and lognormal EQMOM with three

kernel functions, i.e. seven moments need to be transported. The reconstruc-

tions of the NDFs at different times during the simulation are provided in

the Supplementary Material.

Both the unimodal and the bimodal NDF can be very well approximated

using two (not shown here) or three gamma distributions, while lognormal

EQMOM is less accurate. The lognormal kernels do not overlap very much,

which leads to a bimodal shape for both NDFs; also the experimentally

bimodal NDF is not well approximated in the region of small particles. Log-

normal EQMOM has difficulties to capture finite values at the minimum

particle size, because the lognormal distribution always starts at zero. In

gamma EQMOM, depending on the parameters of the gamma distributions,

a smooth transition occurs between the NDF starting at zero and at a fi-

nite value. This enables an accurate approximation of the NDF, especially

for small particle sizes, which is important for an accurate prediction of the

15

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Introduction to
Disperse
Multiphase Flows
Definition and
Examples

Simulation Methods

Number Density
Functions

Different Types of
NDF

Mesoscale
Description of
Polydisperse
Flows
Population Balance
Equation

Generalized
Population Balance
Equation

Simple Example

Microscale versus Mesoscale

• Microscale description resolves all details:

Fluid velocity: Navier–Stokes eq. no-slip
BC on particle surface

M(n)
p

d2X(n)

dt2 = Fluid force + collisions

Very fine grid needed to predict forces

• Mesoscale description works with distributions:

Fluid velocity: Navier–Stokes eq. with
coupling terms
Population balance equation for
distribution

Figure 3: Reconstruction of two experimentally measured, normalized NDFs from rich,

premixed ethylene flames (left: [13]; right: [22]) using gamma EQMOM (upper row) and

lognormal EQMOM (lower row) with three kernel functions.

reconstructed initial NDFs using gamma and lognormal EQMOM with three

kernel functions, i.e. seven moments need to be transported. The reconstruc-

tions of the NDFs at different times during the simulation are provided in

the Supplementary Material.

Both the unimodal and the bimodal NDF can be very well approximated

using two (not shown here) or three gamma distributions, while lognormal

EQMOM is less accurate. The lognormal kernels do not overlap very much,

which leads to a bimodal shape for both NDFs; also the experimentally

bimodal NDF is not well approximated in the region of small particles. Log-

normal EQMOM has difficulties to capture finite values at the minimum

particle size, because the lognormal distribution always starts at zero. In

gamma EQMOM, depending on the parameters of the gamma distributions,

a smooth transition occurs between the NDF starting at zero and at a fi-

nite value. This enables an accurate approximation of the NDF, especially

for small particle sizes, which is important for an accurate prediction of the

15

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Introduction to
Disperse
Multiphase Flows
Definition and
Examples

Simulation Methods

Number Density
Functions

Different Types of
NDF

Mesoscale
Description of
Polydisperse
Flows
Population Balance
Equation

Generalized
Population Balance
Equation

Simple Example

Numerical Methods for Mesoscale

A plethora of methods have been generated:

• In PBE, distribution is often discretized into classes (sections),
generating discretized population balance equation (DPBE)

• Among many methods developed, one used in computational
fluid dynamics (CFD) is multiple-size-group (MUSIG) method

• Same discretization is carried out for BE in discrete velocity
method (DVM) and lattice Boltzmann method (LBM)

• Method of moments (MOM) is used for solution of both PBE and
BE, but resulting closure problem is overcome by following
different strategies (e.g. Grad method, particle number density
method, method of moments with interpolative closure –
MOMIC, etc.)
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Number Density Functions

• Disperse phase is constituted by discrete elements
• Length scales of elements are smaller than length scale of

spatial variation of properties of interest
• Each element has properties known as coordinates (i.e. two

elements are identical if they have identical values for their
coordinates)

• Coordinates are classified as external (spatial coordinates)
and internal (properties such as mass, momentum, enthalpy,
temperature, volume, surface area, size, or age)

• State of multiphase system is defined through number density
function (NDF): nξ(t, x, ξ) where x = (x1, x2, x3) and
ξ = (ξ1, . . . , ξM)
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• Coordinates are classified as external (spatial coordinates)
and internal (properties such as mass, momentum, enthalpy,
temperature, volume, surface area, size, or age)

• State of multiphase system is defined through number density
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Number Density Functions

• NDF is expected number of entities in infinitesimal physical
volume dx and in infinitesimal phase-space volume dξ: nξ dx dξ

• NDF is not a random quantity, rather it is ensemble average of
infinite realizations (corresponding to same identical
macroscopic boundary and initial conditions) of multiphase
system

• Being an average quantity, it is (usually) differentiable in
space/time

• Underlying definition of NDF is a stochastic description
(behavior of any single particle is regarded as random) but
behavior of population of particles is treated as deterministic if
number of particles in population is large!

• NDF identifies entire population of particles at any instant
and at any given point in computational domain and considers
probability associated with state of each of these particles
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Number Density Functions

• This random behavior may reflect some chaotic properties (e.g.
Brownian motion) or some other behavior (e.g. microscale
turbulence→ NDF can be treated as any other scalar field)

• Therefore nξ(ξ) dξ represents number of disperse entities
contained in phase-space volume dξ centered at ξ per unit of
physical volume (i.e., number density)

• Integration of NDF over all possible values of internal-coordinate
vector:

N ≡ mξ,0 ≡

∫
Ωξ

nξ(ξ) dξ

corresponding to zero-order moment of NDF
• Arbitrary integer moment of NDF is defined by

mξ,k ≡

∫
Ωξ

ξk1
1 · · · ξ

kM
M nξ(ξ) dξ

where k ≡ (k1, . . . , kM)

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Introduction to
Disperse
Multiphase Flows
Definition and
Examples

Simulation Methods

Number Density
Functions

Different Types of
NDF

Mesoscale
Description of
Polydisperse
Flows
Population Balance
Equation

Generalized
Population Balance
Equation

Simple Example

Number Density Functions

• This random behavior may reflect some chaotic properties (e.g.
Brownian motion) or some other behavior (e.g. microscale
turbulence→ NDF can be treated as any other scalar field)

• Therefore nξ(ξ) dξ represents number of disperse entities
contained in phase-space volume dξ centered at ξ per unit of
physical volume (i.e., number density)

• Integration of NDF over all possible values of internal-coordinate
vector:

N ≡ mξ,0 ≡

∫
Ωξ

nξ(ξ) dξ

corresponding to zero-order moment of NDF
• Arbitrary integer moment of NDF is defined by

mξ,k ≡

∫
Ωξ

ξk1
1 · · · ξ

kM
M nξ(ξ) dξ

where k ≡ (k1, . . . , kM)

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Introduction to
Disperse
Multiphase Flows
Definition and
Examples

Simulation Methods

Number Density
Functions

Different Types of
NDF

Mesoscale
Description of
Polydisperse
Flows
Population Balance
Equation

Generalized
Population Balance
Equation

Simple Example

Number Density Functions

• This random behavior may reflect some chaotic properties (e.g.
Brownian motion) or some other behavior (e.g. microscale
turbulence→ NDF can be treated as any other scalar field)

• Therefore nξ(ξ) dξ represents number of disperse entities
contained in phase-space volume dξ centered at ξ per unit of
physical volume (i.e., number density)

• Integration of NDF over all possible values of internal-coordinate
vector:

N ≡ mξ,0 ≡

∫
Ωξ

nξ(ξ) dξ

corresponding to zero-order moment of NDF
• Arbitrary integer moment of NDF is defined by

mξ,k ≡

∫
Ωξ

ξk1
1 · · · ξ

kM
M nξ(ξ) dξ

where k ≡ (k1, . . . , kM)

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Introduction to
Disperse
Multiphase Flows
Definition and
Examples

Simulation Methods

Number Density
Functions

Different Types of
NDF

Mesoscale
Description of
Polydisperse
Flows
Population Balance
Equation

Generalized
Population Balance
Equation

Simple Example

Number Density Functions

• This random behavior may reflect some chaotic properties (e.g.
Brownian motion) or some other behavior (e.g. microscale
turbulence→ NDF can be treated as any other scalar field)

• Therefore nξ(ξ) dξ represents number of disperse entities
contained in phase-space volume dξ centered at ξ per unit of
physical volume (i.e., number density)

• Integration of NDF over all possible values of internal-coordinate
vector:

N ≡ mξ,0 ≡

∫
Ωξ

nξ(ξ) dξ

corresponding to zero-order moment of NDF
• Arbitrary integer moment of NDF is defined by

mξ,k ≡

∫
Ωξ

ξk1
1 · · · ξ

kM
M nξ(ξ) dξ

where k ≡ (k1, . . . , kM)

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Introduction to
Disperse
Multiphase Flows
Definition and
Examples

Simulation Methods

Number Density
Functions

Different Types of
NDF

Mesoscale
Description of
Polydisperse
Flows
Population Balance
Equation

Generalized
Population Balance
Equation

Simple Example

Different Types of NDF

• Different definitions of univariate NDF are used in literature
• Choice is problem dependent (e.g. colloids, aerosols, droplets,

etc.)
• A change of variables allows to go back and forth:

nL(L) dL = nV (V) dV = nM(M) dM

so it suffices to know relation between length L, volume V and
mass M

• For example, if M = ρV = ρL3:

nM(M) = nV (M/ρ)
dV
dM

=
1
ρ

nV (M/ρ)

nM(M) = nL

[
(M/ρ)1/3

] dL
dM

=
1

3ρ
(ρ/M)2/3 nL

[
(M/ρ)1/3

]
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Length-Based NDF

• Particles can be characterized by their size or length L
• Length-based NDF, nL(t, x,L), is defined so that: nL dL is

expected number density of particles with length between L and
L + dL

• Total number concentration can be calculated as:

N ≡ mL,0 =

∫ ∞

0
nL(L) dL

• Number-averaged particle size can be defined as

L10 ≡
1
N

∫ ∞

0
LnL(L) dL =

mL,1

N

• We define kth moment of length-based NDF as

mL,k ≡

∫ ∞

0
LknL(L) dL
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Length-Based NDF

• Any mean particle size can be defined as ratio mL,k+1/mL,k for
any value of k (k = 2, Sauter mean diameter, L32 ≡ mL,3/mL,2)

• If volume scales with third power of length, V = kVL3 (sphere:
kV = π/6, cube: kV = 1, etc.), we can define volume density
function VL(L) representing volume of particles per unit spatial
volume with lengths between L and L + dL: VL ≡ kVL3nL

• After normalizing VL to unity, volume-fraction density function
αV(L) represents volume fraction of particles with a specific
length over total particle volume: αV(L) := L3nL∫ ∞

0 L3nL(L) dL

• Mean particle length calculated from volume-fraction
density function is

L43 =

∫ ∞

0
αV(L)L dL =

mL,4

mL,3
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Volume-Based NDF

• Another common internal coordinate is particle volume V →
volume-based NDF as expected number of particles with
volume between V and V + dV: nV dx dV

• If volume and length scale with third power as V = kVL3,
relationship between length-based and volume-based NDFs is
straightforward: nL(L) = 3kVL2nV(kVL3)

• Moments of volume-based number NDF are defined as

mV,k ≡

∫ ∞

0
VknV(V) dV

and can be easily related to moments of length-based NDF:

mV,k =

∫ ∞

0
(kVL3)knL(L) dL = kk

VmL,3k
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Mass-Based NDF

• Mass-based NDF nM(M) is often preferred because mass is
conserved quantity for complex shapes

• In case of fractal aggregates: M = kMLDf where 1 < Df ≤ 3 is
fractal dimension (sphere: Df = 3, diffusion-limited aggregate:
Df = 1.8, etc.)

• Length-based and mass-based NDFs are related by
nL(L) = DfkMLDf−1nM(kMLDf )

• Their moments are related by: mM,k = kk
MmL,Df k

• It is often the case that in closed systems total particle mass is
conserved, i.e., mM,1 is constant

• In practical applications, choice of NDF with which to work often
depends on which moments can be measured experimentally
(e.g. light scattering =⇒ L, etc.)
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Velocity-Based NDF

• Special case of considerable interest occurs when
internal-coordinate vector is particle velocity vector: v

• Velocity-based NDF nU(t, x, v) is parameterized by 3 velocity
components v = (v1, v2, v3)

• Total number concentration is defined by integrating over all
possible values of particle velocity:

N = mU,0 ≡

∫
Ωv

nU(v) dv

• Because particles may have different velocities,
number-weighted particle velocity Up can be calculated as:

Up ≡
1
N

∫
Ωv

vnU(v) dv =
mU,1

mU,0

• Number-weighted particle velocity is only used when all particles
have same mass!
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Velocity-Based NDF

• NDF nξ and velocity-based NDF nU have same mathematical
meaning but particle velocity is a particular internal coordinate

• We distinguish between passive internal coordinates such as
particle size, volume, area, or temperature, from active internal
coordinates such as particle velocity

• In first case we refer to population balance equation (PBE)
and in second to generalized population balance equation
(GPBE)

• In PBE, velocity of disperse phase is assumed to be known and
NDF can be treated as advected scalar field

• Scalar fields appearing in GPBE are usually active (i.e.,
momentum exchange between particles depends on internal
coordinates such as length) and thus velocity of disperse phase
must be computed from seperate momentum balance
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Summary

• Disperse multiphase systems can be modeled at different levels
• Microscale simulations contain most detail, but are too

expensive for most applications
• Mesoscale simulations use physical approximations to

formulate a PBE or GPBE for NDF
• NDF can be univariate or multivariate, and definition is problem

dependent
• Thus, first step is to formulate a mesoscale model for

polydisperse flows
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MESOSCALE DESCRIPTION OF
POLYDISPERSE FLOWS
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Microscale versus Mesoscale versus Macroscale

Microscale Model 
Direct numerical simulation 

Macroscale Model 
Hydrodynamic description 

Euler-Euler models 

Mesoscale Model 
Kinetic equation 

Euler-Lagrange models 

Volume or ensemble averages 
+ closures for “fluctuations” 

Kinetic theory 
+ density function closures 

Moments of density 
+ moment closures 

Mesoscale model incorporates more microscale physics in closures! 

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Introduction to
Disperse
Multiphase Flows
Definition and
Examples

Simulation Methods

Number Density
Functions

Different Types of
NDF

Mesoscale
Description of
Polydisperse
Flows
Population Balance
Equation

Generalized
Population Balance
Equation

Simple Example

Population Balance Equation

• PBE is simple continuity statement written in terms of NDF
• It can be derived as balance for particles in fixed finite control

volume in physical space Ωx and in phase space Ωξ with
boundaries defined as ∂Ωx and ∂Ωξ:

∂

∂t

∫
Ωx

dx
∫

Ωξ

dξ nξ

 +

∫
Ωξ

dξ
∫
∂Ωx

nξv · dAx

+

∫
Ωx

dx
∫
∂Ωξ

nξξ̇ · dAξ =

∫
Ωx

dx
∫

Ωξ

dξ hξ

• where v is (known) velocity vector for particulate system, ξ̇ is
continuous rate of change in phase space, and hξ is
discontinuous jump function representing discrete events
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Population Balance Equation

Reynolds-Gauss theorem

Given control volume Ωx and its boundary ∂Ωx oriented by
outward-pointing normals, flux of vector v across boundary is equal to
volume integral of divergence of v (i.e., ∇x · v) inside control volume

∫
∂Ωx

nξv · dAx =

∫
Ωx

(∇x · vnξ) dx

∫
∂Ωξ

nξξ̇ · dAξ =

∫
Ωξ

(
∂

∂ξ
· ξ̇nξ

)
dξ
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Population Balance Equation

• If Reynolds-Gauss theorem is applied, it is straightforward to
obtain

∂

∂t

∫
Ωx

dx
∫

Ωξ

dξ nξ

 +

∫
Ωx

dx
∫

Ωξ

dξ
∂

∂x
· v nξ

+

∫
Ωx

dx
∫

Ωξ

dξ
∂

∂ξ
· ξ̇ nξ =

∫
Ωx

dx
∫

Ωξ

dξ hξ

• ∂
∂x = ∇x = (∂/∂x1, ∂/∂x2, ∂/∂x3) is gradient operator in physical
space

• ∂
∂ξ = ∇ξ = (∂/∂ξ1, . . . , ∂/∂ξM) is gradient operator in phase space
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Population Balance Equation

• For any arbitrary control volumes Ωx and Ωξ, integrand must
satisfy relation

∂nξ
∂t

+
∂

∂x
· v nξ +

∂

∂ξ
· ξ̇ nξ = hξ

• Einstein notation (i.e., repeated Roman indices imply
summation)

∂nξ
∂t

+
∂

∂xi
vi nξ +

∂

∂ξi
ξ̇i nξ = hξ

• Very important is distinction between continuous processes
(drift terms) and discontinuous processes (instantaneous
jumps)
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Generalized Population Balance Equation

• By using very similar approach it is possible to derive GPBE for
NDF that includes particle velocity: n(t, x, v, ξ)

∂n
∂t

+
∂

∂x
· v n +

∂

∂v
· Apn +

∂

∂ξ
· ξ̇ n = h

• Ap is continuous rate of change of particle velocity (i.e.,
acceleration) or force per unit mass acting on particles (e.g.,
gravity, fluid drag, etc.)

• Right-hand side h is discontinuous jump term, but now including
discontinuous changes in particle momentum (e.g., collisions)
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Generalized Population Balance Equation

• Collision, aggregation, agglomeration, coalescence, breakup
events can be described as discontinuous only when they
occur on time and length scales that are much shorter than
those characterizing changes in NDF

• This is indeed the case of particle–particle interactions via the
hard-sphere potential (pure collisions) but with other potentials
(i.e. soft-sphere potential) this may not be a good approximation

• In GPBE there are never terms for diffusion in physical space,
however, there are often terms for diffusion in velocity phase
space due to random (e.g., Brownian) forces, or to turbulent
fluctuations in continuous phase due to drag
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A Simple Example: Particle Aggregation and
Breakage in CSTR

Stirred tank / Polystyrene latex primary particles - 66 nm / Coagulant
- Al(NO3)3 / Re (capillary) = 500 / D (capillary) = 3 mm
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A Simple Example: Particle Aggregation and
Breakage in CSTR

When is CFD needed vs. well-stirred model?
• Latex particles aggregation due to coagulant
• Aggregation rate depends on shear rate G seen by particles
• Aggregates breakup in high-shear regions
• Faster stirring results in faster mixing, but higher shear
• Latex concentration in feed affects aggregation rate
• Laser light scattering determines radius of gyration 〈Rg〉 ∝ 〈L〉
• Three characeristic time scales: τM mixing, τA aggregation, τB

breakage
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Eventually aggregation and breakage balance each other and steady
state is reached (dynamic equilibrium)
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A Simple Example: Particle Aggregation and
Breakage in CSTR

• Here only one internal coordinate is considered, ξ,
dimensionless mass of aggregate (i.e., actual mass divided by
mass of primary particles)

• n(t, x, ξ) is Reynolds-averaged NDF often called cluster mass
distribution (CMD)

• Reynolds-averaged PBE (neglecting fluctuations) is:

∂n(t, x, ξ)
∂t

+
∂

∂xi
〈ui〉n(t, x, ξ) −

∂

∂xi
Dt
∂n(t, x, ξ)

∂xi
=

+
1
2

∫ ξ

0
kA(G; ξ − ξ′, ξ′)n(t, x, ξ − ξ′)n(t, x, ξ′) dξ′

− n(t, x, ξ)
∫ ∞

0
kA(G; ξ, ξ′)n(t, x, ξ′) dξ′

+

∫ ∞

ξ

kB(G; ξ′)b(ξ|ξ′)n(t, x, ξ′) dξ′ − kB(G; ξ)n(t, x, ξ)
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A Simple Example: Particle Aggregation and
Breakage in CSTR

• 〈ui〉 is Reynolds-averaged fluid velocity in ith spatial direction and
Dt is turbulent diffusivity

• kA(G; ξ, ξ′) is aggregation kernel of two aggregates with masses
ξ and ξ′

• kB(G; ξ′) is breakage kernel of aggregate of mass ξ′

• b(ξ|ξ′) is daughter distribution function
• G is (turbulent) shear rate, a spatial dependent property [i.e.,

G = G(x)], that is driving force for turbulent aggregation and

breakage defined as G =
(
ε
ν

)1/2

• It is usually quite easy to estimate volume-averaged shear rate

in a vessel: G =
(

P
ρVν

)1/2
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A Simple Example: Particle Aggregation and
Breakage in CSTR

When steady state is reached PBE can be easily made
dimensionless by using volume-averaged total number density of
aggregates, Nt, characteristic length scale (e.g. tank diameter),
characteristic mixing time τM and average mass of aggregates at
steady state, 〈ξ〉:

∂

∂Xi
UiN(θ,X, ξ) −

∂

∂Xi
Γt
∂N(θ,X, ξ)

∂Xi
=

+
τM

2τA

∫ ξ

0
KA(G; ξ − ξ′, ξ′)N(θ,X, ξ − ξ′)N(θ,X, ξ′) dξ′

−
τM

τA
N(θ,X, ξ)

∫ ∞

0
KA(G; ξ, ξ′)N(θ,X, ξ′) dξ′

+
τM

τB

∫ ∞

ξ

KB(G; ξ′)b(ξ|ξ′)N(θ,X, ξ′) dξ′

−
τM

τB
KB(G; ξ)N(θ,X, ξ)
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A Simple Example: Particle Aggregation and
Breakage in CSTR

N :=
n(ξ; x, t)

Nt

Xi :=
xi

d

Ui :=
〈ui〉

d/τM

Γt :=
Dt

d2/τM

KA :=
kA(G; ξ, ξ′)

kA(G; 〈ξ〉, 〈ξ〉)

KB :=
kB(G; ξ)

kB(G; 〈ξ〉)

Characteristic time for aggregation

τA :=
1

kA(G; 〈ξ〉, 〈ξ〉)Nt

Characteristic time for breakage

τB :=
1

kB(G; 〈ξ〉)
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A Simple Example: Particle Aggregation and
Breakage in CSTR

• When mixing is much faster than aggregation τM � τA and
breakage τM � τB spatial gradients of CMD are very small and
problem can be solved in terms of volume-averaged CMD:

n(t, ξ) =

∫
V n(t, x, ξ) dx

V

• Its evolution is dictated by volume-averaged PBE:

∂n(t, ξ)
∂t

=
1
2

∫ ξ

0
k

A
(G; ξ − ξ′, ξ′)n(t, ξ − ξ′)n(t, ξ′) dξ′

− n(t, ξ)
∫ ∞

0
k

A
(G; ξ, ξ′)n(t, ξ′) dξ′

+

∫ ∞

ξ

k
B
(G; ξ′)b(ξ|ξ′)n(t, ξ′) dξ′ − k

B
(G; ξ)n(t, ξ)
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A Simple Example: Particle Aggregation and
Breakage in CSTR

• Volume-averaged aggregation kernel is

k
A
(G; ξ, ξ′) =

∫ ∞

0
kA(G∗; ξ, ξ′)f (G∗) dG∗ , kA(G; ξ, ξ′)

• Volume-averaged breakage kernel is

k
B
(G; ξ) =

∫ ∞

0
kB(G∗; ξ)f (G∗) dG∗ , kB(G; ξ)

• Distribution function f (G∗) accounts for fact that shear rate is not
homogeneous in vessel
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A Simple Example: Particle Aggregation and
Breakage in CSTR

Mixing FASTER than aggregation and breakage τM � τA, τB
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Mixing SLOWER than aggregation and breakage τM � τA, τB
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τM � τA, τB τM � τA, τB
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A Simple Example: Particle Aggregation and
Breakage in CSTR

Need for CFD depends on ratio between different time scales!

Marchisio et al. (2006) AIChE J. 52, 158
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Summary

• Disperse multiphase systems can be modeled at different levels
of detail

• Microscale simulations contain most detail, but are too
expensive for most applications

• Mesoscale simulations use physical approximations to
formulate a PBE or GPBE for NDF

• Macroscale simulations use mathematical approximations to
approximate unclosed moments of NDF

• Thus, first step is to formulate a mesoscale model for
polydisperse flows
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Part 2

QUADRATURE-BASED MOMENT METHODS
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Closure Problem

Closure problem appears always in following form:

I =

∫
Ωξ

n(ξ)g(ξ) dξ

where n(ξ) is unknown univariate NDF and Ωξ is integration interval

QBMM use a Gaussian quadrature

In Gaussian quadrature theory NDF is weight function or measure for
which integer moments

mk = m(k) = 〈ξk〉 :=
∫

Ωξ

n(ξ) ξk dξ k = 0, 1, 2, . . .

must exist
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Quadrature Theory

A set of polynomials {P0(ξ),P1(ξ), . . . ,Pα(ξ), . . . } with

Pα(ξ) = kα,0ξα + kα,1ξα−1 + · · · + kα,α

is orthogonal in integration interval Ωξ, with respect to weight
function, if ∫

Ωξ

n(ξ)Pα(ξ)Pβ(ξ) dξ

= 0 for α , β
> 0 for α = β

and, of course, is said to be orthonormal if∫
Ωξ

n(ξ)Pα(ξ)Pβ(ξ) dξ =

0 for α , β
1 for α = β
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Quadrature Theory

Any set of orthogonal polynomials {Pα(ξ)} has recurrence formula
relating three consecutive polynomials in a sequence:

Pα+1(ξ) = (ξ − aα)Pα(ξ) − bαPα−1(ξ) α = 0, 1, 2, . . .

with P−1(ξ) ≡ 0 and P0(ξ) ≡ 1 and

aα =

∫
Ωξ

n(ξ)ξPα(ξ)Pα(ξ) dξ∫
Ωξ

n(ξ)Pα(ξ)Pα(ξ) dξ
for α = 0, 1, 2, . . .

bα =

∫
Ωξ

n(ξ)Pα(ξ)Pα(ξ) dξ∫
Ωξ

n(ξ)Pα−1(ξ)Pα−1(ξ) dξ
> 0 for α = 1, 2, . . .

One can calculate a0, then P1(ξ), then a1 and b1 and so on ...
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• Coefficients aα and bα can be written in terms of moments
• Coefficients necessary for construction of polynomial of order N

can be calculated from first 2N − 1 moments of NDF
• For example with m0, m1, m2 and m3, it is possible to calculate

the following coefficients:

a0 =
m1

m0

a1 =
m3m2

0 + m3
1 − 2m2m1m0

m2m0 + m2
1 − 2m2

1m0

b1 =
m2m0 + m2

1 − 2m2
1m0

m2
0

which suffice for calculation of polynomial P2(ξ)
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Why are we interested in orthogonal
polynomials?
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• Closure problem can be overcome by using a quadrature
formula: ∫

Ωξ

n(ξ)g(ξ) dξ ≈
N∑
α=1

wαg(ξα)

where wα and ξα are weights and nodes/abscissas of quadrature
formula, and N is number of nodes

• Accuracy of quadrature formula is quantified by its degree of
accuracy

• Degree of accuracy is equal to d if quadrature formula is exact
when the integrand is a polynomial of order less than or equal to
d and there exists at least one polynomial of order d + 1 that
makes quadrature formula inexact
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Quadrature-Based Moment Methods

GAUSSIAN QUADRATURE

Necessary and sufficient condition for following formula:∫
Ωξ

n(ξ)g(ξ) dξ =

N∑
α=1

g(ξα)wα + RN(g)

to be Gaussian quadrature approximation or, equivalently, that it has
degree of accuracy of 2N − 1, is that its nodes {ξα} coincide with the
N roots of polynomial PN(ξ) of order N orthogonal in Ωξ with respect
to weight function n(ξ)
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HOW DO WE CALCULATE THE QUADRATURE APPROX?

N weights and N abscissas can be determined by solving a
non-linear system:

m0 =

N∑
α=1

wα

m1 =

N∑
α=1

wαξα

...

m2N−1 =

N∑
α=1

wαξ
2N−1
α

using Newton-Raphson method, or any other non-linear equation
solver (very good initial guess needed to ensure convergence!)
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Better way is to employ recursive relationship for orthogonal
polynomials:

ξ



P0(ξ)
P1(ξ)
...

PN−2(ξ)
PN−1(ξ)


=



a0 1
b1 a1 1

. . .

. . . 1
aN−1





P0(ξ)
P1(ξ)
...

PN−2(ξ)
PN−1(ξ)


+



0
0
...
0

PN(ξ)


Nodes of quadrature approximation {ξα} (i.e., roots of PN(ξ)), are
eigenvalues of tridiagonal matrix appearing above
Matrix is re-written in terms of equivalent tridiagonal symmetric
(Jacobi) matrix
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Matrix can be made symmetric (preserving eigenvalues) by a diagonal
similarity transformation to give a Jacobi matrix:

J =



a0
√

b1√
b1 a1

√
b2√

b2 a2
√

b3

√
b3 a3

. . .

. . .
. . .

. . .

. . . aN−2
√

bN−1√
bN−1 aN−1


Procedure transforms ill-conditioned problem of finding roots of polynomial
into well-conditioned problem of finding eigenvalues and eigenvectors of
tridiagonal symmetric matrix
N weights are calculated as wα = m0ϕ

2
α1 where ϕα1 is first component of αth

eigenvector ϕα of Jacobi matrix
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Product-Difference Algorithm

1 Construct matrix P with components Pα,β:

Pα,β = P1,β−1Pα+1,β−2 − P1,β−2Pα+1,β−1

β ∈ 3, . . . , 2N + 1 and α ∈ 1, . . . , 2N + 2 − β

2 first row of matrix is

Pα,1 = δα1 α ∈ 1, . . . , 2N + 1

3 δα1 is Kronecker delta and components in second column of P
are

Pα,2 = (−1)α−1mα−1 α ∈ 1, . . . , 2N

4 Calculate coefficients of continued fraction {ζα}:

ζα =
P1,α+1

P1,αP1,α−1
α ∈ 2, . . . , 2N
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1 Coefficients of Jacobi matrix are obtained from sums and
products of ζα:

aα = ζ2α + ζ2α−1 α ∈ 1, . . . ,N

bα =
√
ζ2α+1ζ2α α ∈ 1, . . . ,N − 1

2 For example with N = 2, P matrix is
1 m0 m1 m0m2 − m2

1 m0

(
m3m1 − m2

2

)
0 −m1 −m2 − (m0m3 − m2m1)
0 m2 m3
0 −m3
0
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Consider a normal (or Gaussian) distribution:

n(ξ) =
1

√
2πσ2

exp

−
(
ξ − µ)2

)
2σ2


Moments of distribution:

m0 = 1 m1 = µ m2 = µ2 + σ2

m3 = µ3 + 3µσ2

m4 = µ4 + 6µ2σ2 + 3σ4

m5 = µ5 + 10µ3σ2 + 15µσ4

m6 = µ6 + 15µ4σ2 + 45µ2σ4 + 15σ6

m7 = µ7 + 21µ5σ2 + 105µ3σ4 + 105µσ6

m8 = µ8 + 28µ6σ2 + 210µ4σ4 + 420µ2σ6 + 105σ8

Use PD algorithm to calculate quadrature approximation of order four (i.e.,
N = 4) for µ = 5 and σ = 1
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First eight moments of distribution are needed:

m0 = 1 m1 = 5 m2 = 26 m3 = 140

m4 = 778

m5 = 4450

m6 = 26140

m7 = 157400

After applying PD algorithm Jacobi matrix is obtained:

J =


5 1 0 0
1 5

√
2 0

0
√

2 5
√

3
0 0

√
3 5


resulting in: w1 = 0.0459, w2 = 0.4541, w3 = 0.4541, w4 = 0.0459, and
ξ1 = 2.6656, ξ2 = 4.2580, ξ3 = 5.7420, ξ4 = 7.3344
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PD algorithm works well when ξ is positive, but not when distribution
has zero mean (moment of order one null)
Example: Gaussian distribution with µ = 0 and σ = 1

m0 = 1
m1 = 0
m2 = 1
m3 = 0
m4 = 3
m5 = 0
m6 = 15
m7 = 0

In general, Wheeler algorithm should be used (see Numerical
Recipes for details)
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Realizable Moments

Moment inversion algorithm only works if moments are realizable

Definition: Realizable moments correspond to a non-negative NDF

Hankel matrices are used to check if moments {m0,m1, . . . ,m2N} are
realizable:

HN :=



m0 m1 m2 . . . mN

m1 m2 m3 . . . mN+1

m2 m3
. . . . . . mN+2

...
...

...
. . .

...
mN mN+1 mN+2 . . . m2N


Moment set {m0,m1, . . . ,m2N} is realizable iff |HN | ≥ 0

With N-node QMOM, |HN | = 0, but |Hn| > 0 for n = 0, 1, . . . ,N − 1
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Example for N = 2:

|H0| = m0

|H1| = m0m2 − m2
1

|H2| = m4(m0m2 − m2
1) − m3(m0m3 − m1m2) + m2(m1m3 − m2

2)

Or, using central moments, C0 = 1, C1 = 0, C2 = variance:

|H0| = 1
|H1| = C2

|H2| = C4C2 − C2
3 − C3

2

With 2-node QMOM, |H2| = 0, and n∗(ξ) = w1δ(ξ − ξ1) + w2δ(ξ − ξ2)

When |HN | = 0, but |Hn| > 0 for n = 0, 1, . . . ,N − 1; we say that
moments are on boundary of moment space

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Quadrature-
Based Moment
Methods
Closure Problem

Computing
Quadrature
Approximation

Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid–Particle
Systems

GPBE for
Fluid–Particle
Systems

Moment Transport
Equations

Real-Space
Advection

Moment Space

Moment vectors M = {m0,m1, . . . ,m2N} live in finite moment space:
• Moment space is convex: let M1 and M2 be two sets of

realizable moments, then M∗ = a1M1 + a2M2 is realizable when
a1 and a2 are non-negative

• If |HN | = 0, then M is on boundary of moment space
• If |HN | = 0, then m2N has smallest possible value
• If |HN | = 0, then n∗ is sum of N weighted delta functions
• If |HN | > 0, then M is in interior of moment space
• If |HN | > 0, then n∗(ξ) is continuous function of ξ

Quadrature-Based Moment Methods reconstruct n∗(ξ) for the
boundary of moment space by satisfying all moments

{m0,m1, . . . ,m2N−1}
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Variation: Gauss–Radau Quadrature

• In many cases, it is advantageous to include even-numbered
moment m2N : evaporation, nucleation, spatial fluxes, reconstruct
continuous NDF (EQMOM), etc.

• Moment set M = {m0,m1, . . . ,m2N} has 2N + 1 degrees of
freedom

• Gauss–Radau quadrature fixes one node ξ0, but weight w0 is
free: ∫

g(ξ)n(ξ) dξ =

N∑
i=0

wig(ξi)

e.g., ξ0 is smallest particle mass in system
• There are N + 1 weights wi and N nodes ξi that must be found

from moments for k = 0, 1, . . . , 2N:

mk :=
∫

ξkn(ξ) dξ =

N∑
i=0

wiξ
k
i

• Small change in Wheeler algorithm (see Numerical Recipes)
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Summary of QBMM for Solving PBE

• Starting from PBE for n(t, ξ), formally derived unclosed moment
equations M(t) = {m0(t),m1(t), . . . ,mk(t)} | k = 0, 1, . . . , 2N:

dmk

dt
= Sk(M) =⇒

dM
dt

= S(M)

• Close moment equations with quadrature:

n(t, ξ) ≈ n∗(t, ξ) =

N∑
i=0

wiδ(ξ − ξi)

where wi and ξi are found from M(t) with Wheeler algorithm
• Use numerical ODE solver to advance in time:

M(t + ∆t) = M(t) + S(M(t))∆t

given initial conditions M(0)
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GENERALIZED POPULATION BALANCE
EQUATION
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From Microscale to Mesoscale Model

Microscale Description 

Mesoscale Model 

Define phase space of 
mesoscale variables needed 

to describe a “particle” 
(velocity, volume, etc.) 

Model changes to one particle’s 
mesoscale variables due to all other 

particles, fluid, body forces, etc. 
(one-particle density function) 

Closure occurs at the level of the one-particle density function 
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NDF for Fluid–Particle Systems

• Let us consider population of Np particles characterized by
variables: position {X(n)}, velocity {U(n)

p } and composition {ξ(n)
p }

• State of nth particle will change according to following
Lagrangian (following particle) equations:

dX(n)

dt
= U(n)

p

dU(n)
p

dt
= A(n)

fp + A(n)
p + C(n)

pU

dξ(n)
p

dt
= G(n)

p + C(n)
pξ

• Operators on right-hand sides (mesoscale models) depend on
complete set of variables for all particles

• In principle, they can be found from microscale simulations
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NDF for Fluid–Particle Systems

• In most descriptions of fluid–particle flows, mesoscale
fluid–particle acceleration A(n)

fp includes a drag term of form

A(n)
fp (t) ∝ C(n)

D

∣∣∣U(n)
f (t) − U(n)

p (t)
∣∣∣ [U(n)

f (t) − U(n)
p (t)

]
where C(n)

D is drag coefficient, and U(n)
f (t) is characteristic fluid

velocity in neighborhood of X(n)(t)
• U(n)

f (t) = Uf(t,X(n)(t)) + u′(n)
f (t) is called “fluid velocity seen by nth

solid particle”, which is difficult to model a priori but is included in
set of particle properties to be tracked

• In general it will be necessary to introduce some additional
internal coordinates representing other fluid properties seen by
nth particle: ξ(n)

f
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• In most descriptions of fluid–particle flows, mesoscale
fluid–particle acceleration A(n)

fp includes a drag term of form

A(n)
fp (t) ∝ C(n)

D

∣∣∣U(n)
f (t) − U(n)

p (t)
∣∣∣ [U(n)

f (t) − U(n)
p (t)

]
where C(n)

D is drag coefficient, and U(n)
f (t) is characteristic fluid

velocity in neighborhood of X(n)(t)
• U(n)

f (t) = Uf(t,X(n)(t)) + u′(n)
f (t) is called “fluid velocity seen by nth

solid particle”, which is difficult to model a priori but is included in
set of particle properties to be tracked

• In general it will be necessary to introduce some additional
internal coordinates representing other fluid properties seen by
nth particle: ξ(n)

f
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• State of Np particles immersed in continuous phase is completely
defined by multi-particle–fluid joint PDF:

fNp

(
t, {x(n)}, {V(n)

p }, {η
(n)
p }, {V

(n)
f }, {η

(n)
f }

)
d{x(n)} d{V(n)

p } d{η
(n)
p } d{V

(n)
f } d{η

(n)
f }

:=

P
[
∩

Np
n=1

{(
x(n) < X(n)(t) ≤ x(n) + dx(n)

)
particle positions

∩
(
V(n)

p < U(n)
p (t) ≤ V(n)

p + dV(n)
p

)
particle velocities

∩
(
η(n)

p < ξ(n)
p (t) ≤ η(n)

p + dη(n)
p

)
particle compositions

∩
(
V(n)

f < U(n)
f (t) ≤ V(n)

f + dV(n)
f

)
seen fluid velocities

∩
(
η(n)

f < ξ(n)
f (t) ≤ η(n)

f + dη(n)
f

)}]
seen fluid compositions

In principle, it is known from microscale simulations
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• Multi-particle joint PDF can be reduced to single-particle joint PDF by
integrating out state variables for all particles except nth:

f (n)
1

(
t, x(n),V(n)

p , η(n)
p ,V(n)

f , η(n)
f

)
:=∫

m,n
fNp

(
t, {x(m)}, {V(m)

p }, {η
(m)
p }, {V

(m)
f }, {η

(m)
f }

)
dx(m) dV(m)

p dη(m)
p dV(m)

f dη(m)
f

• Fluid–particle NDF is therefore defined as

n(t, x, vp, ξp, vf , ξf) :=
Np∑
n=1

f (n)
1 (t, x, vp, ξp, vf , ξf)

• In limit of identically distributed particles NDF becomes:

n(t, x, vp, ξp, vf , ξf) = Np f1(t, x, vp, ξp, vf , ξf)

i.e. numbering is arbitrary
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Based on these definitions, how can we derive transport
equations for fluid–particle systems?
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• Starting from mesoscale models for particle properties
(validated with DNS of fluid–particle system when possible), we
first derive generalized transport equation for fNp (generalized
Liouville equation)

• From this equation we find transport equation for one-particle
PDF f (n)

1 by integrating out all degrees of freedom except those
associated with nth particle (loss of information and generation of
unclosed terms)

• Finally, using definition of fluid–particle NDF we derive GPBE:

∂n
∂t

+
∂

∂x
· vpn +

∂

∂vp
·
(
〈Afp〉1 + 〈Ap〉1

)
n +

∂

∂ξp
· 〈Gp〉1n

+
∂

∂vf
·
(
〈Apf〉1 + 〈Af〉1

)
n +

∂

∂ξf
· 〈Gf〉1n = S1
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Summary

• We consider only mesoscale models where phase-space fluxes
and source terms in GPBE are closed, in other words, depend
only on independent variables (t, x, vp, ξp, vf , ξf) and on NDF
n(t, x, vp, ξp, vf , ξf)

• Finding accurate mesoscale closures is highly non-trivial task
(e.g. drag coefficient for dense particulate systems, aggregation
integrals and kernels, etc.)

• In order to reduce dimensionality of GPBE it is sometimes
possible to work with selected moments of NDF by solving their
transport equations

• Let us see how to derive moment equations and what additional
problems are generated in their derivation (moment closure
problem)
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• At this point we will not enter into details of mesoscale models
but it is worth mentioning that a set of consistency constraints
has to be satisfied

• Mesoscale models are designed to satisfy consistency
constraints (e.g., conservation of mass, species, momentum,
energy, etc.)

• Operation of deriving moment transport equations requires
manipulation of multivariate integrals, it is therefore useful to
review some integration rules
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Treatment of time and space derivatives

Let g(vp, ξp, vf , ξf) be arbitrary function of its variables
Then∫ (

∂n
∂t

+
∂

∂x
· vpn

)
g dvp dξp dvf dξf

=

∫ (
∂gn
∂t

+
∂

∂x
· vpgn

)
dvp dξp dvf dξf

=
∂

∂t

(∫
gn dvp dξp dvf dξf

)
+
∂

∂x
·

(∫
vpgn dvp dξp dvf dξf

)
=
∂

∂t
〈g〉 +

∂

∂x
· 〈vpg〉

where 〈•〉 denotes integral w.r.t. n
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Treatment of velocity derivatives

With velocity derivatives, it is necessary to use integration by parts:∫
g
∂

∂vp
·
(
〈Afp〉1 + 〈Ap〉1

)
n dvp dξp dvf dξf

=
(
〈Afp〉1 + 〈Ap〉1

)
gn

∣∣∣∣
vp=±∞

−

∫ (
〈Afp〉1 + 〈Ap〉1

)
·
∂g
∂vp

n dvp dξp dvf dξf

First term corresponds to flux normal to surface bounding velocity
phase space and since velocity space extends to infinity, this flux
must be null
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Treatment of internal-coordinate derivatives

Also for internal-coordinate derivatives it is necessary to use
integration by parts:∫

g
∂

∂ξp
· 〈Gp〉1n dvp dξp dvf dξf

= 〈Gp〉1gn
∣∣∣
ξp=max − 〈Gp〉1gn

∣∣∣
ξp=min −

∫
〈Gp〉1 ·

∂g
∂ξp

n dvp dξp dvf dξf

Since for particle internal coordinates phase space does not often
extend to infinity, flux normal to phase-space boundaries might not be
null (e.g. particle dissolution, droplet evaporation)
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Disperse-Phase Number Transport

• Total number concentration N(t, x) corresponds to zero-order
moment of NDF (i.e., g = 1) and is defined by

N :=
∫

n dvp dξp dvf dξf

• Its transport equation can be found from GPBE

∂N
∂t

+
∂

∂x
· UNN = SN

• Number-average disperse-phase velocity is defined by

UN :=
1
N

∫
vpn dvp dξp dvf dξf

• Particle-number source term by

SN :=
∫
S1 dvp dξp dvf dξf
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Disperse-Phase Volume Transport

• If first internal coordinate ξp1 is particle volume (Vp)
disperse-phase volume fraction is defined as (g = ξp1 = Vp):

αp :=
∫

ξp1n dvp dξp dvf dξf

• Its transport equation can be derived from GPBE:

∂αp

∂t
+
∂

∂x
· αpUV = ~Gp�V + SV

• Volume-average disperse-phase velocity is defined by

UV :=
1
αp

∫
ξp1vpn dvp dξp dvf dξf

• Particle-volume source terms are defined by

~Gp�V :=
∫
〈Gp1〉1n dvp dξp dvf dξf

SV :=
∫

ξp1S1 dvp dξp dvf dξf
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Fluid-Phase Volume Transport

• If we let internal coordinate ξf1 be equal to fluid volume seen by
particle, fluid-phase volume fraction is

αf :=
∫

ξf1n dvp dξp dvf dξf

• Volume-average fluid velocity is

UfV :=
1
αf

∫
ξf1vfn dvp dξp dvf dξf

• Transport equation for αf is

∂αf

∂t
+
∂

∂x
· αfUpV = ~Gf�V + SfV

• where

UpV :=
1
αf

∫
ξf1vpn dvp dξp dvf dξf
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Fluid-Phase Volume Transport

• By definition, αp + αf = 1 and, in the absence of mass transfer
between phases:

∂αf

∂t
+
∂

∂x
· αfUfV = 0

• This simply states that fluid-phase volume fraction is conserved
quantity and therefore we must have:

~Gf�V =
∂

∂x
· αf

(
UpV − UfV

)
• In case of no mass transfer it will be necessary for 〈Gf1〉1 to be

nonzero: volume of fluid seen by a particle must change along a
particle trajectory due to presence of other particles!

〈Gf1〉1 =
1
n
∂

∂x
·
(
vp − vf

)
ξf1n
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Disperse-Phase Mass Transport

• If disperse phase has particles with different volumes and
different masses (or material densities), at least two internal
coordinates are necessary

• First internal coordinate particle volume and second particle
mass (ξp2 := Mp = ρpVp; ρp is material density)

• Disperse-phase mass density is defined by

%p :=
∫

ξp2n dvp dξp dvf dξf

• Its transport equation is derived from GPBE (g = ξp2 = Mp)

∂%p

∂t
+
∂

∂x
· %pUM = ~Gp� + SM

• Mass-average disperse-phase velocity

UM :=
1
%p

∫
ξp2vpn dvp dξp dvf dξf
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UM :=
1
%p

∫
ξp2vpn dvp dξp dvf dξf
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Disperse-Phase Mass Transport

• Since total mass of fluid–particle system is conserved, we can define
fluid-phase mass density %f by

∂%f

∂t
+

∂

∂x
· %fUf = −~Gp� − SM

• %p and %f are not actual material densities ρp and ρf , they are equal to
mass of solid (fluid) per unit volume of fluid–particle system

• Similarly we can define mixture mass density %mix := %p + %f , that
satisfies mixture continuity equation:

∂%mix

∂t
+

∂

∂x
· %mixUmix = 0

• Mass-average mixture velocity is defined by

Umix :=
1
%mix

(
%pUp + %fUf

)
• Transport equations for %p and %f are used in two-fluid models and

follow directly from GPBE
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Towards the Two-Fluid Model

Constant (and equal) volume and mass

• In case where ξp1 = Vp and ξp2 = Mp are constant and equal for
all particles (monodisperse): %p = MpN = ρpαp

• Average particle velocities are all equal: Up := UM = UV = UN

• Governing equations become (incompressible fluid):

∂αp

∂t
+
∂

∂x
· αpUp = 0

∂αf

∂t
+
∂

∂x
· αfUf = 0

• Sum of two continuity equations yields realizability constraint for
velocity fields: ∇x · Uvol = 0, Uvol := αpUp + αfUf , that must be
incorporated into conditional source terms in fluid-phase
momentum transport equation (fluid-phase pressure)

• Note that, in general, Uvol , Umix unless fluid and particles have
same material densities
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Disperse-Phase Momentum Transport

• Disperse-phase momentum density is defined by

%pUM :=
∫

ξp2vpn dvp dξp dvf dξf

where ξp2 = Mp corresponds to particle mass
• As usual its transport equation is derived from GPBE (g = ξp2vp):

∂%pUM

∂t
+
∂

∂x
· %pFp = %p~Afp�p + %p~Ap�p + ~Gp�p + %p~S�p

where (unclosed) momentum-convection term (second-order
tensor) is defined by

%pFp :=
∫

ξp2(vp ⊗ vp)n dvp dξp dvf dξf
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Disperse-Phase Momentum Transport

• Surface forces on particles due to surrounding fluid (e.g., drag,
lift, and pressure forces)

%p~Afp�p :=
∫

ξp2〈Afp2〉1n dvp dξp dvf dξf

• Body forces (such as gravity):

%p~Ap�p :=
∫

ξp2〈Ap2〉1n dvp dξp dvf dξf

• Momentum added to particle phase due to mass transfer from
liquid

~Gp�p :=
∫

vp〈Gp2〉1n dvp dξp dvf dξf

• Discontinuous changes in particle momentum due to collisions
and particle nucleation:

%p~S�p :=
∫

ξp2vpS1 dvp dξp dvf dξf

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Quadrature-
Based Moment
Methods
Closure Problem

Computing
Quadrature
Approximation

Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid–Particle
Systems

GPBE for
Fluid–Particle
Systems

Moment Transport
Equations

Real-Space
Advection

Towards the Two-Fluid Model

Constant (and equal) volume and mass

• For monodisperse particles, disperse-phase mass density is
%p = ρpαp, mass average can be replaced by number average,
and transport equation for disperse-phase momentum density is

∂ρpαpUp

∂t
+
∂

∂x
· ρpαpUp ⊗ Up +

∂

∂x
· ρpαp~upup�N =

ρpαp~Afp�N + ρpαp~Ap�N + ρpαp%p~S�N

• Disperse-phase pressure tensor, ~upup�N = FN − Up ⊗ Up, is
central second-order moment

• Term for collisions can also generate separate spatial flux term
(collisional flux) which is added to disperse-phase pressure
tensor
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Towards the Two-Fluid Model

Constant (and equal) volume and mass

• From GPBE we can also derive a transport equation for
fluid-phase momentum density (after applying constraints)

∂%fUf

∂t
+
∂

∂x
· %f~Uf ⊗ Uf�f =

∂

∂x
· Sf + %fAf − %p~Afp�p − ~Gp�p − %p~S�p

• Sf and Af denote the viscous/pressure stress tensor and body
forces acting on fluid phase

• Convection term

~Uf ⊗ Uf�f :=
∫

ξf1vf ⊗ vfn dvp dξp dvf dξf

requires separate model for microscale (pseudo) turbulence
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• Recalling definition of mixture mass density, %mix ≡ %p + %f ,
whose transport equation is:

∂%mix

∂t
+
∂

∂x
· %mixUmix = 0

and Umix := 1
%mix

(
%pUp + %fUf

)
is mass-average mixture velocity

• We can derive (by summing up equations for Up and Uf):

∂%mixUmix

∂t
+
∂

∂x
·
(
%pFp + %f~Uf ⊗ Uf�f

)
=

∂

∂x
· Sf + %p~Ap�p + %fAf

• This expression does not contain terms for momentum transfer
between phases but can be solved only when Umix is very close
to Uf (i.e., very small Stokes numbers)
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Summary

• Through ensemble average and by using some simplifying
hypotheses NDF for multiphase system has been defined

• NDF completely defines multiphase system
• Moments of NDF correspond to relevant measurable properties:

disperse-phase number concentration, disperse- and fluid-phase
volume fractions and mass densities, mixture mass density,
number-, volume- and mass-average velocities for disperse and
fluid phases and mass-average mixture velocity

• Evolution of NDF is dictated by GPBE and from it, transport
equations for moments can be derived simply by applying
moment transform

• Two-fluid model and mixture model are directly derivable from
moment transport equations with additional hypothesis of
constant and equal particle mass and volume
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Moment Closure

• In general moment transport equations are not closed, as
terms appearing in them cannot be written in terms of moments
themselves

• In all these cases NDF has to be reconstructed
• Parameterized NDF: functional form for NDF in terms of a few

lower-order moments (e.g. single Dirac delta function,
log-normal distribution)

• Functional expansion for NDF: similar to previous one but in
order to increase number of degrees of freedom in systematic
manner functional expansion can be used to represent NDF

• Discrete NDF: discrete form for phase-space variables,
discretized on grid (e.g. uniform, geometric series, etc.)

• Quadrature-based moment methods: reconstruction of NDF
using sum of Dirac delta functions located at nodes of
quadrature approximation (i.e. zeros of orthogonal polynomials)
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Real-Space Advection and Integration in CFD
Codes

• Real-space advection (second term on LHS)

∂n
∂t

+
∂

∂x
· vpn +

∂

∂vp
·
(
〈Afp〉1 + 〈Ap〉1

)
n +

∂

∂ξp
· 〈Gp〉1n

+
∂

∂vf
·
(
〈Apf〉1 + 〈Af〉1

)
n +

∂

∂ξf
· 〈Gf〉1n = S1

• It represents the movement of particles in real space:

∂

∂x
· vpn =

∂

∂x1
vp1n +

∂

∂x2
vp2n +

∂

∂x3
vp3n

• Particle velocity plays an important role since it generates spatial
transport: active variable

• Other internal coordinates (e.g. particle size) are passive
variables: carried along with given velocity

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Quadrature-
Based Moment
Methods
Closure Problem

Computing
Quadrature
Approximation

Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid–Particle
Systems

GPBE for
Fluid–Particle
Systems

Moment Transport
Equations

Real-Space
Advection

Real-Space Advection and Integration in CFD
Codes

• Real-space advection (second term on LHS)

∂n
∂t

+
∂

∂x
· vpn +

∂

∂vp
·
(
〈Afp〉1 + 〈Ap〉1

)
n +

∂

∂ξp
· 〈Gp〉1n

+
∂

∂vf
·
(
〈Apf〉1 + 〈Af〉1

)
n +

∂

∂ξf
· 〈Gf〉1n = S1

• It represents the movement of particles in real space:

∂

∂x
· vpn =

∂

∂x1
vp1n +

∂

∂x2
vp2n +

∂

∂x3
vp3n

• Particle velocity plays an important role since it generates spatial
transport: active variable

• Other internal coordinates (e.g. particle size) are passive
variables: carried along with given velocity

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Quadrature-
Based Moment
Methods
Closure Problem

Computing
Quadrature
Approximation

Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid–Particle
Systems

GPBE for
Fluid–Particle
Systems

Moment Transport
Equations

Real-Space
Advection

Real-Space Advection and Integration in CFD
Codes

• Real-space advection (second term on LHS)

∂n
∂t

+
∂

∂x
· vpn +

∂

∂vp
·
(
〈Afp〉1 + 〈Ap〉1

)
n +

∂

∂ξp
· 〈Gp〉1n

+
∂

∂vf
·
(
〈Apf〉1 + 〈Af〉1

)
n +

∂

∂ξf
· 〈Gf〉1n = S1

• It represents the movement of particles in real space:

∂

∂x
· vpn =

∂

∂x1
vp1n +

∂

∂x2
vp2n +

∂

∂x3
vp3n

• Particle velocity plays an important role since it generates spatial
transport: active variable

• Other internal coordinates (e.g. particle size) are passive
variables: carried along with given velocity

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Quadrature-
Based Moment
Methods
Closure Problem

Computing
Quadrature
Approximation

Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid–Particle
Systems

GPBE for
Fluid–Particle
Systems

Moment Transport
Equations

Real-Space
Advection

Real-Space Advection and Integration in CFD
Codes

• Real-space advection (second term on LHS)

∂n
∂t

+
∂

∂x
· vpn +

∂

∂vp
·
(
〈Afp〉1 + 〈Ap〉1

)
n +

∂

∂ξp
· 〈Gp〉1n

+
∂

∂vf
·
(
〈Apf〉1 + 〈Af〉1

)
n +

∂

∂ξf
· 〈Gf〉1n = S1

• It represents the movement of particles in real space:

∂

∂x
· vpn =

∂

∂x1
vp1n +

∂

∂x2
vp2n +

∂

∂x3
vp3n

• Particle velocity plays an important role since it generates spatial
transport: active variable

• Other internal coordinates (e.g. particle size) are passive
variables: carried along with given velocity

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Quadrature-
Based Moment
Methods
Closure Problem

Computing
Quadrature
Approximation

Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid–Particle
Systems

GPBE for
Fluid–Particle
Systems

Moment Transport
Equations

Real-Space
Advection

Real-Space Advection and Integration in CFD
Codes

• Real-space advection (second term on LHS)

∂n
∂t

+
∂

∂x
· vpn +

∂

∂vp
·
(
〈Afp〉1 + 〈Ap〉1

)
n +

∂

∂ξp
· 〈Gp〉1n

+
∂

∂vf
·
(
〈Apf〉1 + 〈Af〉1

)
n +

∂

∂ξf
· 〈Gf〉1n = S1

• It represents the movement of particles in real space:

∂

∂x
· vpn =

∂

∂x1
vp1n +

∂

∂x2
vp2n +

∂

∂x3
vp3n

• Particle velocity plays an important role since it generates spatial
transport: active variable

• Other internal coordinates (e.g. particle size) are passive
variables: carried along with given velocity

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Quadrature-
Based Moment
Methods
Closure Problem

Computing
Quadrature
Approximation

Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid–Particle
Systems

GPBE for
Fluid–Particle
Systems

Moment Transport
Equations

Real-Space
Advection

Real-Space Advection and Integration in CFD
Codes

• One strategy that facilitates implementation in CFD codes is to integrate
NDF with respect to particle velocity (and to assume that phase-space
variables for fluid are slaved to their average values: monokinetic fluid
limit):

n∗(t, x, ξp) :=
∫

n(t, x, vp, ξp)δ(vf − Uf)δ(ξf − φf) dvp dvf dξf

• An expression for the real-space advection term is obtained:

∂

∂x
· 〈Up|ξp〉n

∗ =
∂

∂x1
〈Up1|ξp〉n

∗ +
∂

∂x2
〈Up2|ξp〉n

∗ +
∂

∂x3
〈Up3|ξp〉n

∗

• By definition, conditional particle-phase velocity is

〈Up|ξp〉 :=

∫
vpn dvp∫
n dvp

=
1
n∗

(∫
vp1n dvp,

∫
vp2n dvp,

∫
vp3n dvp

)
and represents mean velocity of particles with internal coordinates
equal to ξp, or equivalently average particle velocity conditioned on
internal coordinates
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Conditioned particle-phase velocity 〈Up|ξp〉 can be determined (in
an Eulerian framework) with different approaches:

• pseudo-homogeneous or dusty gas model: particles move
with velocity of continuous phase (Stp → 0) including (for
submicron particles) or neglecting (with larger particles)
Brownian diffusion

• equilibrium or algebraic Eulerian model: particles move with
velocity calculated from algebraic expression (0 < Stp < 0.1)

• Eulerian two-fluid model: particles move with velocity
calculated with differential equation (Stp > 0.1)

Choice depends on particle Stokes number (ratio between particle
and fluid relaxation time scales):

Stp =
ρpd2

p

18ρfνfτf
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Pseudo-homogeneous or dusty gas model:

• There is one particle velocity field, identical to fluid velocity
• Preferential accumulation and segregation are not predicted as

particles are transported as scalars in continuous phase
• If system is very dilute (one-way coupling), properties of

continuous phase (i.e., density and viscosity) are assumed to be
equal to those of fluid

• If particle concentration starts to influence fluid phase (two-way
coupling), a modified density and viscosity for continuous phase
are generally introduced→ mixture

• Depending on size of particles Brownian motion may have to be
included
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Equilibrium or algebraic Eulerian model:

• Considering only drag and gravity:

〈Up|ξp〉 = Uf +

(
DUf

Dt
− g

)
τp(ξp) + O

(
τ2

p

)
• One-way coupling (dilute systems): momentum balance equation for

continuous phase and algebraic equation for different particle classes:
Upk := 〈Up|ξp = ξpk〉 with k = 1, . . . ,N

• Denser particulate systems (two- or three-way coupling): momentum
balance equation for mixture

• Moderately dense particulate systems are generally not well described
due to importance of particle–particle collisions and particle trajectory
crossing
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Eulerian two-fluid model:

• When particle Stokes number is not small particle velocity must be
calculated from disperse-phase momentum equation:

∂%pUp

∂t
+ ∇ · %pUp ⊗ Up = −αp∇pf + %pg +

%pρfCDAd

2γρp
|Uf − Up |(Uf − Up)

+
%pCvmρf

γρp
(Uf − Up) · ∇Uf +

%pCLρf

γρp
(Uf − Up) × (∇ × Uf )

• Likewise, fluid-phase momentum balance is

∂%fUf

∂t
+ ∇ · %fUf ⊗ Uf = ∇ · τf − αf∇pf + %fg +

%pρfCDAd

2γρp
|Uf − Up |(Up − Uf )

+
%pCvmρf

γρp
(Up − Uf ) · ∇Uf +

%pCLρf

γρp
(Up − Uf ) × (∇ × Uf )

• Approach can be extended to different particle classes,
Upk := 〈Up|ξp = ξpk〉 with k = 1, . . . ,N, by solving multiple momentum
balance equations: multi-fluid model
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Guidelines for Real-Space Advection

There are three key parameters: particle loading, %p/%f , particle Stokes
number, St, and polydispersity, PDI

1 Diffusion equation: sub-micron particles subject to Brownian motion

2 Pseudo-homogeneous or dusty-gas model: very small particle
Stokes number and limited polydispersity (mom. bal. eq. for cont. phase
if system is dilute or mixture otherwise)

3 Equilibrium or algebraic Eulerian model with single conditional
velocity based on mean particle size: small particle Stokes number
and limited polydispersity (mom. bal. eq. ...)

4 Equilibrium or algebraic Eulerian model with conditional
velocities: small particle Stokes number and non-negligible
polydispersity (mom. bal. eq. ...)

5 Eulerian two-fluid model with particle-phase velocity based on
mean particle size: small particle Stokes number and limited
polydispersity (in both dilute and dense systems)

6 Eulerian multi-fluid model: small particle Stokes number and large
polydispersity (in both dilute and dense systems)
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polydispersity (in both dilute and dense systems)

6 Eulerian multi-fluid model: small particle Stokes number and large
polydispersity (in both dilute and dense systems)
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Part 3

MESOSCALE MODELS FOR PHYSICAL AND
CHEMICAL PROCESSES
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Formulation of Mesoscale Models

• Conditional phase-space velocities and discontinuous “source”
term need mesoscale closures: averaged models for microscale
chemical and physical processes

• Simplest procedure is to derive them from single-particle
statistics by assuming that all particles are statistically identical
and interacting with mean-field quantities which model effects of
all other particles

• Effect of multi-particle statistics on phase-space velocities is
generally introduced in form of corrections, based for example
on disperse-phase volume fraction, that will reduce to
isolated-particle statistics in dilute limit

• We will discuss in particular mesoscale models for continuous
processes due to fluid–particle momentum transfer (〈Afp〉1), heat
and mass transfer (〈Gp〉1) and discontinuous jumps (or point
processes) contained in the source term S1 (zero-, first- and
second-order processes)
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Mesoscale Model for Momentum Transfer

Buoyancy and drag forces (AD/Vp = 3/(2dp) for spheres)

〈Afp〉1 = −
1
ρp

∂pf

∂x
+

CD

2
AD

Vp

ρf

ρp
|Uf − Up|(Uf − Up)

• Drag model of Schiller and Nauman (Rep = |Uf − Up|dp/νf):

CD =

 24
Rep

(
1 + 0.15Re0.687

p

)
for Rep ≤ 1000

0.445 for Rep > 1000

• Drag Cunningham correction factor for rarefied fluid phase:

C∗D
CD

=
1

1 + Kn
[
2.49 + 0.84 exp

(
− 1.74

Kn
)]

• Drag model of Wen and Yu (β = 3.65):

CD =
24

Rep

[
1 + 0.15(αfRep)0.687

]
α
−β

f
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Mesoscale Model for Momentum Transfer

Buoyancy and drag forces (Eo = g∆ρdp/σ)

• Drag model by Tomiyama for pure fluid–fluid systems:

CD = max
{

min
[

16
Rep

(1 + 0.15Re0.687
p ),

48
Rep

]
,

8
3

(
Eo

Eo + 4

)}
• Slightly contaminated systems:

CD = max
{

min
[

24
Rep

(1 + 0.15Re0.687
p ),

72
Rep

]
,

8
3

(
Eo

Eo + 4

)}
• Fully contaminated systems:

CD = max
[

24
Rep

(1 + 0.15Re0.687
p ),

8
3

(
Eo

Eo + 4

)]
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Mesoscale Model for Momentum Transfer

• Drag model by Buffo (for contaminated systems) with correction
to account for bubble-swarm effect:

CD = (1 − αg)C1 max
[

24
Reeff

(
1 + 0.15Re0.687

eff

)
,

8
3

Eo
Eo + 4

]
and second correction to account for fluid-phase turbulence:

Reeff =
dpρf |Uf − Up|

µeff

, µeff = µf + C2ρf
k2

ε

• C1 and C2 are fitting parameters
• For gas–liquid systems: C2 = 0.01 and C1 = −1.8, predict well

gas hold-up

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Mesoscale
Models for
Physical and
Chemical
Processes
Formulation

Zero-Order Point
Processes

First-Order Point
Processes

Second-Order Point
Processes

Solution
Methods for
Homogeneous
Systems
Class Method

Monte Carlo

Method of Moments

Quadrature-Based
Moment Methods

Mesoscale Model for Momentum Transfer

Additional forces
• Virtual mass and (Saffman) lift force:

〈Afp〉1 =
ρfCvm

ρpγ

(
Uf − Up

)
· ∇Uf +

ρfCL

ρpγ

(
Uf − Up

)
× (∇ × Uf)

where γ effective volume coefficient, CL = 0.25 and Cvm = 0.5
• Boussinesq-Basset history force:

〈Afp〉1 =
9
dp

ρf

ρp

√
νf

π

∫ t

−∞

1
√

t − τ

(
DUf

Dτ
−

dUp

dτ

)
dτ
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Mesoscale Model for Momentum Transfer

Additional forces

• Brownian force:

〈Afp〉1 =
1

Mp

(
12dpµfkBTf

)1/2
W(t)

• Thermophoretic force for spherical particles and large Knudsen
numbers (e.g., nanoparticles in flames):

〈Afp〉1 = −
6pfλf

πTfρpdp

∂Tf

∂x

• Knudsen numbers smaller than one (temp. gradient within particle):

〈Afp〉1 = −

(
36ν2

f Cs

Tfd2
p

) (
ρf

ρp

) (
1

1 + 6CmKn

) (
kf/kp + 2CtKn

1 + 2kf/kp + 4CtKn

)
∂Tf

∂x

kf and kp thermal conductivities of fluid and particle, Cs = 1.17 thermal
slip coefficient, Ct = 2.18 thermal exchange coefficient, Cm = 1.14
momentum exchange coefficient
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Mesoscale Model for Mass Transfer

Mesoscale variables for particle size

• (Truely) Equidimensional particles: nearly same size or spread in
multiple directions and have constant material density

• Single internal coordinate: particle mass (or volume), particle surface
area or particle length (Vp = kVd3

p and Ap = kAd2
p)

• Extension to other systems: possible when particle shrinks or grows
without changing its shape and morphology

• Define one characteristic length, d∗p, express real particle volume and
surface area: Vp = k∗V(d∗p)3 and Ap = k∗A(d∗p)2, and introduce an
equivalent length, dp = φcd∗p, equal to: φc = 6k∗V/k

∗
A, forcing equivalent or

averaged shape factors to be: kV =
(
k∗A

)3
/216

(
k∗V

)2
and

kA =
(
k∗A

)3
/36

(
k∗V

)2

• If particle size is (first) internal coordinate then:

〈Gp1〉1 = ξ̇p1 = ḋp =
Mw

ρp

kA

3kV
J
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Mesoscale Model for Mass Transfer

Mesoscale variables for particle size

• In case of non-equidimensional particles more than one internal
coordinate must be used

• Example: needle-like particles described as rectangular parallelepiped
with length ξp1 and equal width and depth ξp2

• Particle volume: Vp = ξp1(ξp2)2; particle surface area:
Ap = 2(ξp2)2 + 4ξp1ξp2

• If J12(Up, ξp,Uf , ξf) molar flux on surface delimited by ξp1 and ξp2, and
J22(Up, ξp,Uf , ξf) molar flux on surface delimited by ξp2 and ξp2, resulting
mesoscale models are:

〈Gp1〉1 = ξ̇p1 = 2MwJ22/ρp, 〈Gp2〉1 = ξ̇p2 = 4MwJ12/ρp

• Alternative description: particle volume and surface area

V̇p = (ξp2)2ξ̇p1 + 2ξp1ξp2ξ̇p2, Ȧp = (2ξp2 + 4ξp1)ξ̇p2 + 4ξp2ξ̇p1
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Mesoscale Model for Mass Transfer

• Particles described as fractal objects: size of the primary particle,
ξp1 = dp, and number of primary particles, ξp2 = Np

• Fractal dimension: Rg = dp/2
(
Np/kg

)1/Df

• Mass transfer does not change number of primary particles

ξ̇p1 = ḋp =
Mw

ρp

kAkc

3kV
J and ξ̇p2 = Ṅp = 0

• Mass transfer causes obliteration

ξ̇p1 = ḋp =
Mw

ρp

kAkc

3kV

1
(3 − Df)

J and ξ̇p2 = Ṅp = −
Mw

ρp

kAkc

3kV

(
Df

3 − Df

)
Np

dp
J

• Mass transfer changes number of primary particles

ξ̇p1 = ḋp = 0 and ξ̇p2 = Ṅp =
Mw

ρp

Np

dp

kAkc

kV
J
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Mesoscale Model for Mass Transfer

Diffusion-controlled growth for equi-dimensional particles

• Resulting growth rate

ḋp =
kA

3kV

Mw

ρp
kdceq(S − 1)

• Creeping (or Stokes) flow conditions and rigid sphere

Sh = 1 + (1 + Pe)1/3

where Pe = RepSc (Sc = ν/D, Sh = kddp/D)

• For larger particle Reynolds numbers: Sh = 2 + 0.724Re0.48
p Sc1/3, valid

for 100 < Rep ≤ 2000 and Sh = 2 + 0.425Re0.55
p Sc1/3, valid for

2000 < Rep ≤ 105

• For micron-sized (or smaller) particles moving in turbulent fluids:

Sh = 2.0 + 0.52
(
Re∗p

)0.52
Sc1/3 where Re∗p = ε1/3

f d4/3
p /νf is modified

particle Reynolds number

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Mesoscale
Models for
Physical and
Chemical
Processes
Formulation

Zero-Order Point
Processes

First-Order Point
Processes

Second-Order Point
Processes

Solution
Methods for
Homogeneous
Systems
Class Method

Monte Carlo

Method of Moments

Quadrature-Based
Moment Methods

Mesoscale Model for Mass Transfer

Mass transfer to gas bubbles

• Rate of change of bubble mass: Ṁp = MwkdAp∆c

• In case of gas bubbles their shape is not fixed, bubble aspect ratio: e.g.
E = 1/(1 + 0.1613Eo0.757)

• Real area of bubble:

Ap

Aeq
=

1
2E2/3

1 +
E2

2
√

1 − E2
ln

1 +
√

1 − E2

1 −
√

1 − E2


• Under creeping (or Stokes) flow conditions:

Sh = 1 + (1 + 0.564Pe2/3)3/4, spherical particles with Rep ≥ 70

Sh = 2
√
π

(
1 − 2.96

Re1/2
p

)1/2

Pe1/2; Reynolds number sufficiently large, term

in parenthesis is small compared to unity: Sh = 2Pe1/2/
√
π

• For turbulent systems: kd = cD0.5 (εf/νf)0.25
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Mesoscale Model for Zero-Order Point Processes

• In zero-order point processes S1 does not depend on NDF and usually
represents rate of formation (i.e., nucleation or spinodal decomposition)
of disperse phase:

S1 = J(φf)δ(vp − Uf)δ(ξp − ξpc)δ(vf − Uf)δ(ξf − ξfc)

where J(φf) ≥ 0 is rate of formation of particles with properties ξpc

• Definitions consistent with mass balance: for example if ξp1 and ξf1 are
masses, then ξpc1 = mc and ξfc1 = −mc

• Source terms for transport equations for total number concentration:

SN =

∫
S1 dvp dξp dvf dξf = J

disperse-phase mass density:

SM =

∫
ξp1S1 dvp dξp dvf dξf = mcJ

disperse-phase momentum density:

%p~S�p =

∫
ξp1vpS1 dvp dξp dvf dξf = mcUfJ

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Mesoscale
Models for
Physical and
Chemical
Processes
Formulation

Zero-Order Point
Processes

First-Order Point
Processes

Second-Order Point
Processes

Solution
Methods for
Homogeneous
Systems
Class Method

Monte Carlo

Method of Moments

Quadrature-Based
Moment Methods

Mesoscale Model for Zero-Order Point Processes

• In zero-order point processes S1 does not depend on NDF and usually
represents rate of formation (i.e., nucleation or spinodal decomposition)
of disperse phase:

S1 = J(φf)δ(vp − Uf)δ(ξp − ξpc)δ(vf − Uf)δ(ξf − ξfc)

where J(φf) ≥ 0 is rate of formation of particles with properties ξpc

• Definitions consistent with mass balance: for example if ξp1 and ξf1 are
masses, then ξpc1 = mc and ξfc1 = −mc

• Source terms for transport equations for total number concentration:

SN =

∫
S1 dvp dξp dvf dξf = J

disperse-phase mass density:

SM =

∫
ξp1S1 dvp dξp dvf dξf = mcJ

disperse-phase momentum density:

%p~S�p =

∫
ξp1vpS1 dvp dξp dvf dξf = mcUfJ
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Mesoscale Model for First-Order Point Processes

• In first-order point processes S1 depends linearly on NDF: used to
describe particle deposition and filtration, particle breakage,
coalescence in foams and dense-packed systems

• Source term in GPBE is usually written as:

S1 = h+ − h−

where h+ is rate of production and h− is rate of loss of particles due to
first-order point processes

• First-order processes are generally quantified by b(vp, ξp, vf , ξf) dt,
which is probability that a particle with velocity vp and internal
coordinates ξp in a fluid with velocity vf and internal coordinates ξf
undergoes process under investigation in infinitesimal time interval dt

• Quantity b is frequency of process and has units of inverse of time and
therefore:

h−(vp, ξp, vf , ξf) = b(vp, ξp, vf , ξf)n(vp, ξp, vf , ξf)
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Mesoscale Model for First-Order Point Processes

• In order to quantify rate of formation a conditional probability
density (PDF) function that states probability of formation of
daughter particle with v′p and ξ′p from mother particle with vp and
ξp has to be formulated: P(v′p, ξ′p|vp, ξp)

• PDF has to satisfy a normalization condition:∫
P(v′p, ξ

′
p|vp, ξp) dv′pdξ′p = 1

• Instead of PDF an equivalent formulation in terms of a
corresponding conditional NDF, N(v′p, ξ′p|vp, ξp), is used:∫

N(v′p, ξ
′
p|vp, ξp) dv′pdξ′p = ν(vp, ξp)

where ν is number of new particles formed by first-order process
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Mesoscale Model for First-Order Point Processes

• Rate of formation of new particles due to first-order
discontinuous processes can be expressed as

h+(vp, ξp, vf , ξf) =∫
N(vp, ξp|v

′
p, ξ
′
p)b(v′p, ξ

′
p, vf , ξf)n(v′p, ξ

′
p, vf , ξf) dv′pdξ′p

• In terms of P

h+(vp, ξp, vf , ξf) =∫
ν(v′p, ξ

′
p)P(vp, ξp|v

′
p, ξ
′
p)b(v′p, ξ

′
p, vf , ξf)n(v′p, ξ

′
p, vf , ξf) dv′pdξ′p

• Note that these expressions are written under assumption that
fluid velocity and composition do not change during first-order
process
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Turbulent Breakage Kernel (or Frequency) for
Fluid–Fluid Systems

• Coulaloglou & Tavlarides (1977):

b = C1d−2/3
p ε1/3

f exp

− C2σ

ρpε
2/3
f d5/3

p


• Alopaeus et al. (2002):

b = C4ε
1/3
f erfc


√

C5
σ

ρfε
2/3
f d5/3

p

+ C6
µf

√
ρfρpε

1/3
f d4/3

p


• Luo & Svendsen (1996):

bN = 0.92

 εf

d′p
2

1/3 ∫ 1

ζmin

(1 + ζ)2

ζ11/3 exp

− 12cfσ

βρpε
2/3
f d′p

5/3ζ11/3

 dζ

where ζ = ηk/d′p, β = 3/2, cf = f 2/3 + (1 − f )2/3 − 1], f = (dp/d′p)3,
dp is size of daughter particle, and d′p is size of parent particle
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Turbulent Breakage Kernel (or Frequency) for
Fluid–Particle Systems

• Particles larger than turbulent microscale: breakage caused by
instantaneous normal stresses

• Particles smaller than turbulent microscale: breakage
caused by shear stresses due to turbulent dynamic velocity
differences:

b =
1
√

15

(
εf

νf

)1/2

exp
(
−

τs

µf(εf/νf)1/2

)
• Aggregate strength: τs = 9kcoφpF/(8πdo) where do diameter of

primary particle, kco coordination number, F inter-particle force
can be computed as F = AHdo/(12H2

o)
• Coordination number depends on aggregate structure:

kc ≈ 15φ1.2
p where φp is volume fraction of solid within aggregates

φp = (0.414Df − 0.211)(dp/do)Df−3
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Daughter Distribution Function

• Simplest functional form is summation of delta functions (ν: number of
daughters; ξ′p: parent particle; ξp: daughter particle; ξi(ξ

′
p) function

stating relationship between ith daughter and parent):

N(ξp|ξ
′
p) =

ν∑
i=1

δ
[
ξp − ξi(ξ

′
p)
]

• ξi(ξ
′
p) is formulated by respecting additional constraints (conservation of

mass!)
• Binary breakage (ν = 2): two identical fragments→ symmetric

breakage; very unequal fragments: erosion
• Often diversity of particles induces many simultaneous phenomena and

continuous distributions are used
• Uniform distribution (particle mass internal coordinate)

N(m|m′) =


0 m < 0
ν

m′ 0 ≤ m ≤ m′

0 m > m′

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Mesoscale
Models for
Physical and
Chemical
Processes
Formulation

Zero-Order Point
Processes

First-Order Point
Processes

Second-Order Point
Processes

Solution
Methods for
Homogeneous
Systems
Class Method

Monte Carlo

Method of Moments

Quadrature-Based
Moment Methods

Daughter Distribution Function

• Simplest functional form is summation of delta functions (ν: number of
daughters; ξ′p: parent particle; ξp: daughter particle; ξi(ξ

′
p) function

stating relationship between ith daughter and parent):

N(ξp|ξ
′
p) =

ν∑
i=1

δ
[
ξp − ξi(ξ

′
p)
]

• ξi(ξ
′
p) is formulated by respecting additional constraints (conservation of

mass!)
• Binary breakage (ν = 2): two identical fragments→ symmetric

breakage; very unequal fragments: erosion
• Often diversity of particles induces many simultaneous phenomena and

continuous distributions are used
• Uniform distribution (particle mass internal coordinate)

N(m|m′) =


0 m < 0
ν

m′ 0 ≤ m ≤ m′

0 m > m′

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Mesoscale
Models for
Physical and
Chemical
Processes
Formulation

Zero-Order Point
Processes

First-Order Point
Processes

Second-Order Point
Processes

Solution
Methods for
Homogeneous
Systems
Class Method

Monte Carlo

Method of Moments

Quadrature-Based
Moment Methods

Daughter Distribution Function

• Simplest functional form is summation of delta functions (ν: number of
daughters; ξ′p: parent particle; ξp: daughter particle; ξi(ξ

′
p) function

stating relationship between ith daughter and parent):

N(ξp|ξ
′
p) =

ν∑
i=1

δ
[
ξp − ξi(ξ

′
p)
]

• ξi(ξ
′
p) is formulated by respecting additional constraints (conservation of

mass!)
• Binary breakage (ν = 2): two identical fragments→ symmetric

breakage; very unequal fragments: erosion
• Often diversity of particles induces many simultaneous phenomena and

continuous distributions are used
• Uniform distribution (particle mass internal coordinate)

N(m|m′) =


0 m < 0
ν

m′ 0 ≤ m ≤ m′

0 m > m′

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Mesoscale
Models for
Physical and
Chemical
Processes
Formulation

Zero-Order Point
Processes

First-Order Point
Processes

Second-Order Point
Processes

Solution
Methods for
Homogeneous
Systems
Class Method

Monte Carlo

Method of Moments

Quadrature-Based
Moment Methods

Daughter Distribution Function

• Simplest functional form is summation of delta functions (ν: number of
daughters; ξ′p: parent particle; ξp: daughter particle; ξi(ξ

′
p) function

stating relationship between ith daughter and parent):

N(ξp|ξ
′
p) =

ν∑
i=1

δ
[
ξp − ξi(ξ

′
p)
]

• ξi(ξ
′
p) is formulated by respecting additional constraints (conservation of

mass!)
• Binary breakage (ν = 2): two identical fragments→ symmetric

breakage; very unequal fragments: erosion
• Often diversity of particles induces many simultaneous phenomena and

continuous distributions are used
• Uniform distribution (particle mass internal coordinate)

N(m|m′) =


0 m < 0
ν

m′ 0 ≤ m ≤ m′

0 m > m′

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Mesoscale
Models for
Physical and
Chemical
Processes
Formulation

Zero-Order Point
Processes

First-Order Point
Processes

Second-Order Point
Processes

Solution
Methods for
Homogeneous
Systems
Class Method

Monte Carlo

Method of Moments

Quadrature-Based
Moment Methods

Daughter Distribution Function

• Simplest functional form is summation of delta functions (ν: number of
daughters; ξ′p: parent particle; ξp: daughter particle; ξi(ξ

′
p) function

stating relationship between ith daughter and parent):

N(ξp|ξ
′
p) =

ν∑
i=1

δ
[
ξp − ξi(ξ

′
p)
]

• ξi(ξ
′
p) is formulated by respecting additional constraints (conservation of

mass!)
• Binary breakage (ν = 2): two identical fragments→ symmetric

breakage; very unequal fragments: erosion
• Often diversity of particles induces many simultaneous phenomena and

continuous distributions are used
• Uniform distribution (particle mass internal coordinate)

N(m|m′) =


0 m < 0
ν

m′ 0 ≤ m ≤ m′

0 m > m′

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Mesoscale
Models for
Physical and
Chemical
Processes
Formulation

Zero-Order Point
Processes

First-Order Point
Processes

Second-Order Point
Processes

Solution
Methods for
Homogeneous
Systems
Class Method

Monte Carlo

Method of Moments

Quadrature-Based
Moment Methods

Daughter Distribution Function

• Simplest functional form is summation of delta functions (ν: number of
daughters; ξ′p: parent particle; ξp: daughter particle; ξi(ξ

′
p) function

stating relationship between ith daughter and parent):

N(ξp|ξ
′
p) =

ν∑
i=1

δ
[
ξp − ξi(ξ

′
p)
]

• ξi(ξ
′
p) is formulated by respecting additional constraints (conservation of

mass!)
• Binary breakage (ν = 2): two identical fragments→ symmetric

breakage; very unequal fragments: erosion
• Often diversity of particles induces many simultaneous phenomena and

continuous distributions are used
• Uniform distribution (particle mass internal coordinate)

N(m|m′) =


0 m < 0
ν

m′ 0 ≤ m ≤ m′

0 m > m′
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• By imposing that mass of formed fragments sum up to mass of parent
particle ∫ m′

0
mN(m|m′) dm =

νm′

2
it is easy to show that such a function is consistent only for binary
breakage (i.e., ν = 2)

• Binary parabolic distribution (0 ≤ C ≤ 3)

N(m|m′) =


0 m < 0

C +
(
1 − C

2

) [
24

(
m
m′

)2
− 24

(
m
m′

)
+ 6

]
0 ≤ m ≤ m′

0 m > m′

• For 0 ≤ C < 2 formation of different-sized fragments (i.e., erosion) is
likely, whereas for 2 < C ≤ 3 symmetric breakage is more probable

• C = 2 recovers uniform distribution
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• Distribution can also be written in terms of particle size dp:
N(dp|d′p) = N(m|m′)∂m/∂dp where ∂m/∂dp = 3ρpkVd2

p

• Formation of three fragments (Coulaloglou & Tavlarides, 1977)

N(dp|d′p) =
135d2

p

d′p
3
√

2π
exp

−25
2

3 (
dp

d′p

)32
• β-distribution (ν number of fragments formed; q greater than one:

formation of ν equally-sized fragments; q smaller than one: formation of
one large fragment with ν − 1 satellite fragments)

N(dp|d′p) =
Γ(qν)

Γ(q)Γ(q(ν − 1))

1 − (
dp

d′p

)3q(v−1)−1 (
dp

d′p

)3q−1 3ν
d′p
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• In case of multiple internal coordinates (particle size, dp, and
composition, φ)

N(dp, φ|d′p, φ
′) = 180

d2
p

d′p
3

 d3
p

d′p
3

2 1 − d3
p

d′p
3

2

δ

φ − d3
p

d′p
3 φ
′


where d′p and φ′ represent properties of parent particle, while dp and φ
properties of daughter particles

• Fragmentation of fractal aggregates (particle volume, Vp, and surface
area, Ap)

P(Vp,Ap|V ′p,A
′
p) = 2δ

(
Vp −

V ′p
2

)
δ

(
Ap −

A′p
2

)
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• Second-order point processes involve two particles (i.e.
coalescence, aggregation, collision) and their rate shows a
quadratic dependence on NDF

• Source term in GPBE:

S1 = h+ − h−

where h+ is rate of production and h− is rate of loss of particles
• One particle is located in x′ and is characterized by

phase-space vector η′; second particle is located in x̃ and has
phase-space vector η̃

• Frequency of second-order point process: a(x′, η′; x̃, η̃)
(symmetric with respect to permutation of particles)

• Quantity a(x′, η′; x̃, η̃) dt represents fraction of particles
undergoing point process in time interval dt
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• Unknown pair number density function:
n(2)(t, x′, η′, x̃, η̃) dx′dη′dx̃dη̃ represents expected number of
particle pairs with (x′, η′) and (x̃, η̃)

• Closure is often used: n(2)(t, x′, η′, x̃, η̃) ≈ n(t, x′, η′)n(t, x̃, η̃)
• Based on these definitions, calculate number of events per unit

time involving particle pairs (x′, η′) and (x̃, η̃) as
a(x′, η′; x̃, η̃)n(t, x′, η′)n(t, x̃, η̃) dx′dη′dx̃dη̃

• Total number of events occurring per unit time and unit volume
involving test particles located near (x̃, η̃):

Ne(t, x̃, η̃) =

∫
a(x′, η′; x̃, η̃)n(t, x′, η′)n(t, x̃, η̃) dx′dη′

where integrals are over all locations x′ and phase-space
variables η′ of field particle

• In most practical cases a closure is invoked:
n(t, x′, η′)n(t, x̃, η̃) ≈ n(t, x̃, η′)n(t, x̃, η̃)
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• By using this simplified expression and by inverting order of integrals

Ne(t, x̃, η̃) =

∫ (∫
a(x′, η′; x̃, η̃) dx′

)
n(t, x̃, η′)n(t, x̃, η̃) dη′

• Integral appearing between parenthesis is called kernel

β(x̃; η′, η̃) =

∫
a(x′, η′; x̃, η̃) dx′

• Kernels have dimensions of spatial volume per unit time (volumetric flux
of particles undergoing second-order point process)

• Integral is used to derive kernels for different physical processes

• Particle encounters are dominated by local transport phenomena at
distances larger than particle size and interaction potentials at shorter
distances

• Kernels are naturally split in two terms: one accounts for particle
transport in region of interaction (collision kernel) and other accounts
for short-range interactions (aggregation efficiency)
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transport in region of interaction (collision kernel) and other accounts
for short-range interactions (aggregation efficiency)
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• Positive source term is

h+(t, x, η) =
1
δ

∫
β(η′, η̃)n(t, x, η′)n(t, x, η̃)J(η̃, η) dη′

• δ is symmetry factor (two for identical particles) and J(η̃, η) is Jacobian
of variable transformation (with η′ held constant)

J(η̃, η) =

∣∣∣∣∣∣∂η̃∂η
∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣
∂η̃1
∂η1

. . . ∂η̃1
∂ηM

...
. . .

...
∂η̃M
∂η1

. . . ∂η̃M
∂ηM

∣∣∣∣∣∣∣∣∣∣∣
• Relationship between η̃, η′ and η is derived by continuity statements

• Negative source term is

h−(t, x, η) =

∫
β(η′, η)n(t, x, η′)n(t, x, η) dη′
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Aggregation of fine particles

• Internal coordinate particle mass (ξp = ξ′p + ξ̃p; Jacobian equal to unity)

S1(ξp) =
1
2

∫ ξp

0
β(ξ′, ξ̃p)n(ξ′p)n(ξ̃p) dξ′p −

∫ ∞

0
β(ξ′p, ξp)n(ξ′p)n(ξp) dξ′p

or in terms of final mass ξp and of field particle mass ξ′p

S1(ξp) =
1
2

∫ ξp

0
β(ξ′p, ξp−ξ

′
p)n(ξ′p)n(ξp−ξ

′) dξ′−
∫ ∞

0
β(ξ′p, ξp)n(ξ′p)n(ξp) dξ′p

• Particle size (ξ̃p = [ξ3
p − (ξ′p)3]1/3; Jacobian equal to ξ2

p[ξ3
p − (ξ′p)3]−2/3)

S1(ξp) =
ξ2

p

2

∫ ξp

0

[
ξ3

p − (ξ′p)3
]−2/3

β(ξ′p, [ξ
3
p − (ξ′p)3]1/3)n(ξ′p)

× n([ξ3
p − (ξ′p)3]1/3) dξ′p −

∫ ∞

0
β(ξ′p, ξp)n(ξ′p)n(ξp) dξ′p
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Coalescence of droplets

• Coalescing droplets characterized by particle mass ξp and velocity vp;
continuity statements

ξp = ξ′p + ξ̃p, ξpvp = ξ′pv′p + ξ̃pṽp

or, equivalently, as

ξ̃p = ξp − ξ
′
p, ṽp = (ξpvp − ξ

′
pv′p)/(ξp − ξ

′
p)

• Jacobian for this nonlinear transformation: J =
∂(ξ̃p ,ṽp)
∂(ξp ,vp) =

(
ξp

ξp−ξ
′
p

)3
and

resulting source term is

S1(ξp, vp) =
1
2

∫ ∫ ξp

0
β(ξ′p, v

′
p, ξ̃p, ṽp)n(ξ′p, v

′
p)n(ξ̃p, ṽp)

ξ3
p

(ξp − ξ′p)3 dξ′p


× dv′p −

∫
β(ξ′p, v

′
p, ξp, vp)n(ξ′p, v

′
p)n(ξp, vp) dξ′p dv′p
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Aggregation kernels due to Brownian motions for fine particles (i.e., Stp = 0)

• Continuum or Stokes-Einstein regime (Kn∗ = 2λf/dp < 1)

β(dp, d′p) =
2kBTf

3µf

(
1
dp

+
1
d′p

) (
dp + d′p

)
=

2kBTf

3µf

(
dp + d′p

)2

dpd′p

• Free-molecular or Epstein regime (Kn∗ = 2λf/dp > 1)

β(dp, d′p) =

(
3

4π

)1/6 (
6kBTf

ρp

)1/2 (
dp + d′p

)2
 1

dp
3 +

1
d′p

3

1/2

• Fuchs interpolating kernel

β = 4π (Γ + Γ′)
(
dp + d′p

)  dp + d′p

dp + d′p +
√

g2 + g′2
+

4(Γ + Γ′)

(dp + d′p)
√

c2 + c′2


−1
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Aggregation kernels due to shear / velocity gradients

• Presence of spatial gradients in fluid velocity can induce aggregation

β(dp, d′p) =
4
3

Gf

(
dp + d′p

)3

laminar flow: Gf = 1
2

(
sijsij − s2

kk

)
, 2nd inv. of rate-of-strain tensor

• In case of turbulent flows (particles smaller than Kolmogorov length
scale)

β(dp, d′p) =

(
8π
15

)1/2 (
νf

εf

)1/2 (
dp + d′p

)3
≈ 1.29

(
νf

εf

)1/2 (
dp + d′p

)3

• Particles larger than Kolmogorov length scale

β(dp, d′p) =

(
8π
3

)1/2

ε1/3
f

(
dp + d′p

)7/3

• Corrections available for Stp , 0 (Ammar & Reeks, 2009)
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Aggregation efficiency for particles

• Short range forces accounted for in terms of aggregation efficiency:
balance between attractive (van der Waals) and repulsive forces

• Repulsive forces: due to presence of fluid (double-layer repulsion or
drainage of fluid)

• Aggregation efficiency as inverse of Fuch’s stability ratio

W =

(dp + d′p
2

) ∫ ∞

0
exp

(
V(h)
kBTf

) [(dp + d′p
2

)
+ h

]−2

dh

h inter-particle distance, V(h) = Va(h) + Vr(h) inter-particle potential

• Simplified expressions (van der Waals + double-layer):
α =

dp+d′p
2κ exp

(
−
φmax
kBTf

)
, where κ is Debye-Huckel parameter and φmax is

energy barrier for particle aggregation

• Simplified expressions (van der Waals + viscous): α = kFl−0.18, where k
is pre-factor of order unity and Fl = 6πµf(dp + d′p)Gf/AH
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Coalescence kernels for droplets (continuous phase gas)

• Coalescence kernel calculated with concept of collisional cylinder

β(dp, d′p, vr) =
π

4

(
dp + d′p

)2
|vr|η(|vr|)

• Function η ≤ 1 is coalescence efficiency that depends on Weber
number: We =

ρp |vr |dp
σ

(relative importance of fluid inertia compared to
interfacial tension)

• If We is smaller than 10 coalescence is very likely and efficiency η is
very close to one

• As We increases coalescence is possible only for impact factor close to
0.2 (impact angles of about 10–15◦; under these conditions
coalescence is unlikely to happen (i.e., η ≈ 0) and droplets after
colliding are said to undergo lateral or head-on bouncing and reflective
or stretching separation
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Coalescence kernels for bubbles (continuous phase liquid)

• Small bubbles coalescing due to turbulent velocity fluctuations in
liquid

β(dp, d′p) = 0.88ε1/3
f (dp + d′p)2(d2/3

p + d′p
2/3)1/2η(dp, d′p)

• Coalescence efficiency is

η(dp, d′p) = exp

−6 × 109 µfρfεf

σ2

( dpd′p
dp + d′p

)4
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Summary of Mesoscale Models

• Mesoscale models are very problem dependent!
• Models can be classified as continuous and discontinuous

processes
• Discontinuous processses further divided into zero-, first- and

second-order depending on number of particles involved
• Real physical models tend to be highly nonlinear, so no chance

of finding analytical solutions for PBE/GPBE!
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Summary of Mesoscale Models

• Mesoscale models are very problem dependent!
• Models can be classified as continuous and discontinuous

processes
• Discontinuous processses further divided into zero-, first- and

second-order depending on number of particles involved
• Real physical models tend to be highly nonlinear, so no chance

of finding analytical solutions for PBE/GPBE!
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SYSTEMS
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Class Method

• Our objective is to solve GPBE for n(t, x, v, ξ)

∂n
∂t

+
∂

∂x
· vn +

∂

∂v
· Apn +

∂

∂ξ
· ξ̇n = S

• After integrating out particle velocity, find PBE for n(t, x, ξ)

∂n
∂t

+
∂

∂x
· 〈Up|ξ〉n +

∂

∂ξ
· ξ̇n = S

• Since transport in space is handled by CFD code, let us focus
on other terms

• PBE for spatially homogeneous system with phase-space
diffusion

∂n
∂t

+
∂

∂ξ
· ξ̇n =

∂2

∂ξ∂ξ
: Dn + S

where n(t, ξ) and ξ = (ξ1, . . . , ξM)
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Class Method (Univariate)

• Let ξ denote unique internal coordinate and n(t, ξ) NDF

• Univariate PBE is
∂n
∂t

+
∂ξ̇n
∂ξ

=
∂2Dn
∂ξ2 + S

• Expressing drift, diffusion and point processes as a unique source term

∂n
∂t

= S ≡ −
∂ξ̇n
∂ξ

+
∂2Dn
∂ξ2 + S

• S(t, ξ, n) is functional that maps NDF into function of time and internal
coordinate

• Define finite interval Ii for internal coordinate bounded by ξi and ξi+1

d
dt

∫ ξi+1

ξi

n dξ =

∫ ξi+1

ξi

S dξ

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Mesoscale
Models for
Physical and
Chemical
Processes
Formulation

Zero-Order Point
Processes

First-Order Point
Processes

Second-Order Point
Processes

Solution
Methods for
Homogeneous
Systems
Class Method

Monte Carlo

Method of Moments

Quadrature-Based
Moment Methods

Class Method (Univariate)

• Let ξ denote unique internal coordinate and n(t, ξ) NDF

• Univariate PBE is
∂n
∂t

+
∂ξ̇n
∂ξ

=
∂2Dn
∂ξ2 + S

• Expressing drift, diffusion and point processes as a unique source term

∂n
∂t

= S ≡ −
∂ξ̇n
∂ξ

+
∂2Dn
∂ξ2 + S

• S(t, ξ, n) is functional that maps NDF into function of time and internal
coordinate

• Define finite interval Ii for internal coordinate bounded by ξi and ξi+1

d
dt

∫ ξi+1

ξi

n dξ =

∫ ξi+1

ξi

S dξ

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Mesoscale
Models for
Physical and
Chemical
Processes
Formulation

Zero-Order Point
Processes

First-Order Point
Processes

Second-Order Point
Processes

Solution
Methods for
Homogeneous
Systems
Class Method

Monte Carlo

Method of Moments

Quadrature-Based
Moment Methods

Class Method (Univariate)

• Let ξ denote unique internal coordinate and n(t, ξ) NDF

• Univariate PBE is
∂n
∂t

+
∂ξ̇n
∂ξ

=
∂2Dn
∂ξ2 + S

• Expressing drift, diffusion and point processes as a unique source term

∂n
∂t

= S ≡ −
∂ξ̇n
∂ξ

+
∂2Dn
∂ξ2 + S

• S(t, ξ, n) is functional that maps NDF into function of time and internal
coordinate

• Define finite interval Ii for internal coordinate bounded by ξi and ξi+1

d
dt

∫ ξi+1

ξi

n dξ =

∫ ξi+1

ξi

S dξ

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Mesoscale
Models for
Physical and
Chemical
Processes
Formulation

Zero-Order Point
Processes

First-Order Point
Processes

Second-Order Point
Processes

Solution
Methods for
Homogeneous
Systems
Class Method

Monte Carlo

Method of Moments

Quadrature-Based
Moment Methods

Class Method (Univariate)

• Let ξ denote unique internal coordinate and n(t, ξ) NDF

• Univariate PBE is
∂n
∂t

+
∂ξ̇n
∂ξ

=
∂2Dn
∂ξ2 + S

• Expressing drift, diffusion and point processes as a unique source term

∂n
∂t

= S ≡ −
∂ξ̇n
∂ξ

+
∂2Dn
∂ξ2 + S

• S(t, ξ, n) is functional that maps NDF into function of time and internal
coordinate

• Define finite interval Ii for internal coordinate bounded by ξi and ξi+1

d
dt

∫ ξi+1

ξi

n dξ =

∫ ξi+1

ξi

S dξ

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Mesoscale
Models for
Physical and
Chemical
Processes
Formulation

Zero-Order Point
Processes

First-Order Point
Processes

Second-Order Point
Processes

Solution
Methods for
Homogeneous
Systems
Class Method

Monte Carlo

Method of Moments

Quadrature-Based
Moment Methods

Class Method (Univariate)

• If we denote number of particles in Ii interval as

Ni :=
∫ ξi+1

ξi

n dξ

we recognize that
dNi

dt
=

∫ ξi+1

ξi

S dξ

where i = 1, . . . ,M, corresponding to following partition PM

ξ1 < ξ2 < ξ3 < · · · < ξM−1 < ξM < ξM+1

• Values of ξ1 and ξM are chosen so that excluded dynamics is negligible

• Number of intervals is fixed in order to achieve desired accuracy

• Resulting set of M ordinary differential equations (ODE) is unclosed!

• Use of discrete methods depends on restoration of autonomy, which
lies in our ability to express right-hand side entirely in terms of
dependent variables Ni
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Class Method (Univariate)

• This is done by making assumptions on functional form for NDF,
n(t, ξ) = Ni(t)ki(ξ) for ξi < ξ < ξi+1, where i = 1, . . . ,M, and ki(ξ) is a
polynomial that has property∫ ξi+1

ξi

ki(ξ) dξ = 1

• In case of zero-order polynomial, (constant) approximation is
employed within each class

n(t, ξ) =
Ni(t)

ξi+1 − ξi
for ξi < ξ < ξi+1

• Alternative assumption is that of pivotal points ζi where all particles in
interval are concentrated

n(t, ξ) =

M∑
i=1

Ni(t)δ(ξ − ζi)

• Very often discretization is not written in terms of number of particles,
rather in terms of volume (or mass) of particles belonging to class
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• Let us start by discussing implication related to choice of a
particular discretization and restoration of autonomy for
second-order point processes

• Two different approaches: fixed-pivot technique and
cell-average technique

• If ξ represents an additive property then

S =
1
2

∫ ξ

0
β(ξ − ξ′, ξ′)n(ξ − ξ′)n(ξ′) dξ′ − n(ξ)

∫ ∞

0
β(ξ, ξ′)n(ξ′) dξ′

resulting in

dNi

dt
=

1
2

∫ ξi+1

ξi

∫ ξ

0
β(ξ − ξ′, ξ′)n(ξ − ξ′)n(ξ′) dξ′dξ

−

∫ ξi+1

ξi

n(ξ)
∫ ∞

0
β(ξ, ξ′)n(ξ′) dξ′dξ
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• Expressing second integral as summation of integrals

dNi

dt
=

1
2

i−1∑
j=1

∫ ξi+1

ξi

∫ ξj+1

ξj

β(ξ − ξ′, ξ′)nξ(ξ − ξ′)nξ(ξ′) dξ′dξ

−

M∑
j=1

∫ ξi+1

ξi

nξ(ξ)
∫ ξj+1

ξj

β(ξ, ξ′)nξ(ξ′) dξ′ dξ

• Restoration of autonomy by using concept of pivotal points or pivots∫ ξi+1

ξi

n(ξ)
∫ ξj+1

ξj

β(ξ, ξ′)n(ξ′) dξ′dξ = NiNjβ(ζi, ζj)

where ζi and ζj are pivotal points resulting in

dNi

dt
=

1
2

i−1∑
j=1

Nj

∑
(ζj+ζk)∈Ii

β(ζk, ζj)Nk − Ni

M∑
j=1

β(ζi, ζj)Nj
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• Generation term causes most problems!

• When particle in Ij aggregates with particle in Ik, particle with mass
equal to ζj + ζk is formed

• Unless a linear partition is used, it is very unlikely to have exactly a
pivot at ζi = ζj + ζk

• Newly formed particle has to be shared between neighboring pivotal
points

• Equation for moment of order r

dmr

dt
=

1
2

M∑
i=1

M∑
j=1

Nj

∑
(ζj+ζk)∈Ii

β(ζk, ζj)Nk(ζj + ζk)r −

M∑
i=1

Niζi
r

M∑
j=1

β(ζi, ζj)Nj

• we multiply by ζi
r and sum over all possible values of index i:

dmr

dt
=

1
2

M∑
i=1

M∑
j=1

Nj

∑
(ζj+ζk)∈Ii

β(ζk, ζj)Nkζ
r
i −

M∑
i=1

Niζi
r

M∑
j=1

β(ζi, ζj)Nj
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• Equations are identical, and therefore method is internally consistent
if and only if chosen grid is such that a particle belonging to the Ij

interval aggregating with particle belonging to the Ik interval and
generating a particle belonging to the Ii interval have pivots that respect
relationship: ζi = ζj + ζk

• When grid does not respect this relationship it is necessary to reassign
newly generated particles to neighboring pivotal points

• Fraction of new particle is assigned to Ii interval (γ(i)
i ) and another

fraction to Ii+1 (γ(i)
i+1)

• Preservation of total number of particles

1 = γ(i)
i + γ(i)

i+1

• Preservation of total mass

ζj + ζk = γ(i)
i ζi + γ(i)

i+1ζi+1
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• When grid does not respect this relationship it is necessary to reassign
newly generated particles to neighboring pivotal points

• Fraction of new particle is assigned to Ii interval (γ(i)
i ) and another

fraction to Ii+1 (γ(i)
i+1)

• Preservation of total number of particles

1 = γ(i)
i + γ(i)

i+1

• Preservation of total mass

ζj + ζk = γ(i)
i ζi + γ(i)

i+1ζi+1
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• Preservation of rth-order moment results in following reassignment
equation: (ζj + ζk)r = γ(i)

i (ζi)r + γ(i)
i+1 (ζi+1)r,

• Two degrees of freedom are available, values of γ(i)
i and γ(i)

i+1 are chosen
in order to preserve two different moments of distribution

• For preserving moment of order zero, m0, and moment of order one, m1

γ(i)
i =

ζi+1 − (ζj + ζk)
ζi+1 − ζi

, γ(i)
i+1 =

(ζj + ζk) − ζi

ζi+1 − ζi

• This approach appears internally consistent only for two chosen
moments of the NDF!

• For breakage condition for internal consistency is∫ ξi+1

ξi

ξrb(ξ|ξj) dξ = ζi
r
∫ ξi+1

ξi

b(ξ|ξj) dξ

with ζi > ζj and where b(ξ|ξj) is daughter distribution function
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• Linear grid: ξi = 1
2 ih, ξi+1 = 3

2 ih, ζi = ih for i ∈ 1, . . . ,M; scheme
always consistent for aggregation

• Final equations for fixed-pivot technique

dNi

dt
=

1
2

i−1∑
j=1

βi−j,jNi−jNj − Ni

M∑
j=1

βi,jNj +

M∑
j=i+1

ajbi,jNj − aiNi

• Geometrical grid: ξi = 3
4ζi, ξi+1 = 3

2ζi, ζi+1 = 2ζi, for
i ∈ 1, . . . ,M − 1

• Final equations (for aggregation only)

dNi

dt
= Ni−1

i−1∑
j=1

2j−i+1βi−1,jNj +
1
2
βi−1,j−1N2

i−1

− Ni

i−1∑
j=1

2j−iβi,jNj − Ni

M∑
j=1

βi,jNj
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Fixed-pivot technique can, in general, be formulated for any grid while
preserving two moments of distribution of orders r1 and r2

dNi

dt
=

M∑
j=i

Njajπi,j − aiNi +

j≥k∑
ζi−1≤(ζj+ζk)<ζi

(
1 −

1
2
δjk

) [
γ(i−1)

i (ζj + ζk)βj,kNjNk

]

+

j≥k∑
ζi≤(ζj+ζk)<ζi+1

(
1 −

1
2
δjk

) [
γ(i)

i (ζj + ζk)βj,kNjNk

]
− Ni

M∑
j=1

βi,jNj

where

γ(i)
i =

(ζj + ζk)r1 (ζi+1)r2 − (ζj + ζk)r2 (ζi+1)r1

(ζi)r1 (ζi+1)r2 − (ζi)r2 (ζi+1)r1

γ(i+1)
i =

(ζj + ζk)r2 (ζi)r1 − (ζj + ζk)r1 (ζi)r2

(ζi)r1 (ζi+1)r2 − (ζi)r2 (ζi+1)r1

and

πi,j =

∫ ζi

ζi−1

γ(i−1)
i b(ξ|ξj) dξ +

∫ ζi+1

ζi

γ(i−1)
i b(ξ|ξj) dξ
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ADVANTAGES
• Very intuitive (easy to develop tricks to solve problems)
• Generally stable

DISADVANTAGES
• Method is consistent with respect to only TWO MOMENTS of

NDF: particle mass and number
• One has to define a priori lower and upper limits of discretization
• Impossible to study for example: gelation or shattering
• Many (too many) classes to be used (e.g. 20–100): problematic

especially with CFD codes where CPU time scales linearly with
number of additional transport equations

• Very inefficient (each class does not know what others are
doing)
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Class Method (Univariate)

ADVANTAGES
• Very intuitive (easy to develop tricks to solve problems)
• Generally stable

DISADVANTAGES
• Method is consistent with respect to only TWO MOMENTS of

NDF: particle mass and number
• One has to define a priori lower and upper limits of discretization
• Impossible to study for example: gelation or shattering
• Many (too many) classes to be used (e.g. 20–100): problematic

especially with CFD codes where CPU time scales linearly with
number of additional transport equations

• Very inefficient (each class does not know what others are
doing)
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Monte Carlo Methods

• Monte Carlo methods or Direct Simulation Monte Carlo (DSMC)
are based on artificial realizations of behavior of multiphase
system under investigation

• In MC methods evolution of each particle is tracked; continuous
events are represented deterministically whereas discontinuous
events are represented by random events occurring with specific
and prescribed probabilities

• Connection with deterministic approach used in class methods:
underlying multi-particle joint PDF is not averaged but is directly
solved

• Solution is obtained by adopting methods for stochastic
differential equations, leading to numerous realizations,
representing different sample paths, that must be averaged out
to eliminate low probability events
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Monte Carlo Methods

• Group of N particles is randomly created (representing the given
NDF) in computational domain or box and its evolution is directly
tracked: time-driven simulations versus event-driven simulations

• After aggregation event for example N − 1 particles remain in
domain, whereas after breakage event N + 1 particles have to be
tracked

• As simulation proceeds total number of particles changes,
whereas total volume (or total mass) of particles in
computational domain remains constant

• For this reason these methods are called constant-volume
Monte Carlo

• Problems if N becomes to small or too large: constant-number
Monte Carlo

• Coupling with CFD is done via compartment models
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Method of Moments

• Basic idea behind Method of Moments is to solve evolution
equations for moments of NDF

• Generic moment of NDF is defined as

mk1,k2,...,kM = m(k) =
〈
ξk1

1 ξ
k2
2 . . . ξkM

M

〉
:=

∫
Ωξ

n(ξ)ξk1
1 ξ

k2
2 . . . ξkM

M dξ

where three different notations (mk1,k2,...,kM , m(k), 〈ξk1
1 ξ

k2
2 . . . ξkM

M 〉)
will be used interchangeably

• k = (k1, k2, . . . , kM) is called exponent vector
• General evolution equation for kth moment

dmk

dt
= Sk =

∫
ξk

(
−
∂

∂ξ
· ξ̇n +

∂2

∂ξ∂ξ
: Dn + S

)
dξ

• By solving equations for moments, internal coordinates are
integrated out, at expense of a crucial loss of information that
must be retrieved (by reconstructing NDF for example)
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• Important advantage is that moments correspond to quantities
that have meaningful physical interpretations and are therefore
directly measurable

• This is a crucial point, since in many applications the NDF is not
directly measured, but is inferred from measurements of integral
quantities

• Two main issues arise when using MOM: number of moments
to be tracked and closure problem

• Closure problem is impossibility of writing source term as
function of moments only

• Issues of number of moments to be tracked and closure adopted
are typically addressed together
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Method of Moments (Univariate)

Univariate PBE

• Evolution equation for moment of order k (mk :=
∫
ξkn dξ)

dmk

dt
= Sk =

∫
ξk

(
−
∂ξ̇n
∂ξ

+
∂2Dn
∂ξ2 + S

)
dξ

• In case of univariate distributions moment of order zero m0 is total
particle number density

• If internal coordinate is particle size, then m1 is total particle length
density (number-average mean particle size: d10 = m1/m0)

• Moment of order two m2 is proportional to total particle surface area per
unit volume

• Moment of order three m3 is related to total particle volume per unit
volume (Sauter mean diameter: d32 = m3/m2)

• Mean particle size weighted on particle volume: d43 = m4/m3
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Univariate PBE: closure problem for aggregation

• In case of aggregation (mass as internal coordinate ξ)

dmk

dt
=

1
2

" ∞

0
β(ξ, ξ′) (ξ + ξ′)k n(ξ)n(ξ′) dξ dξ′

−

∫ ∞

0
ξkn(ξ)

∫ ∞

0
β(ξ, ξ′)n(ξ′) dξ′ dξ, k ∈ 0, . . . ,N

• In general it is impossible to close this set of equations

• Constant aggregation kernel β(ξ, ξ′) = β0

dmk

dt
=
β0

2

" ∞

0
(ξ + ξ′)k n(ξ)n(ξ′) dξ dξ′ − β0m0mk

• General solution (for const. aggregation kernel)

dm0

dt
= −

1
2
β0m2

0,
dm1

dt
= 0,

dmk

dt
=

1
2
β0

k−1∑
i=1

(
k
i

)
mimk−i
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Univariate PBE: closure problem for breakage

• In case of pure breakage (particle mass as internal coordinate)

∂n
∂t

=

∫ ∞

ξ

a(ξ′)b(ξ′|ξ)n(ξ′) dξ′ − a(ξ)n(ξ)

• Evolution equation for moment of order k is

dmk

dt
=

∫ ∞

0
ξk

∫ ∞

0
a(ξ′)b(ξ′|ξ)n(ξ′) dξ′dξ −

∫ ∞

0
ξka(ξ)n(ξ) dξ

• Analytical solutions available for constant breakage kernel: a(ξ) = a0

and symmetric fragmentation b(ξ′|ξ) = 2δ (ξ − ξ′/2)

• Evolution equation for mk is

dmk

dt
= a021−kmk − a0mk
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∂n
∂t

=

∫ ∞

ξ

a(ξ′)b(ξ′|ξ)n(ξ′) dξ′ − a(ξ)n(ξ)

• Evolution equation for moment of order k is

dmk

dt
=

∫ ∞

0
ξk

∫ ∞

0
a(ξ′)b(ξ′|ξ)n(ξ′) dξ′dξ −

∫ ∞

0
ξka(ξ)n(ξ) dξ

• Analytical solutions available for constant breakage kernel: a(ξ) = a0

and symmetric fragmentation b(ξ′|ξ) = 2δ (ξ − ξ′/2)

• Evolution equation for mk is

dmk

dt
= a021−kmk − a0mk
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Particle number density model

• If particle mass is internal coordinate and two moments of NDF are
tracked: m0 = N and m1 = ρpαp = %p

• Mean particle size can be calculated: dp =

(
m1

ρpkVm0

)1/3
, where kV is

particle volume shape factor and ρp is particle density

• Following reconstruction is done for NDF: n(t, ξ) = m0δ
(
ξ − m1

m0

)
• Final equations to be solved for pure aggregation are

dm0

dt
= −

1
2
β(dp, dp)m2

0,
dm1

dt
= 0

• With spatial transport (easy implementation in CFD codes)

∂N
∂t

+
∂

∂x
· NUN = −

1
2
β(dp, dp)N2,

∂%p

∂t
+

∂

∂x
· %pUM = 0
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Quadrature-Based Moment Methods

• Our original (univariate) problem was

∂n
∂t

= S = −
∂

∂ξ

(
ξ̇n

)
+ h

• Instead we solve transport equations for moments

dmk

dt
= Sk

with k = 0, 1, 2, . . . , 2N − 1 and with specific initial condition
mk(0) =

∫
Ωξ

n(0, ξ)ξk dξ

• Integration of ODE requires the evaluation of source term
through quadrature approximation (Wheeler algorithm)
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Quadrature Method of Moments

• For example, in case of continuous rate of change of internal
coordinate

dmk

dt
= k

∫ ∞

0
ξ̇(ξ)ξk−1n(ξ) dξ

• Closure problem is overcome as

dmk

dt
= k

N∑
α=1

ξ̇(ξα)(ξα)k−1wα

• where weights wα and nodes ξα are calculated from PD or
Wheeler algorithm from moments

• This method is called Quadrature Method of Moments
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In case of standard nucleation, (positive) growth, growth dispersion,
aggregation and breakage, application of QBMM to source term
yields

dmk

dt
= Sk = Jk + k

N∑
α=1

ξk−1
α ξ̇αwα + k(k − 1)

N∑
α=1

ξk−2
α Dαwα

+
1
2

N∑
α=1

N∑
γ=1

[
(ξα + ξγ)k − ξk

α − ξ
k
γ

]
βα,γwαwγ +

N∑
α=1

aαb̄k
αwα−

N∑
α=1

ξk
αaαwα

where ξ̇α = ξ̇(ξα), Dα = D(ξα), βα,γ = β(ξα, ξγ) and aα = a(ξα) and
moments of daughter distribution function are b̄k

α =
∫
ξkb(ξ|ξα) dξ

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Mesoscale
Models for
Physical and
Chemical
Processes
Formulation

Zero-Order Point
Processes

First-Order Point
Processes

Second-Order Point
Processes

Solution
Methods for
Homogeneous
Systems
Class Method

Monte Carlo

Method of Moments

Quadrature-Based
Moment Methods

Direct Quadrature Method of Moments

• Fact that closure problem is overcome with quadrature
approximation ∫

Ωξ

n(ξ)g(ξ) dξ ≈
N∑
α=1

wαg(ξα)

• is equivalent to assumption that NDF is

n(ξ) =

N∑
α=1

wαδ (ξ − ξα)

• Instead of tracking evolution for moments, evolution of weights
and nodes in quadrature approximation could be directly
tracked: Direct quadrature method of moments
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• If weights and nodes are continuous functions we obtain

N∑
α=1

δ(ξ − ξα)
(

dwα

dt

)
−

N∑
α=1

δ′(ξ − ξα)
(
wα

dξα
dt

)
= S(ξ)

• If weighted nodes (or weighted abscissas) ςα = wαξα are
introduced

N∑
α=1

δ(ξ − ξα)
(

dwα

dt

)
−

N∑
α=1

δ′(ξ − ξα)
(
−ξα

dwα

dt
+

dςα
dt

)
= S(ξ)
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dwα
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)
−
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wα
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)
= S(ξ)

• If weighted nodes (or weighted abscissas) ςα = wαξα are
introduced
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• We now define aα and bα to be source terms

dwα

dt
= aα,

dςα
dt

= bα

• Using these definitions we write a simpler form

N∑
α=1

[
δ(ξ − ξα) + δ′(ξ − ξα)ξα

]
aα −

N∑
α=1

δ′(ξ − ξα)bα = S(ξ)

• This equation can now be used to determine the unknown
functions aα and bα by applying the moment transformation
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• DQMOM can be applied for any independent set of moments
(number of moments MUST be equal the number of unknown
functions)

• Knowing that ∫ +∞

−∞

ξkδ(ξ − ξα) dξ = (ξα)k∫ +∞

−∞

ξkδ′(ξ − ξα) dξ = −k(ξα)k−1

• Moment transform yields

(1 − k)
N∑
α=1

ξk
αaα + k

N∑
α=1

ξk−1
α bα = Sk

with k = k1, k2, . . . , k2N
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• Linear system can be written in matrix form:

Aα = d

where

α =
[
a1 · · · aN b1 · · · bN

]T
=

[
a
b

]
d =

[
Sk1 · · · Sk2N−1

]T

• Components of matrix A are

aij =

(1 − ki) ξ
ki
j if 1 ≤ j ≤ N

kiξ
ki−1
j if N + 1 ≤ j ≤ 2N
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• If (as in QMOM) first 2N integer moments are chosen (i.e.,
k = 0, . . . , 2N − 1), matrix of linear system is

A =

1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1
−ξ2

1 · · · −ξ2
N 2ξ1 · · · 2ξN

...
...

...
...

2(1 − N)ξ2N−1
1 · · · 2(1 − N)ξ2N−1

N (2N − 1)ξ2N−2
1 · · · (2N − 1)ξ2N−2

N


• A does not depend on weights wα and if abscissas ξα are unique, then

A will be full rank
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Direct Quadrature Method of Moments

• Method is called Direct quadrature method of moments
• Evolution equations for weights and nodes of quadrature

approximation are solved:

dwα

dt
= aα,

dwαξα
dt

= bα

• Source terms are calculated by inverting linear system and by
using following initial condition:

wα(0) = w0
α, ςα(0) = w0

αξ
0
α for k = 1, . . . ,N

in turn calculated from initial moments
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Quadrature-Based Moment Methods

• QBMM are very accurate in tracking evolution of moments of
NDF: 4–8 moments do same job of many (e.g. 100) classes (see
for example work of Marchisio et al. (2003) and Vanni (2000))

• PD algorithm is very stable (if the moments are realizable) and
for particular cases Wheeler algorithm is successful when PD
fails

• Important differences in QBMM arise when treating spatially
inhomogeneous systems (discussed next)

• In general increasing number of nodes of quadrature
approximation and of moments to be tracked increases
accuracy, unless problem is localized in phase space (e.g. fines
dissolution)
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Realizable,
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Particle Trajectory
Crossing

Part 4

QBMM FOR SPATIALLY INHOMOGENEOUS
SYSTEMS
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Spatially Inhomogeneous PBE

• Spatially inhomogeneous PBE operating on n(ξ) is:

∂n
∂t

+
∂

∂x
· 〈Up|ξ〉n =

∂

∂x
· D(ξ)

∂n
∂x
−
∂

∂ξ
ξ̇(ξ)n + h

where 〈Up|ξ〉 and D(ξ) are known functions of ξ
• Application of moment transform, Mk =

∫
n(ξ)ξk dξ, generates

several closure problems:

∂Mk

∂t
+
∂

∂x
· UkMk =

∂

∂x
· Dk

∂Mk

∂x
+ Sk

where Uk =

∫
〈Up |ξ〉n(ξ)ξk dξ

Mk
(similarly Dk) and hk =

∫
h(ξ)ξk dξ

• Solution with QMOM is as usual ...
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Spatially Inhomogeneous PBE

• From {M0,M1, . . . ,M2N−1} quadrature formula of order N is constructed
resulting in following approximation

Mk(t, x) :=
∫

Ωξ

n(t, x, ξ)ξk dξ ≈
N∑
α=1

wα(t, x)ξα(t, x)k

• that can be used to overcome different closure problems, for example:

Uk(t, x) :=

∫
Ωξ
〈Up|ξ〉n(t, x, ξ)ξk dξ

Mk
≈

∑N
α=1〈Up|ξα〉wαξ

k
α

Mk

• By using different velocities, Uk(t, x), for different moments, we are
capable of describing mixing and segregation patterns
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Spatial Discretization in QMOM (1-D)

Solve transport equation for generic moment mk with discretization schemes
that PRESERVE realizable moments (constant Up):

∂mk

∂t
+ Up

∂mk

∂x
= Sk

After spatial discretization (finite-volume method):

dmP
k

dt
= S

P
k −

Up

∆x

(
me

k − mw
k

)
With first-order upwind me

k = mP
k and mw

k = mW
k

Spatial discretization schemes based on first-order upwind always
result in REALIZABLE moments
Higher-order schemes (CDS, second-order upwind, QUICK, MUSCL)
always result in UNREALIZABLE moments

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

QBMM for
Spatially
Inhomogeneous
Systems
Inhomogeneous
PBE

Multivariate QBMM

Multidimensional
Inversion Algorithms

Hyperbolic QMOM

High-Order,
Realizable,
Kinetic-Based,
Finite-Volume
Methods
Kinetic-Based
Finite-Volume
Method

Realizable Schemes

Particle Trajectory
Crossing

Spatial Discretization in QMOM (1-D)

Solve transport equation for generic moment mk with discretization schemes
that PRESERVE realizable moments (constant Up):

∂mk

∂t
+
�
�
�

Up
∂mk

∂x
= Sk − Up

∂mk

∂x

After spatial discretization (finite-volume method):

dmP
k

dt
= S

P
k −

Up

∆x

(
me

k − mw
k

)
With first-order upwind me

k = mP
k and mw

k = mW
k

Spatial discretization schemes based on first-order upwind always
result in REALIZABLE moments
Higher-order schemes (CDS, second-order upwind, QUICK, MUSCL)
always result in UNREALIZABLE moments

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

QBMM for
Spatially
Inhomogeneous
Systems
Inhomogeneous
PBE

Multivariate QBMM

Multidimensional
Inversion Algorithms

Hyperbolic QMOM

High-Order,
Realizable,
Kinetic-Based,
Finite-Volume
Methods
Kinetic-Based
Finite-Volume
Method

Realizable Schemes

Particle Trajectory
Crossing

Spatial Discretization in QMOM (1-D)

Solve transport equation for generic moment mk with discretization schemes
that PRESERVE realizable moments (constant Up):

∂mk

∂t
= Sk − Up

∂mk

∂x

After spatial discretization (finite-volume method):

dmP
k

dt
= S

P
k −

Up

∆x

(
me

k − mw
k

)
With first-order upwind me

k = mP
k and mw

k = mW
k

Spatial discretization schemes based on first-order upwind always
result in REALIZABLE moments
Higher-order schemes (CDS, second-order upwind, QUICK, MUSCL)
always result in UNREALIZABLE moments

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

QBMM for
Spatially
Inhomogeneous
Systems
Inhomogeneous
PBE

Multivariate QBMM

Multidimensional
Inversion Algorithms

Hyperbolic QMOM

High-Order,
Realizable,
Kinetic-Based,
Finite-Volume
Methods
Kinetic-Based
Finite-Volume
Method

Realizable Schemes

Particle Trajectory
Crossing

Spatial Discretization in QMOM (1-D)

Solve transport equation for generic moment mk with discretization schemes
that PRESERVE realizable moments (constant Up):

∂mk

∂t
= Sk − Up

∂mk

∂x

After spatial discretization (finite-volume method):

W P E

U
b

x

dmP
k

dt
= S

P
k −

Up

∆x

(
me

k − mw
k

)

With first-order upwind me
k = mP

k and mw
k = mW

k

Spatial discretization schemes based on first-order upwind always
result in REALIZABLE moments
Higher-order schemes (CDS, second-order upwind, QUICK, MUSCL)
always result in UNREALIZABLE moments

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

QBMM for
Spatially
Inhomogeneous
Systems
Inhomogeneous
PBE

Multivariate QBMM

Multidimensional
Inversion Algorithms

Hyperbolic QMOM

High-Order,
Realizable,
Kinetic-Based,
Finite-Volume
Methods
Kinetic-Based
Finite-Volume
Method

Realizable Schemes

Particle Trajectory
Crossing

Spatial Discretization in QMOM (1-D)

Solve transport equation for generic moment mk with discretization schemes
that PRESERVE realizable moments (constant Up):

∂mk

∂t
= Sk − Up

∂mk

∂x

After spatial discretization (finite-volume method):

W P E

U
b

x

dmP
k

dt
= S

P
k −

Up

∆x

(
me

k − mw
k

)

With first-order upwind me
k = mP

k and mw
k = mW

k

Spatial discretization schemes based on first-order upwind always
result in REALIZABLE moments
Higher-order schemes (CDS, second-order upwind, QUICK, MUSCL)
always result in UNREALIZABLE moments

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

QBMM for
Spatially
Inhomogeneous
Systems
Inhomogeneous
PBE

Multivariate QBMM

Multidimensional
Inversion Algorithms

Hyperbolic QMOM

High-Order,
Realizable,
Kinetic-Based,
Finite-Volume
Methods
Kinetic-Based
Finite-Volume
Method

Realizable Schemes

Particle Trajectory
Crossing

Spatial Discretization in QMOM (1-D)

• One solution would be to evaluate moments at faces me
k and mw

k
through quadrature approximation

• We know value of cell-average moments mW
k , mP

k , mE
k

W P E

U
b

x

• From these moments we can evaluate corresponding weights
wP
α and abscissas ξP

α

• If weights at center of face are interpolated with pth-order spatial
reconstruction and abscissas are interpolated 1st-order spatial
resulting moments will be valid if time step is well chosen

• This allows to improve numerical accuracy preserving realizable
moments!
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Multivariate QBMM

• Also for multivariate cases QMOM can be used
• With QMOM transport equations for moments mk are solved,

closure problem is overcome with quadrature approximation,
and N weights wα and N vector abscissas (or nodes) of length
M, ξα =

(
ξ1,α, ξ2,α, . . . , ξM,α

)
are calculated using inversion

(multidimensional) algorithms
• With DQMOM transport equations for weights wα and for

weighted vector abscissas (or nodes) ξα =
(
ξ1,α, ξ2,α, . . . , ξM,α

)
are solved, closure problem is overcome with quadrature
approximation, and source terms are calculated by solving linear
system

• All issues related to spatially inhomogeneous systems are still
valid, so QMOM is preferred to conserve moments during
transport
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approximation, and source terms are calculated by solving linear
system

• All issues related to spatially inhomogeneous systems are still
valid, so QMOM is preferred to conserve moments during
transport
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Consider

∂n
∂t

+
∂

∂x
· Up(ξ)n =

∂

∂x
· D(ξ)

∂n
∂x
−
∂

∂ξ
· ξ̇n + h

and define generic integer moment:

mk :=
∫

Ωξ

ξk1
1 · · · ξ

kM
M n(t, ξ) dξ

equivalent notations mk1,...,kM = mk = m(k1, . . . , kM) = m(k)
Solve resulting moment transport equations (QMOM):

∂mk

∂t
+
∂

∂x
· Ukmk −

∂

∂x
· Dk

∂mk

∂x
= Sk =

∫
Ωξ

ξk
[
−
∂

∂ξ
· ξ̇n + h

]
dξ
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Brute-force QMOM uses N(M + 1) moments to determine quadrature
approximation by solving non-linear system:

mki1 ,ki2 ,...,kiM = m(ki) =

N∑
α=1

wα

M∏
β=1

ξ
kiβ
β,α 1 ≤ i ≤ N(M + 1)

obtained with N(M + 1) different values of exponent vector
ki = (ki1, ki2, . . . , kiM); for M = 2 and N = 2

K =



k1

k2

k3

k4

k5

k6


=



0 0
1 0
0 1
2 0
1 1
0 2



← γ1 = 0
← γ2 = 1
← γ3 = 1
← γ4 = 2
← γ5 = 2
← γ6 = 2
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Let us write problem in terms of weights and weighted abscissas (instead of
abscissas). The final non-linear system of N(M + 1) equations can be solved
by employing Newton-Raphson iterative scheme:

Zn+1 = Zn − A−1(K,Xn)F(Zn)

Matrix A is the Jacobian of non-linear system:

aij =



(1 − γi)
∏M

α=1 ξ
kiα
α,p for p = j, if 1 ≤ j ≤ N(

ki1
ξ1,p

)∏M
α=1 ξ

kiα
α,p for p = j − N, if N + 1 ≤ j ≤ 2N

...
...(

kiM
ξM,p

)∏M
α=1 ξ

kiα
α,M for p = j −MN, if MN + 1 ≤ j ≤ (1 + M)N

and is identical to the matrix of previous linear system
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Optimal Moment Set

• To perform calculations with both multivariate QMOM1 matrix A
must be non-singular (full rank)

• For M = 1 (univariate) problems this requirement is satisfied if
nodes are distinct

• For multivariate cases, having distinct abscissas does not
guarantee that A will be full rank

• It can be shown that for fixed N and M, certain distinct moments
are linearly dependent when M ≥ 1 for all possible sets of
abscissas

• It is therefore necessary to identify moment set for which A is
always non-singular for all non-degenerate points in phase
space for given values of M and N

1If Brute-Force inversion algorithm is used
Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

QBMM for
Spatially
Inhomogeneous
Systems
Inhomogeneous
PBE

Multivariate QBMM

Multidimensional
Inversion Algorithms

Hyperbolic QMOM

High-Order,
Realizable,
Kinetic-Based,
Finite-Volume
Methods
Kinetic-Based
Finite-Volume
Method

Realizable Schemes

Particle Trajectory
Crossing

Optimal Moment Set

• To perform calculations with both multivariate QMOM1 matrix A
must be non-singular (full rank)

• For M = 1 (univariate) problems this requirement is satisfied if
nodes are distinct

• For multivariate cases, having distinct abscissas does not
guarantee that A will be full rank

• It can be shown that for fixed N and M, certain distinct moments
are linearly dependent when M ≥ 1 for all possible sets of
abscissas

• It is therefore necessary to identify moment set for which A is
always non-singular for all non-degenerate points in phase
space for given values of M and N

1If Brute-Force inversion algorithm is used
Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

QBMM for
Spatially
Inhomogeneous
Systems
Inhomogeneous
PBE

Multivariate QBMM

Multidimensional
Inversion Algorithms

Hyperbolic QMOM

High-Order,
Realizable,
Kinetic-Based,
Finite-Volume
Methods
Kinetic-Based
Finite-Volume
Method

Realizable Schemes

Particle Trajectory
Crossing

Optimal Moment Set

• To perform calculations with both multivariate QMOM1 matrix A
must be non-singular (full rank)

• For M = 1 (univariate) problems this requirement is satisfied if
nodes are distinct

• For multivariate cases, having distinct abscissas does not
guarantee that A will be full rank

• It can be shown that for fixed N and M, certain distinct moments
are linearly dependent when M ≥ 1 for all possible sets of
abscissas

• It is therefore necessary to identify moment set for which A is
always non-singular for all non-degenerate points in phase
space for given values of M and N

1If Brute-Force inversion algorithm is used
Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

QBMM for
Spatially
Inhomogeneous
Systems
Inhomogeneous
PBE

Multivariate QBMM

Multidimensional
Inversion Algorithms

Hyperbolic QMOM

High-Order,
Realizable,
Kinetic-Based,
Finite-Volume
Methods
Kinetic-Based
Finite-Volume
Method

Realizable Schemes

Particle Trajectory
Crossing

Optimal Moment Set

• To perform calculations with both multivariate QMOM1 matrix A
must be non-singular (full rank)

• For M = 1 (univariate) problems this requirement is satisfied if
nodes are distinct

• For multivariate cases, having distinct abscissas does not
guarantee that A will be full rank

• It can be shown that for fixed N and M, certain distinct moments
are linearly dependent when M ≥ 1 for all possible sets of
abscissas

• It is therefore necessary to identify moment set for which A is
always non-singular for all non-degenerate points in phase
space for given values of M and N

1If Brute-Force inversion algorithm is used
Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

QBMM for
Spatially
Inhomogeneous
Systems
Inhomogeneous
PBE

Multivariate QBMM

Multidimensional
Inversion Algorithms

Hyperbolic QMOM

High-Order,
Realizable,
Kinetic-Based,
Finite-Volume
Methods
Kinetic-Based
Finite-Volume
Method

Realizable Schemes

Particle Trajectory
Crossing

Optimal Moment Set

• To perform calculations with both multivariate QMOM1 matrix A
must be non-singular (full rank)

• For M = 1 (univariate) problems this requirement is satisfied if
nodes are distinct

• For multivariate cases, having distinct abscissas does not
guarantee that A will be full rank

• It can be shown that for fixed N and M, certain distinct moments
are linearly dependent when M ≥ 1 for all possible sets of
abscissas

• It is therefore necessary to identify moment set for which A is
always non-singular for all non-degenerate points in phase
space for given values of M and N

1If Brute-Force inversion algorithm is used
Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

QBMM for
Spatially
Inhomogeneous
Systems
Inhomogeneous
PBE

Multivariate QBMM

Multidimensional
Inversion Algorithms

Hyperbolic QMOM

High-Order,
Realizable,
Kinetic-Based,
Finite-Volume
Methods
Kinetic-Based
Finite-Volume
Method

Realizable Schemes

Particle Trajectory
Crossing

Optimal Moment Set

• To perform calculations with both multivariate QMOM1 matrix A
must be non-singular (full rank)

• For M = 1 (univariate) problems this requirement is satisfied if
nodes are distinct

• For multivariate cases, having distinct abscissas does not
guarantee that A will be full rank

• It can be shown that for fixed N and M, certain distinct moments
are linearly dependent when M ≥ 1 for all possible sets of
abscissas

• It is therefore necessary to identify moment set for which A is
always non-singular for all non-degenerate points in phase
space for given values of M and N

1If Brute-Force inversion algorithm is used
Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

QBMM for
Spatially
Inhomogeneous
Systems
Inhomogeneous
PBE

Multivariate QBMM

Multidimensional
Inversion Algorithms

Hyperbolic QMOM

High-Order,
Realizable,
Kinetic-Based,
Finite-Volume
Methods
Kinetic-Based
Finite-Volume
Method

Realizable Schemes

Particle Trajectory
Crossing

Optimal Moment Set

OPTIMAL MOMENT SET

1 Optimal moment set consists of N(M + 1) distinct moments

2 Optimal moment set will result in full-rank square matrix A for all
possible sets of N distinct, non-degenerate abscissas

3 Optimal moment set includes all linearly independent moments
of a particular order γi before adding moments of higher order in
order to result in perfectly symmetric treatment of internal
coordinates
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Moments used for bivariate quadrature approximation (M = 2) for
N = 2

m(2,0)
m(1,0)
m(0,0) m(0,1) m(0,2) m(0,3)

In this case m0,3 is chosen as the third-order moment to saturate
degrees of freedom

Moments used for bivariate quadrature approximation (M = 2) for
N = 3

m(2,0) m(2,1)
m(1,0) m(1,1) m(1,2)
m(0,0) m(0,1) m(0,2) m(0,3)

In this case m2,1, m1,2 and m0,3 are chosen among third-order
moments to saturate the degrees of freedom
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Optimal moment set for bivariate quadrature approximation (M = 2) for N = 4

m(3,0) m(3,1)
m(2,0) m(2,1)
m(1,0) m(1,1) m(1,2) m(1,3)
m(0,0) m(0,1) m(0,2) m(0,3)

When N1/M is an integer, there exists an optimal moment set that is also
symmetric

Optimal moment for bivariate quadrature approximation (M = 2) for N = 9

m(5,0) m(5,1) m(5,2)
m(4,0) m(4,1) m(4,2)
m(3,0) m(3,1) m(3,2)
m(2,0) m(2,1) m(2,2) m(2,3) m(2,4) m(2,5)
m(1,0) m(1,1) m(1,2) m(1,3) m(1,4) m(1,5)
m(0,0) m(0,1) m(0,2) m(0,3) m(0,4) m(0,5)
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Other Inversion Algorithms

• Brute-force methods need an initial guess very (very (very))
close to final solution

• Alternative approach is Tensor-product QMOM
• First M univariate quadratures are calculated from ‘pure’

moments in different directions
• These M quadratures nodes are used to define final nodes by

tensor product
• Weights are calculated subsequently by forcing quadrature to

reproduce moment set (by solving linear system)
• Example for M = 2
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Tensor-Product Inversion Algorithm

4-point quadrature approximation for bivariate distribution

Using PD (or Wheeler) algorithm:(
m0,0,m1,0,m2,0,m3,0

)
→

(
w1

1,w
1
2; ξ∗1,1, ξ

∗
1,2

)
(
m0,0,m0,1,m0,2,m0,3

)
→

(
w2

1,w
2
2; ξ∗2,1, ξ

∗
2,2

)
Using tensor product, final 4-point quadrature approximation is
centered on bivariate nodes:

ξ1 =
[
ξ∗1,1, ξ

∗
2,1

]
ξ2 =

[
ξ∗1,1, ξ

∗
2,2

]
ξ3 =

[
ξ∗1,2, ξ

∗
2,1

]
ξ4 =

[
ξ∗1,2, ξ

∗
2,2

]
Four weights w1 , w2 , w3 , w4 are calculated by forcing moment subset to be reproduced
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2,1ξξξξ 1ξξξξ

2ξξξξ

*
1,2ξξξξ

*
2,2ξξξξ

(((( ))))1
1w (((( ))))1

2w

(((( ))))2
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(((( ))))2
2w
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Moment set used to build a bivariate quadrature approximation
(M = 2) for N = N1N2 = 4 with tensor-product method

m(3,0)
m(2,0)
m(1,0) m(1,1)
m(0,0) m(0,1) m(0,2) m(0,3)

• Moments accommodated by quadrature approximation are:
N1N2 · · ·NM + N1 + N2 + · · · + NM, less than maximum: (M + 1)N

• For example for M = 2 for N = 4 instead of 12 moments used
and correctly represented are 8!

• Depending on shape of distribution negative weights are
sometimes obtained (particularly for large N)
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8-point trivariate quadrature approximation
(M = 3, N1 = N2 = N3 = 2,N = N1N2N3 = 8)

*
1,1ξξξξ

*
2,1ξξξξ

1ξξξξ2ξξξξ

*
1,2ξξξξ

*
2,2ξξξξ

(((( ))))1
1w

(((( ))))1
2w

(((( ))))2
1w

(((( ))))2
2w

1
2

3
4

3ξξξξ

*
1,3ξξξξ

*
2,3ξξξξ

(((( ))))3
1w

(((( ))))3
2w 5

6

7 8

Optimal set (N(M + 1)): 32 moments
Moments actually used: 14

i 1∗ 2∗ 3∗ 4∗ 5∗ 6∗ 7∗ 8∗ 9∗ 10∗

ki1 0 1 0 0 2 1 1 0 0 0
ki2 0 0 1 0 0 1 0 2 1 0
ki3 0 0 0 1 0 0 1 0 1 2

i 11∗ 12 13 14 15∗ 16 17∗ 18 19 20∗

ki1 3 2 2 1 1 1 0 0 0 0
ki2 0 1 0 2 1 0 3 2 1 0
ki3 0 0 1 0 1 2 0 1 2 3

i 21 22 23 24 25 26 27 28 29
ki1 3 3 1 1 0 0 2 1 1
ki2 0 1 3 0 3 1 1 2 1
ki3 1 0 0 3 1 3 1 1 2

i 30 31 32
ki1 3 1 1
ki2 1 3 1
ki3 1 1 3
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• Methods based on conditional density functions:
n(ξ1, ξ2) = n1(ξ1)f21(ξ2|ξ1) = n2(ξ2)f12(ξ1|ξ2)

• Univariate quadrature (N1) calculated from the first 2N1 − 1:
m0,0,...,0,0

...

m2N1−1,0,...,0,0

 PD/Wheeler
−−−−−−−−→


w1
...

wN1



ξ1;1
...

ξ1;N1


resulting for example in: n(ξ1, ξ2) =

∑N1
α1=1 δ

(
ξ1 − ξ1;α

)
f21(ξ2|ξ1)

• Generic moment becomes:

mk1 ,k2 =

"
n(ξ1, ξ2)ξk1

1 ξ
k2
2 dξ1 dξ2

=

N1∑
α1=1

ξ
k1
1;α

∫
f21(ξ2|ξ1;α)ξk2

2 dξ2

• Conditional moment:
〈
ξ

k2
2

〉
α1

:=
∫

f (ξ2|ξ1;α1 )ξk2
2 dξ2
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For each of these N1 nodes, 2N2 − 1 conditional moments are
calculated, and univariate quadratures N2 are determined (in
direction ξ2): Conditional QMOM or CQMOM

1;1ξξξξ
1ξξξξ

2ξξξξ

1,1;2ξξξξ

(((( ))))1w

(((( ))))1;1w

2;1ξξξξ
(((( ))))2w

11;1 −−−−N
ξξξξ
(((( ))))11 −−−−Nw

1;1 N
ξξξξ
(((( ))))

1Nw

2,1;2ξξξξ(((( ))))2;1w

1,1;2 2 −−−−Nξξξξ(((( ))))1;1 1 −−−−Nw

2,1;2 Nξξξξ(((( ))))
1;1 Nw

1,2;2ξξξξ (((( ))))1;2w

2,2;2ξξξξ (((( ))))2;2w

(((( ))))1;2 2 −−−−Nw

2,2;2 Nξξξξ (((( ))))
2;2 Nw

1,2;2 2 −−−−Nξξξξ

1,;2 1Nξξξξ (((( ))))1;1Nw

2,;2 1Nξξξξ (((( ))))2;1Nw

(((( ))))1; 21 −−−−NNw

21 ,;2 NNξξξξ (((( ))))
21 ;NNw

1,;2 21 −−−−NNξξξξ

1,1;2 1 −−−−Nξξξξ
(((( ))))1;11 −−−−Nw

2,1;2 1 −−−−Nξξξξ
(((( ))))2;11 −−−−Nw

(((( ))))1;1 21 −−−−−−−− NNw

21 ,1;2 NN −−−−ξξξξ (((( ))))
21 ;1 NNw −−−−

1,1;2 21 −−−−−−−− NNξξξξ

L

L
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Moments used to build a bivariate quadrature approximation (M = 2) for
N1 = N2 = 3 using CQMOM with ξ2 conditioned on ξ1 (top) and ξ1 conditioned
on ξ2 (bottom)

m(5,0)
m(4,0)
m(3,0)
m(2,0) m(2,1) m(2,2) m(2,3) m(2,4) m(2,5)
m(1,0) m(1,1) m(1,2) m(1,3) m(1,4) m(1,5)
m(0,0) m(0,1) m(0,2) m(0,3) m(0,4) m(0,5)

m(5,0) m(5,1) m(5,2)
m(4,0) m(4,1) m(4,2)
m(3,0) m(3,1) m(3,2)
m(2,0) m(2,1) m(2,2)
m(1,0) m(1,1) m(1,2)
m(0,0) m(0,1) m(0,2) m(0,3) m(0,4) m(0,5)
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EXAMPLE

Determine two quadrature approximations of orders 4 and 9 for
bivariate Gaussian distribution:

f (ξ1, ξ2) =
1

2πσ1σ2
√

1 − ρ2
×

exp
− 1

2(1 − ρ2)

 (ξ1 − µ1)2

σ2
1

+
2ρ(ξ1 − µ1)(ξ2 − µ2)

σ1σ2
+

(ξ2 − µ2)2

σ2
2


with µ1 = 10, µ2 = 20, σ1 = σ2 = 2 and different ρ values, by
employing the Brute-Force BF-QMOM, Tensor-Product TP-QMOM
and CQMOM.
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ρ = 0 N = 4; BF-QMOM (diamond), TP-QMOM (circle) and CQMOM
(square)
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ρ = 0 N = 9; BF-QMOM (diamond), TP-QMOM (circle) and CQMOM
(square)
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ρ = 0.5 N = 4; BF-QMOM (diamond), TP-QMOM (circle) and
CQMOM (square)
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Hyperbolic: What Is It? Why?

• Particles have real, finite velocities

• GPBE has real, finite velocities

• Moment system M = [M0,M1,M2,M3,M4] from GPBE

∂M
∂t

+
∂F(M)
∂x

= 0

should be a hyberbolic equation (i.e. real eigenvalues)

• How do we check?: use Jacobian matrix of F = [M1,M2,M3,M4,M5]

∂F
∂M

=


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
∂M5
∂M0

∂M5
∂M1

∂M5
∂M2

∂M5
∂M3

∂M5
∂M4


Five eigenvalues must be real and distinct

• For HyQMOM, choose M5 such that system is hyperbolic
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Hyperbolic: What Is It? Why?

• Particles have real, finite velocities

• GPBE has real, finite velocities

• Moment system M = [M0,M1,M2,M3,M4] from GPBE

∂M
∂t

+
∂F(M)
∂x

= 0

should be a hyberbolic equation (i.e. real eigenvalues)

• How do we check?: use Jacobian matrix of F = [M1,M2,M3,M4,M5]

∂F
∂M

=


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
∂M5
∂M0

∂M5
∂M1

∂M5
∂M2

∂M5
∂M3

∂M5
∂M4


Five eigenvalues must be real and distinct

• For HyQMOM, choose M5 such that system is hyperbolic
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Hyperbolic QMOM

• Approximate velocity NDF by (N ≥ 2)

n(u) ≈ M0

N∑
α=1

pαδ(u − ū − uα)

where ū = M1/M0, and pα and uα are found from central moments:

Ci =
1

M0

∫ +∞

−∞

(u − ū)in(u) du

• Fix C2N−1 such that moment system is hyperbolic

• Given {1, 0,C2 . . . ,C2N−2} and constraint on C2N−1, apply QMOM

{1, 0,C2 . . . ,C2N−1}
QMOM
=⇒ {p1, p2, . . . , pN}, {u1, u2, . . . , uN}
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Hyperbolic QMOM

• Moment closure for kinetic flux in 1-D:

∂tM2N−2 + ∂xM̄2N−1 = 0 =⇒ M̄2N−1 = M0

N∑
α=1

pα(ū + uα)2N−1

For N = 3: M̄5 = M0

[
p1(ū + u1)5 + p2ū5 + p3(ū + u3)5

]
• Theorem: Moment system for {M0,M1,M2,M3,M4} with kinetic

flux M̄5 is hyperbolic with 5 distinct eigenvalues

λ0 = ū, λ1,2,3,4 = ū+

√
C2

2

q ±
√

4η − 3q2 ± 4
√

(η − q2)(η − q2 − 1)


where q = C3/C

3/2
2 and η = C4/C2

2
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Hyperbolic QMOM: Kinetic-Based Flux

• Kinetic-based flux in 1-D for M = {M0,M1,M2,M3,M4}:

∂tM + ∂xF(M) = 0 =⇒ Fn =

4∑
α=0

wαλ
n+1
α

where F = {F0,F1,F2,F3,F4}

• 5 eigenvalues are known, weights found from
1 1 1 1 1
λ0 λ1 λ2 λ3 λ4
λ2

0 λ2
1 λ2

2 λ2
3 λ2

4
λ3

0 λ3
1 λ3

2 λ3
3 λ3

4
λ4

0 λ4
1 λ4

2 λ4
3 λ4

4



w0
w1
w2
w3
w4

 =


M0
M1
M2
M3
M4


and find that w0 = 0 =⇒ system has 4 velocities
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Hyperbolic QMOM: Kinetic-Based Flux

• Define normalized eigenvalues λα = ū +
√

C2 µα and normalized
weights: 

µ1 µ2 µ3 µ4
µ2

1 µ2
2 µ2

3 µ2
4

µ3
1 µ3

2 µ3
3 µ3

4
µ4

1 µ4
2 µ4

3 µ4
4



w′1
w′2
w′3
w′4

 =


0
1
q
η


=⇒ positive weights depend on q and η

• Up/Down-wind flux splitting:

Fn = M0

4∑
α=1

w′αλ
n
α min(0, λα) + M0

4∑
α=1

w′αλ
n
α max(0, λα)

is used in finite-volume solver
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Conditional HyQMOM for 2-D Phase Space

• Approximate 2-D velocity NDF by (N ≥ 2)

n(u, v) ≈ M0,0

N∑
α=1

N∑
β=1

pαpαβδ(u − ū − uα)δ(v − v̄ − v̄α − vαβ)

where v̄ = M0,1/M0,0 and abscissas vαβ and v̄α are found from central
moments:

Ci,j =
1

M0,0

∫
R2

(u − ū)i(v − v̄)jn(u, v) du dv

• Example N2 = 9 nodes, CQMOM applied to symmetric moment sets:

10 moments 12 moments

M0,0 M1,0 M2,0 M3,0 M4,0

M0,1 M1,1

M0,2

M0,3

M0,4

M0,0 M1,0 M2,0 M3,0 M4,0

M0,1 M1,1 M2,1

M0,2 M1,2

M0,3

M0,4
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Conditional HyQMOM for 2-D Phase Space

• With 10 moments, v̄α = a0 + a1uα is found from

3∑
α=1

pαv̄α = C0,1 = 0
3∑
α=1

pαuαv̄α = C1,1

=⇒ a0 = 0 and a1 = C1,1/C2,0 captures correlation between u and v

• CHyQMOM conditional moments are {1, 0,C2|uα ,C3|uα ,C4|uα } where

C2|uα = C0,2 − a2
1C2,0 C3|uα = C0,3 − a3

1C3,0 C4|uα = C0,4 − 6a2
1C2,0C2|uα − a4

1C4,0

N.B. conditional moments do not depend on α

• HyQMOM applied to {1, 0,C2|uα ,C3|uα ,C4|uα } to find pαβ and vαβ

• With 12 moments, v̄α = a0 + a1uα + a2u2
α and C2|uα = b0 + b1uα
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1C2,0 C3|uα = C0,3 − a3

1C3,0 C4|uα = C0,4 − 6a2
1C2,0C2|uα − a4

1C4,0

N.B. conditional moments do not depend on α

• HyQMOM applied to {1, 0,C2|uα ,C3|uα ,C4|uα } to find pαβ and vαβ

• With 12 moments, v̄α = a0 + a1uα + a2u2
α and C2|uα = b0 + b1uα
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Conditional HyQMOM for 2-D Phase Space

• CHyQMOM closure for kinetic flux in 1-D spatial and 2-D velocity
with 10 moments:

∂tM1,1 + ∂xM̄2,1 = 0 =⇒ M̄2,1 = M0,0

3∑
α=1

pα(ū + uα)2(v̄ + v̄α)

• Theorem: 10 moment system with kinetic flux is hyperbolic with
10 distinct eigenvectors

• Extension to 3-D phase space follows same logic: Example
N3 = 27 nodes uses either 16 or 23 moments
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Hyperbolic QMOM: Kinetic-Based Flux 2/3-D

• Kinetic-based flux in 2-D for 10 moments
M = {M0,0,M1,0,M0,1, . . . ,M4,0,M0,4}:

∂tM + ∂xFx(M) = 0 =⇒ Fn =

4∑
α=0

λαMn|λα

where the 10 flux components are
Fx = {F0,0,F1,0,F0,1, . . . ,F4,0,F0,4}

• 5 eigenvalues λα are same as 1-D case

• Conditional moments Mn|λα found using CQMOM:

Mn =

4∑
α=1

λαMn|λα

for n = (0, 0), (1, 0), (0, 1), . . . , (4, 0), (0, 4)
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Hyperbolic QMOM: Kinetic-Based Flux 2/3-D

• Kinetic-based flux for y direction:

∂tM + ∂yFy(M) = 0 =⇒ Fn =

4∑
α=0

λαMn|λα

is done in same way, except 5 eigenvalues are found using
moments {M0,0,M0,1,M0,2,M0,3,M0,4}

• Up/Down-wind flux splitting:

Fn =

4∑
α=1

Mn|λα min(0, λα) +

4∑
α=1

Mn|λα max(0, λα)

is used in finite-volume solver
• In 3-D, definitions are analogous

∂tM + ∂zFz(M) = 0 =⇒ Fn =

4∑
α=0

λαMn|λα

for n = (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), . . . , (4, 0, 0), (0, 4, 0), (0, 0, 4)

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

QBMM for
Spatially
Inhomogeneous
Systems
Inhomogeneous
PBE

Multivariate QBMM

Multidimensional
Inversion Algorithms

Hyperbolic QMOM

High-Order,
Realizable,
Kinetic-Based,
Finite-Volume
Methods
Kinetic-Based
Finite-Volume
Method

Realizable Schemes

Particle Trajectory
Crossing

Hyperbolic QMOM: Kinetic-Based Flux 2/3-D

• Kinetic-based flux for y direction:

∂tM + ∂yFy(M) = 0 =⇒ Fn =

4∑
α=0

λαMn|λα

is done in same way, except 5 eigenvalues are found using
moments {M0,0,M0,1,M0,2,M0,3,M0,4}

• Up/Down-wind flux splitting:

Fn =

4∑
α=1

Mn|λα min(0, λα) +

4∑
α=1

Mn|λα max(0, λα)

is used in finite-volume solver
• In 3-D, definitions are analogous

∂tM + ∂zFz(M) = 0 =⇒ Fn =

4∑
α=0

λαMn|λα

for n = (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), . . . , (4, 0, 0), (0, 4, 0), (0, 0, 4)

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

QBMM for
Spatially
Inhomogeneous
Systems
Inhomogeneous
PBE

Multivariate QBMM

Multidimensional
Inversion Algorithms

Hyperbolic QMOM

High-Order,
Realizable,
Kinetic-Based,
Finite-Volume
Methods
Kinetic-Based
Finite-Volume
Method

Realizable Schemes

Particle Trajectory
Crossing

Hyperbolic QMOM: Kinetic-Based Flux 2/3-D

• Kinetic-based flux for y direction:

∂tM + ∂yFy(M) = 0 =⇒ Fn =

4∑
α=0

λαMn|λα

is done in same way, except 5 eigenvalues are found using
moments {M0,0,M0,1,M0,2,M0,3,M0,4}

• Up/Down-wind flux splitting:

Fn =

4∑
α=1

Mn|λα min(0, λα) +

4∑
α=1

Mn|λα max(0, λα)

is used in finite-volume solver
• In 3-D, definitions are analogous

∂tM + ∂zFz(M) = 0 =⇒ Fn =

4∑
α=0

λαMn|λα

for n = (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), . . . , (4, 0, 0), (0, 4, 0), (0, 0, 4)

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

QBMM for
Spatially
Inhomogeneous
Systems
Inhomogeneous
PBE

Multivariate QBMM

Multidimensional
Inversion Algorithms

Hyperbolic QMOM

High-Order,
Realizable,
Kinetic-Based,
Finite-Volume
Methods
Kinetic-Based
Finite-Volume
Method

Realizable Schemes

Particle Trajectory
Crossing

HIGH-ORDER, REALIZABLE,
KINETIC-BASED, FINITE-VOLUME

METHODS
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Kinetic-Based Finite-Volume Methods

Given a set of transported moments, solve

∂Mkl

∂t
+
∂Mk+1l

∂x
= k

∫
vk−1ξlAn dv dξ + l

∫
vkξl−1Gn dv dξ +

∫
vkξlC dv dξ

where RHS is closed using QBMM:

∂Mkl

∂t
+
∂Mk+1l

∂x
=

N∑
α=1

nα
{
kvk−1

α ξl
αAα + lvk

αξ
l−1
α Gα + vk

αξ
l
αCα

}

Things to consider:
• How do we discretize the spatial fluxes?
• How do we update the moments in time?
• How can we ensure that the moments are always realizable?

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

QBMM for
Spatially
Inhomogeneous
Systems
Inhomogeneous
PBE

Multivariate QBMM

Multidimensional
Inversion Algorithms

Hyperbolic QMOM

High-Order,
Realizable,
Kinetic-Based,
Finite-Volume
Methods
Kinetic-Based
Finite-Volume
Method

Realizable Schemes

Particle Trajectory
Crossing

Kinetic-Based Finite-Volume Methods

Given a set of transported moments, solve

∂Mkl

∂t
+
∂Mk+1l

∂x
= k

∫
vk−1ξlAn dv dξ + l

∫
vkξl−1Gn dv dξ +

∫
vkξlC dv dξ

where RHS is closed using QBMM:

∂Mkl

∂t
+
∂Mk+1l

∂x
=

N∑
α=1

nα
{
kvk−1

α ξl
αAα + lvk

αξ
l−1
α Gα + vk

αξ
l
αCα

}

Things to consider:
• How do we discretize the spatial fluxes?
• How do we update the moments in time?
• How can we ensure that the moments are always realizable?

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

QBMM for
Spatially
Inhomogeneous
Systems
Inhomogeneous
PBE

Multivariate QBMM

Multidimensional
Inversion Algorithms

Hyperbolic QMOM

High-Order,
Realizable,
Kinetic-Based,
Finite-Volume
Methods
Kinetic-Based
Finite-Volume
Method

Realizable Schemes

Particle Trajectory
Crossing

Kinetic-Based Finite-Volume Methods

Given a set of transported moments, solve

∂Mkl

∂t
+
∂Mk+1l

∂x
= k

∫
vk−1ξlAn dv dξ + l

∫
vkξl−1Gn dv dξ +

∫
vkξlC dv dξ

where RHS is closed using QBMM:

∂Mkl

∂t
+
∂Mk+1l

∂x
=

N∑
α=1

nα
{
kvk−1

α ξl
αAα + lvk

αξ
l−1
α Gα + vk

αξ
l
αCα

}

Things to consider:
• How do we discretize the spatial fluxes?
• How do we update the moments in time?
• How can we ensure that the moments are always realizable?

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

QBMM for
Spatially
Inhomogeneous
Systems
Inhomogeneous
PBE

Multivariate QBMM

Multidimensional
Inversion Algorithms

Hyperbolic QMOM

High-Order,
Realizable,
Kinetic-Based,
Finite-Volume
Methods
Kinetic-Based
Finite-Volume
Method

Realizable Schemes

Particle Trajectory
Crossing

Kinetic-Based Finite-Volume Methods

Given a set of transported moments, solve

∂Mkl

∂t
+
∂Mk+1l

∂x
= k

∫
vk−1ξlAn dv dξ + l

∫
vkξl−1Gn dv dξ +

∫
vkξlC dv dξ

where RHS is closed using QBMM:

∂Mkl

∂t
+
∂Mk+1l

∂x
=

N∑
α=1

nα
{
kvk−1

α ξl
αAα + lvk

αξ
l−1
α Gα + vk

αξ
l
αCα

}

Things to consider:
• How do we discretize the spatial fluxes?
• How do we update the moments in time?
• How can we ensure that the moments are always realizable?

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

QBMM for
Spatially
Inhomogeneous
Systems
Inhomogeneous
PBE

Multivariate QBMM

Multidimensional
Inversion Algorithms

Hyperbolic QMOM

High-Order,
Realizable,
Kinetic-Based,
Finite-Volume
Methods
Kinetic-Based
Finite-Volume
Method

Realizable Schemes

Particle Trajectory
Crossing

Kinetic-Based Finite-Volume Methods

Given a set of transported moments, solve

∂Mkl

∂t
+
∂Mk+1l

∂x
= k

∫
vk−1ξlAn dv dξ + l

∫
vkξl−1Gn dv dξ +

∫
vkξlC dv dξ

where RHS is closed using QBMM:

∂Mkl

∂t
+
∂Mk+1l

∂x
=

N∑
α=1

nα
{
kvk−1

α ξl
αAα + lvk

αξ
l−1
α Gα + vk

αξ
l
αCα

}

Things to consider:
• How do we discretize the spatial fluxes?
• How do we update the moments in time?
• How can we ensure that the moments are always realizable?

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

QBMM for
Spatially
Inhomogeneous
Systems
Inhomogeneous
PBE

Multivariate QBMM

Multidimensional
Inversion Algorithms

Hyperbolic QMOM

High-Order,
Realizable,
Kinetic-Based,
Finite-Volume
Methods
Kinetic-Based
Finite-Volume
Method

Realizable Schemes

Particle Trajectory
Crossing

Kinetic-Based Spatial Fluxes in 1-D

Spatial fluxes can use kinetic formulation: e.g. ∂tM0 + ∂xM1 = 0

M1 = Q−1 + Q+
1

=

∫ 0

−∞

u n∗(u) du +

∫ ∞

0
u n∗(u) du

Using reconstructed n∗, downwind and upwind flux components are

Q−1 =

N∑
α=1

nαuαI(−∞,0) (uα) Q+
1 =

N∑
α=1

nαuαI(0,∞) (uα)

where IS(x) is the indicator function for the interval S

Kinetic-based fluxes are weakly hyperbolic with QMOM
Using hyperbolic QMOM, they are hyperbolic
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Finite-Volume Method: Definitions I

• 1-D advection problem:

∂M
∂t

+
∂F(M)
∂x

= 0

where M =
∫

K(v)n(v) dv and F(M) =
∫

vK(v)n(v) dv
• Finite-volume representation of moment vector:

Mn
i ≡

1
∆x

∫ xi+1

xi

M(tn, x) dx

• Finite-volume formula: λ = ∆t/∆x

Mn+1
i = Mn

i − λ
[
G

(
Mn

i+ 1
2 ,l
,Mn

i+ 1
2 ,r

)
−G

(
Mn

i− 1
2 ,l
,Mn

i− 1
2 ,r

)]
where G (Ml,Mr) =

∫
v+K(v)nl(v) dv +

∫
v−K(v)nr(v) dv
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Finite-Volume Method: Definitions I

• 1-D advection problem:

∂M
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∂F(M)
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= 0

where M =
∫

K(v)n(v) dv and F(M) =
∫

vK(v)n(v) dv
• Finite-volume representation of moment vector:
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• Finite-volume formula: λ = ∆t/∆x
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Finite-Volume Method: Definitions II

Reconstruction of n(tn, x, v) in each cell:
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Realizability and Spatial Fluxes

• Flux functions: given Mn
i define G (Ml,Mr) to achieve high-order

spatial accuracy but keep Mn+1
i realizable!

• Discrete distribution function: Define

Mn+1
i ≡

∫
K(v)hi(v) dv

and finite-volume formula can be written as

hi(v) = λ|v−|nn
i+ 1

2 ,r
+ λv+nn

i− 1
2 ,l

+ nn
i − λ|v

−|nn
i− 1

2 ,r
− λv+nn

i+ 1
2 ,l

(black part ≥ 0, red part can be negative)
• Sufficient condition for realizable moments: hi(v) ≥ 0 for all v and

i
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Realizable, High-Order, Spatial Fluxes

• First order: nn
i− 1

2 ,r
= nn

i+ 1
2 ,l

= nn
i so that

h = λ|v−|nn
i+1 + λv+nn

i−1 + (1 − λ|v−| − λv+) nn
i ⇒ 1

|v− |+v+ ≥ λ
Moments are realizable, but scheme is diffusive ...

• Quasi-higher order: Let nn
i =

∑
α ρ

n
α,iδ(v − vn

α,i)
and define

nn
i− 1

2 ,r
=

∑
α ρ

n
α,i− 1

2 ,r
δ(v − vn

α,i)

nn
i+ 1

2 ,l
=

∑
α ρ

n
α,i+ 1

2 ,l
δ(v − vn

α,i)

so that
h = λ|v− |nn

i+ 1
2 ,r

+ λv+nn
i− 1

2 ,l
+

∑
α

(
ρn
α,i − λ|v

− |ρn
α,i− 1

2 ,r
− λv+ρn

α,i+ 1
2 ,l

)
δ(v − vn

α,i)

=⇒ minα

 ρn
α,i

|v−
α,i |ρ

n
α,i− 1

2 ,r
+v+
α,iρ

n
α,i+ 1

2 ,l

 ≥ λ
Use high-order, finite-volume schemes only for the

weights

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

QBMM for
Spatially
Inhomogeneous
Systems
Inhomogeneous
PBE

Multivariate QBMM

Multidimensional
Inversion Algorithms

Hyperbolic QMOM

High-Order,
Realizable,
Kinetic-Based,
Finite-Volume
Methods
Kinetic-Based
Finite-Volume
Method

Realizable Schemes

Particle Trajectory
Crossing

Realizable, High-Order, Spatial Fluxes

• First order: nn
i− 1

2 ,r
= nn

i+ 1
2 ,l

= nn
i so that
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Realizable Time-Stepping Schemes

• First-order explicit Euler:

Mn+1
i = Mn

i − λ
[
G

(
Mn

i+ 1
2 ,l
,Mn

i+ 1
2 ,r

)
−G

(
Mn

i− 1
2 ,l
,Mn

i− 1
2 ,r

)]
is realizable because RHS is convex sum of Mn

i

• Second-order Runga-Kutta (RK2):

M∗
i = Mn

i −
1
2
λ
[
G

(
Mn

i+ 1
2 ,l
,Mn

i+ 1
2 ,r

)
−G

(
Mn

i− 1
2 ,l
,Mn

i− 1
2 ,r

)]
Mn+1

i = Mn
i − λ

[
G

(
M∗

i+ 1
2 ,l
,M∗

i+ 1
2 ,r

)
−G

(
M∗

i− 1
2 ,l
,M∗

i− 1
2 ,r

)]
is not realizable because Step 2 is not convex sum
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)
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is realizable because RHS is convex sum of Mn
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• Second-order Runga-Kutta (RK2):
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2
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i+ 1
2 ,r
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2 ,l
,Mn
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2 ,r

)]
Mn+1
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[
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(
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2 ,l
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• RK2SSP:

M∗
i = Mn

i − λ
[
G

(
Mn

i+ 1
2 ,l
,Mn

i+ 1
2 ,r

)
−G

(
Mn

i− 1
2 ,l
,Mn

i− 1
2 ,r

)]
M∗∗

i = M∗
i − λ

[
G

(
M∗

i+ 1
2 ,l
,M∗

i+ 1
2 ,r

)
−G

(
M∗

i− 1
2 ,l
,M∗

i− 1
2 ,r

)]
Mn+1

i =
1
2

(
Mn

i + M∗∗
i
)

is realizable because RHS are all convex sums of realizable
moments

• In general, explicit, high-order, strong stability-preserving
schemes are realizable

Achieve high-order in space and time on unstructured
grids!
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1-D Particle Trajectory Crossing: Main Program I

Matlab Script for 1-D PTC: ∂tM + ∂xF = 0

% Initializing numerical parameters
%
cfl = 0.9 ;
Ny = 402 ;
T0 = 1 ;
Ly = 1 ; % dimensionless width of domain
H = Ly ; % width of domain (dimensionless units)
Tmax = 1 ; % final time
Dy = H/(Ny-2) ; % cell size
eps = 1.d-6 ;
Ycell = -(Dy/2) : Dy : (H+Dy/2) ; % grid cell centers
%
% Initializing the cell values
M0 = zeros(5,Ny); % moments
N0 = 0*ones(4,Ny) ; % weights
U0 = zeros(4,Ny) ; % U velocity
N1 = N0 ;
U1 = U0 ;
%
% initial two waves in x direction
for i = 1:48

N0(1,i) = 1 ;
U0(1,i) = 1 ;
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1-D Particle Trajectory Crossing: Main Program II

end
for i = Ny-47:Ny

N0(1,i) = 1 ;
U0(1,i) = -1 ;

end
%
for i =1:Ny

M0(:,i) = moments_4node_5mom(N0(:,i),U0(:,i)) ;
[N1(:,i),U1(:,i)] = four_node_flux_hyqmom(M0(:,i)) ;

end
M0(:,1) = moments_4node_5mom(N0(:,Ny-1),U0(:,Ny-1)) ;
M0(:,Ny) = moments_4node_5mom(N0(:,2),U0(:,2)) ;
[N1(:,1),U1(:,1)] = four_node_flux_hyqmom(M0(:,1)) ;
[N1(:,Ny),U1(:,Ny)] = four_node_flux_hyqmom(M0(:,Ny)) ;
%
M1 = M0 ;
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Time loop
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
t = 0 ;
while( t < Tmax + eps )

Umax = 0.01 ;
for j=1:4
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1-D Particle Trajectory Crossing: Main Program III

for i=1:Ny
Umax = max(Umax,abs(U0(j,i))) ;

end
end
Dt = cfl*Dy/Umax ;
t = t + Dt ;
%
% Evaluation of the new moments using RK2SSP
% Step 1 du RK2SSP
%
% Step of spatial transport
for i=2:Ny-1

% Etape 1
Nlmoins = N0(:,i-1) ;
Ulmoins = U0(:,i-1) ;
Nlplus = N0(:,i) ;
Ulplus = U0(:,i) ;
Nrmoins = N0(:,i) ;
Urmoins = U0(:,i) ;
Nrplus = N0(:,i+1) ;
Urplus = U0(:,i+1) ;
%
Fleft = flux_5mom(Nlmoins,Ulmoins,Nlplus,Ulplus);
Fright = flux_5mom(Nrmoins,Urmoins,Nrplus,Urplus);
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1-D Particle Trajectory Crossing: Main Program IV

% update moments by time step
M1(:,i) = M0(:,i) - (Dt/Dy)*(Fright - Fleft) ;

end
% update weights and abscissas
for i=2:Ny-1

[N1(:,i),U1(:,i)] = four_node_flux_hyqmom(M1(:,i)) ;
M1(:,i) = moments_4node_5mom(N1(:,i),U1(:,i)) ; % projection step

end
M1(:,1) = moments_4node_5mom(N1(:,Ny-1),U1(:,Ny-1)) ;
M1(:,Ny) = moments_4node_5mom(N1(:,2),U1(:,2)) ;
[N1(:,1),U1(:,1)] = four_node_flux_hyqmom(M1(:,1)) ;
[N1(:,Ny),U1(:,Ny)] = four_node_flux_hyqmom(M1(:,Ny)) ;
%
% Step 2 du RK2SSP: M0 are old values, M1 are new values
% Step of spatial transport
for i=2:Ny-1

Nlmoins = N1(:,i-1) ;
Ulmoins = U1(:,i-1) ;
Nlplus = N1(:,i) ;
Ulplus = U1(:,i) ;
Nrmoins = N1(:,i) ;
Urmoins = U1(:,i) ;
Nrplus = N1(:,i+1) ;
Urplus = U1(:,i+1) ;
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1-D Particle Trajectory Crossing: Main Program V

%
Fleft = flux_5mom(Nlmoins,Ulmoins,Nlplus,Ulplus);
Fright = flux_5mom(Nrmoins,Urmoins,Nrplus,Urplus);
%
% update moments by full time step
M1(:,i) = M1(:,i) - (Dt/Dy)*(Fright - Fleft) ;
M1(:,i) = 0.5*( M0(:,i) + M1(:,i) ) ;

end
% update weights and abscissas
for i=2:Ny-1

[N1(:,i),U1(:,i)] = four_node_flux_hyqmom(M1(:,i)) ;
M1(:,i) = moments_4node_5mom((N1(:,i),U1(:,i)) ; % projection step

end
M1(:,1) = moments_4node_5mom(N1(:,Ny-1),U1(:,Ny-1)) ;
M1(:,Ny) = moments_4node_5mom(N1(:,2),U1(:,2)) ;
[N1(:,1),U1(:,1)] = four_node_flux_hyqmom(M1(:,1)) ;
[N1(:,Ny),U1(:,Ny)] = four_node_flux_hyqmom(M1(:,Ny)) ;
%
% End of RK2SSP time step
M0 = M1 ;
N0 = N1 ;
U0 = U1 ;

end
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1-D Particle Trajectory Crossing: Kinetic-Based
HyQMOM Program I

Matlab Script for 1-D PTC: M =⇒ N,U kinetic based

function [ N, U ] = four_node_flux_hyqmom( M )
% [ N, U ] = four_node_flux_hyqmom( M )
% four-node flux-based HyQMOM with realizability checking
%
% input: 5 velocity moments (in this order)
% M = [ m0, m1, m2, m3, m4]
%
% output:
% N = [ n1, n2, n3, n4 ] weights
% U = [ u1, u2, u3, u4 ] abscissas (eigenvalues)
%
m0 = M(1); m1 = M(2); m2 = M(3); m3 = M(4); m4 = M(5);
%
%
if isnan(m0) == 1

display(M)
error(’corrupted moments in four_node_flux_hyqmom’)

end
%
etasmall = 1.d-10 ; % smallest variance for computing eta
verysmall = 1.d-14 ; % smallest nonzero mass
qmax = 30 ; % maximum normalized skewness
% check for zero density

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

QBMM for
Spatially
Inhomogeneous
Systems
Inhomogeneous
PBE

Multivariate QBMM

Multidimensional
Inversion Algorithms

Hyperbolic QMOM

High-Order,
Realizable,
Kinetic-Based,
Finite-Volume
Methods
Kinetic-Based
Finite-Volume
Method

Realizable Schemes

Particle Trajectory
Crossing

1-D Particle Trajectory Crossing: Kinetic-Based
HyQMOM Program II

N = zeros(4,1) ; U = N ;
if m0 <= verysmall

N(1:4) = m0/4 ;
return

end
% mean velocities
bu = m1/m0 ;
% normalized moments
d2 = m2/m0 ;
d3 = m3/m0 ;
d4 = m4/m0 ;
% central moments
c2 = d2 - buˆ2 ;
c3 = d3 - 3*bu*d2 + 2*buˆ3 ;
c4 = d4 - 4*bu*d3 + 6*buˆ2*d2 - 3*buˆ4 ;
%
% realizability check
realizable = c2*c4 - c2ˆ3 - c3ˆ2 ;
if c2 < 0 % negative variance

if c2 < - verysmall
warning(’c2 negative in four_node_flux_hyqmom’)
display(c2)

end
c2 = 0 ;
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1-D Particle Trajectory Crossing: Kinetic-Based
HyQMOM Program III

c3 = 0 ;
c4 = 0 ;

elseif realizable < 0 % eta < 1 + qˆ2
if c2 >= etasmall

q = c3/sqrt(c2)/c2 ; eta = c4/c2/c2 ;
if abs(q) > verysmall

slope = (eta - 3)/q ;
det = 8 + slopeˆ2 ;
qp = 0.5*( slope + sqrt(det) ) ;
qm = 0.5*( slope - sqrt(det) ) ;
if sign(q) == 1

q = qp ;
else

q = qm ;
end

else
q = 0 ;

end
eta = qˆ2 + 1 ;
c3 = q*sqrt(c2)*c2 ;
c4 = eta*c2ˆ2 ;
if realizable < - 1.d-6

warning(’c4 too small in four_node_flux_hyqmom’)
display(realizable)
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1-D Particle Trajectory Crossing: Kinetic-Based
HyQMOM Program IV

display(M)
end

else
c3 = 0 ;
c4 = c2ˆ2 ;

end
end
%
% HyQMOM parameters (scaled)
scale = sqrt(c2) ;
if c2 >= etasmall

q = c3/sqrt(c2)/c2 ;
eta = c4/c2/c2 ;

else
q = 0 ; eta = 1 ;

end
% bound skewness < qmax
if qˆ2 > qmaxˆ2

slope = (eta - 3)/q ; % move towards Gaussian moments
q = qmax*sign(q) ;
eta = 3 + slope*q ;
realizable = eta - 1 - qˆ2 ;
if realizable < 0

eta = 1 + qˆ2 ;
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1-D Particle Trajectory Crossing: Kinetic-Based
HyQMOM Program V

end
end
% compute weights & abscissas (eigenvalues)
if eta > 1 + qˆ2

up = zeros(1,4) ;
up(1) = 0.5*(q + sqrt(4*eta - 3*qˆ2 + 4*sqrt((eta - qˆ2)*(eta - qˆ2 - 1)))) ;
up(2) = 0.5*(q + sqrt(4*eta - 3*qˆ2 - 4*sqrt((eta - qˆ2)*(eta - qˆ2 - 1)))) ;
up(3) = 0.5*(q - sqrt(4*eta - 3*qˆ2 - 4*sqrt((eta - qˆ2)*(eta - qˆ2 - 1)))) ;
up(4) = 0.5*(q - sqrt(4*eta - 3*qˆ2 + 4*sqrt((eta - qˆ2)*(eta - qˆ2 - 1)))) ;
A = [up ; up.ˆ2 ; up.ˆ3 ; up.ˆ4 ] ;
b = [0 1 q eta]’ ;
rho = A\b ;

else % eta = 1 + qˆ2
rho = zeros(4,1) ;
dm = sqrt(4*eta - 3*qˆ2) ;
rho(1) = 1/(dm + q)/dm ;
rho(2) = rho(1) ;
rho(3) = 1/(dm - q)/dm ;
rho(4) = rho(3) ;
up = zeros(4,1) ;
up(1) = 0.5*(q + dm) ;
up(2) = up(1) ;
up(3) = 0.5*(q - dm) ;
up(4) = up(3) ;
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1-D Particle Trajectory Crossing: Kinetic-Based
HyQMOM Program VI

end
%
% error checking
if max(isnan(rho)) == 1 || max(isnan(up)) == 1

display(rho)
display(up)
error(’corrupted moments in HyQMOM’)

end
if min(rho) < 0

format long
display(rho)
display(c2)
display(q)
display(eta)
warning(’negative weight in HyQMOM’)
format short

end
%
N(1) = rho(1) ;
N(2) = rho(2) ;
N(3) = rho(3) ;
N(4) = rho(4) ;
N = m0*N ;
%
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1-D Particle Trajectory Crossing: Kinetic-Based
HyQMOM Program VII

U(1) = scale*up(1);
U(2) = scale*up(2);
U(3) = scale*up(3);
U(4) = scale*up(4);
U = bu + U ;
%
% check moment error
m0o = sum(N) ;
m1o = sum(N.*U) ;
m2o = sum(N.*U.ˆ2) ;
m3o = sum(N.*U.ˆ3) ;
m4o = sum(N.*U.ˆ4) ;
Mout = [ m0o m1o m2o m3o m4o] ;
err = Mout - M ;
if err(3) > 1.d-6 && m0 > verysmall

display(err)
display(M)

end
%
end
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1-D Particle Trajectory Crossing: Moment
Program I

Matlab Script for 1-D PTC: N,U =⇒M kinetic based

function mom = moments_4node_5mom(n,u)
% moments from four-node, kinetic-based HyQMOM weights and abscissas
%
% input:
% N = [ n1, n2, n3, n4] weights
% U = [ u1, u2, u3, u4] abscissas
%
% output: 5 velocity moments (in this order)
% M = [ m0, m1, m2, m3, m4]
%
mom = zeros(5,1) ;
k = [0 1 2 3 4] ;
for i = 1:5 % moments number

for j = 1:4 % node number
mom(i) = mom(i) + n(j)*u(j)ˆk(i) ;

end
end
end
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1-D Particle Trajectory Crossing: Kinetic-Based
Flux Program I

Matlab Script for 1-D PTC: Nl,Ul |Nr,Ur =⇒ F
function F = flux_5mom(Nl,Ul,Nr,Ur)
% HyQMOM kinetic-based flux across cell face
%
% input:
% Nl = [ n1, n2, n3, n4] left weights
% Ul = [ u1, u2, u3, u4] left abscissas
% Nr = [ n1, n2, n3, n4] right weights
% Ur = [ u1, u2, u3, u4] right abscissas
%
% output: Net flux of moments across cell face
% F = [ F0, F1, F2, F3, F4]
%
F = zeros(5,1) ;
k = [0 1 2 3 4] ;
for i = 1:5 % moments number

for j = 1:4 % nodes number
F(i) = F(i) + Nl(j)*Ul(j)ˆk(i) * max(Ul(j),0) ...

+ Nr(j)*Ur(j)ˆk(i) * min(Ur(j),0) ;
end

end
end
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Summary of KBFVM

• When solving moment transport equations, we must guarantee
realizability!

• First-order FV methods are realizable, but too diffusive
• Standard high-order FV methods lead to unrealizable

moments!
• Kinetic-based flux functions can be designed to be realizable
• Use quadrature representation (e.g. HyQMOM) with

high-order spatial reconstruction of weights
• High-order time-stepping schemes are also possible
• KBFVM provide robust treatment of shocks/discontinuous

solutions on unstructured grids
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Summary of KBFVM

• When solving moment transport equations, we must guarantee
realizability!

• First-order FV methods are realizable, but too diffusive
• Standard high-order FV methods lead to unrealizable

moments!
• Kinetic-based flux functions can be designed to be realizable
• Use quadrature representation (e.g. HyQMOM) with

high-order spatial reconstruction of weights
• High-order time-stepping schemes are also possible
• KBFVM provide robust treatment of shocks/discontinuous

solutions on unstructured grids
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Summary of KBFVM

• When solving moment transport equations, we must guarantee
realizability!

• First-order FV methods are realizable, but too diffusive
• Standard high-order FV methods lead to unrealizable

moments!
• Kinetic-based flux functions can be designed to be realizable
• Use quadrature representation (e.g. HyQMOM) with

high-order spatial reconstruction of weights
• High-order time-stepping schemes are also possible
• KBFVM provide robust treatment of shocks/discontinuous

solutions on unstructured grids
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Summary of KBFVM

• When solving moment transport equations, we must guarantee
realizability!

• First-order FV methods are realizable, but too diffusive
• Standard high-order FV methods lead to unrealizable

moments!
• Kinetic-based flux functions can be designed to be realizable
• Use quadrature representation (e.g. HyQMOM) with

high-order spatial reconstruction of weights
• High-order time-stepping schemes are also possible
• KBFVM provide robust treatment of shocks/discontinuous

solutions on unstructured grids
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Summary of KBFVM

• When solving moment transport equations, we must guarantee
realizability!

• First-order FV methods are realizable, but too diffusive
• Standard high-order FV methods lead to unrealizable

moments!
• Kinetic-based flux functions can be designed to be realizable
• Use quadrature representation (e.g. HyQMOM) with

high-order spatial reconstruction of weights
• High-order time-stepping schemes are also possible
• KBFVM provide robust treatment of shocks/discontinuous

solutions on unstructured grids
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Nanoparticles in Turbulent Mixers

Flash Nanoprecipitation

Copolymer

Organic Active
Solvent

Non Solvent

Reactor

Supersaturation

Mixing Nucleation

Growth

Stablization

Nanoparticle
Stable

(Unused polymer)

(Aggregation)

Produced in Multi-Inlet Vortex Reactor

Model needed for turbulent mixing and PBE
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Nanoparticles in Turbulent Flames

Soot Metal oxides

Limitations of univariate PBE modeling 

Morphology of nanoparticles is hardly described by 
a single parameter  
- Additional information is needed (e.g. particle surface area) 

TiO2 BaF2 

CeO2 ZnO 

(Strobel & Pratsinis 2007) 

Volume-based univariate 
QMOM is unable to account for 
surface area change 
- Unable to consider sintering of 

particle aggregates 

  → Significant over prediction of 
particle specific surface area 

Bivariate expansion of NDF is 
highly desirable 

34 

Model needed for turbulent combustion and PBE
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Computational Model

Part. size dist. (PSD)
• PBE

• Solve for NDF n(v)
• Coupled to velocity,

reactive scalars
• Non-linear

integro-PDE

• QBMM
• Solve for moments

of NDF
• Close by

reconstructing n(v)

Modeling of nanoparticle evolution 

Univariate population balance equation (PBE) 

, 

- One-point, one-time particle number density function (NDF) in 
terms of particle volume (i.e. size distribution)High dimensional 
→ needs a closure in terms of  

where 

20 

Figure 3: Reconstruction of two experimentally measured, normalized NDFs from rich,

premixed ethylene flames (left: [13]; right: [22]) using gamma EQMOM (upper row) and

lognormal EQMOM (lower row) with three kernel functions.

reconstructed initial NDFs using gamma and lognormal EQMOM with three

kernel functions, i.e. seven moments need to be transported. The reconstruc-

tions of the NDFs at different times during the simulation are provided in

the Supplementary Material.

Both the unimodal and the bimodal NDF can be very well approximated

using two (not shown here) or three gamma distributions, while lognormal

EQMOM is less accurate. The lognormal kernels do not overlap very much,

which leads to a bimodal shape for both NDFs; also the experimentally

bimodal NDF is not well approximated in the region of small particles. Log-

normal EQMOM has difficulties to capture finite values at the minimum

particle size, because the lognormal distribution always starts at zero. In

gamma EQMOM, depending on the parameters of the gamma distributions,

a smooth transition occurs between the NDF starting at zero and at a fi-

nite value. This enables an accurate approximation of the NDF, especially

for small particle sizes, which is important for an accurate prediction of the

15
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Quadrature-Based Moment Methods

Population Balance 

Moment Equations Moments 
M(t,x) 

Integrate over 1-D phase space 
Closure using 
quadrature 

Reconstruct using 
quadrature 

Close moment equations by reconstructing density function 

Density 
n(t,x,s) 

Reconstructed 
density n*(t,x,s) 

Integrate over 
1-D phase space 

4-D GPBE+CFD solver 

3-D CFD solver 
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Flame Synthesis of Metal-Oxide Nanoparticles

Flame synthesis of TiO2 nanoparticles 

(Strobel & Pratsinis 2007) 

Aggregation 

Growth & surface 
oxidation 

Nucleation 
(precursor oxidation)  

Precursor 
molecules 

Sintering, 
coagulation 

High-T turb. flame 

 CH4 + TiCl4        Air    
(precursor of TiO2)   6 

Flame synthesis of TiO2 nanoparticles 

(Strobel & Pratsinis 2007) 

Aggregation 

Growth & surface 
oxidation 

Nucleation 
(precursor oxidation)  

Precursor 
molecules 

Sintering, 
coagulation 

High-T turb. flame 

 CH4 + TiCl4        Air    
(precursor of TiO2)   6 

Simulation setup 

ETH Zürich flame reactor (Pratsinis et 
al. 1996) 

 

 

 

Structured cylindrical grid 
system 
- 256 x 112 x 32 cells over 40D x 30D 

- Clustered near burner exit 

Low Mach-number solver with 
MPI-based parallel computing 

Ar 250 ml/min 

CH4 312 ml/min 

TiCl4 5.8E-4 mol/min 

Air 3800 ml/min 

D 

(1mm walls) 

28 

• Flamelet model for turbulent combustion
• QBMM for volume–surface NDF n(v, a)
• PBE accounts for nucleation, growth, aggregation, and sintering
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Bivariate Population Balance Equation

∂n(v, a)
∂t

+ ∇x · Ugn(v, a) +
∂Gv(v, a)n(v, a)

∂v
+
∂Ga(v, a)n(v, a)

∂a

+
∂Sa(v, a)n(v, a)

∂a
= J(T , φ)δ(v − v0)δ(a − a0) + B(v, a) − D(v, a)

• Gv, Ga: surface growth rates of volume and surface area
• Sa: rate of change of surface area due to sintering
• J: nucleation rate of particles volume v0 and surface area a0

• Aggregation birth and death terms:

B =
1
2

∫ a

0

∫ v

0
β(v − v∗, v∗, a − a∗, a∗)n(v − v∗, a − a∗)n(v∗, a∗) dv∗ da∗

D =

∫ ∞

0

∫ ∞

0
β(v, v∗, a, a∗)n(v, a)n(v∗, a∗) dv∗ da∗
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Mesoscale Models

• Nucleation: knucl = 1013 (cm6/mol2s)

J(T , φ) = knuclNav[Ti5O6Cl8][O2]2

v0 = 16.6 × 10−29 m3, a0 = 14.6 × 10−19 m2

• Surface growth ks = 49 exp(−8993/T) (m/s)

Gv(v, a) = ks[TiCl4]Navv0a

Ga(v, a) = 4ks[TiCl4]Navv0
√
πa

Nav is Avagadro’s number

Gas-phase species found from detailed combustion model for TiCl4
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Mesoscale Models

• Sintering

Sa(v, a) =


(a−as)
τf(d∗p) if np ≤ 2

(np − 1)
( 0.41ap

τf(dp)

)
if np > 2

as = (36πv2)1/3, d∗p = (3v/π)1/3, dp = 6v/a, ap = 36πv2/a2,
np = a3/(36πv2)

Sintering time scale

τf(x) = k0xm T
T0

exp
[
Ea

R

(
1
T
−

1
T0

)]
k0 = 1 × 1028 m−4, T0 = 1400 K, m = 4, Ea = 1.5 × 105 J/mol
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Mesoscale Models

• Aggregation kernel

β(v, a, v∗, a∗) =
2RT

3µNav

(
1

v1/df
+

1
v∗1/df

) (
v1/df + v∗1/df

)
µ gas viscosity, df(v, a) fractal dimension (≈ 2.5)

Models lead to stiff equations that are strongly coupled to
gas-phase chemistry and temperature!
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Bivariate Moment Equations

• Moments of NDF are defined by

mk,l =

∫ ∞

0

∫ ∞

0
alvkn(v, a) dv da

• Transport equation for moment mk,l is found from PBE using∫ ∞

0

∫ ∞

0
alvk[PBE] dv da

• Accumulation term:∫ ∞

0

∫ ∞

0
alvk ∂n(v, a)

∂t
dv da =

∂

∂t

∫ ∞

0

∫ ∞

0
alvkn(v, a) dv da =

∂mk,l

∂t

• Advection term:∫ ∞

0

∫ ∞

0
alvk∇x · Ugn(v, a) dv da = ∇x · Ugmk,l
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Bivariate Moment Equations

• Volume growth term:∫ ∞

0

(∫ ∞

0
vk ∂

∂v
[Gv(v, a)n(v, a)] dv

)
al da

=

∫ ∞

0

[
vkGv(v, a)n(v, a)

∣∣∣∞
0
−

∫ ∞

0
kvk−1Gv(v, a)n(v, a) dv

]
al da

• after integration by parts and 0 ≤ Gv∫ ∞

0

∫ ∞

0
vkal ∂

∂v
[Gv(v, a)n(v, a)]dvda

= −

∫ ∞

0

∫ ∞

0
kvk−1alGv(v, a)n(v, a)dvda

• Surface area growth term:∫ ∞

0

∫ ∞

0
vkal ∂

∂a
[Ga(v, a)n(v, a)] dv da

= −

∫ ∞

0

∫ ∞

0
lvkal−1Ga(v, a)n(v, a) dv da
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Bivariate Moment Equations

• Sintering term:∫ ∞

0

(∫ ∞

0
al ∂

∂a
[Sa(v, a)n(v, a)] da

)
vk dv

=

∫ ∞

0

[
alSa(v, a)n(v, a)

∣∣∣∞
0 −

∫ ∞

0
lal−1Sa(v, a)n(v, a) dv

]
vk da

• after integration by parts∫ ∞

0

∫ ∞

0
vkal ∂

∂a
[Sa(v, a)n(v, a)] dv da

= −

∫ ∞

0

∫ ∞

0
lvkal−1Sa(v, a)n(v, a) dv da

• Nucleation term:∫ ∞

0

∫ ∞

0
J(T , φ)δ(v − v0)δ(a − a0)alvk dv da = J(T , φ)vk

0al
0
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• Aggregation birth term:
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0

∫ ∞

0
vkalB(v, a) dv da

=
1
2

∫ ∞

0
al

∫ a

0

[∫ ∞

0

∫ v

0
β(v − v∗, v∗, a − a∗, a∗)n(v − v∗, a − a∗)n(v∗, a∗) dv∗vk dv

]
da∗ da

• change in order of integration

=
1
2

∫ ∞

0
al

∫ a

0

[∫ ∞

0

∫ ∞

v∗
β(v − v∗, v∗, a − a∗, a∗)n(v − v∗, a − a∗)vk dv n(v∗, a∗) dv∗

]
da∗ da

• change of variables v′ = v − v∗

=
1
2

∫ ∞

0
al

∫ a

0

[∫ ∞

0

∫ ∞

0
β(v′, v∗, a − a∗, a∗)n(v′, a − a∗)(v′ + v∗)k dv′n(v∗, a∗) dv∗

]
da∗ da
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• same steps for a

=
1
2

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0
(v′ + v∗)k(a′ + a∗)lβ(v′, v∗, a′, a∗)n(v′, a′)n(v∗, a∗) dv∗ da∗ dv′ da′

• combining everything yields
∫ ∞

0

∫ ∞

0
vkalB(v, a) dv da

=
1
2

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0
(v + v∗)k(a + a∗)lβ(v, v∗, a, a∗)n(v, a)n(v∗, a∗) dv∗ da∗ dv da

• Aggregation death term: β(v, v∗, a, a∗) = β(v∗, v, a∗, a)
∫ ∞

0

∫ ∞

0
vkalD(v, a) dv da

=
1
2

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

(
vkal + v∗ka∗l

)
β(v, v∗, a, a∗)n(v, a)n(v∗, a∗) dv∗ da∗ dv da

N.B. These results are general for binary aggregation/agglomeration
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Final result:

∂mk,l

∂t
+ ∇x · Ugmk,l =

J(T , φ)vk
0al

0 +

∫ ∞

0

∫ ∞

0
kvk−1alGv(v, a) n(v, a) dv da

+

∫ ∞

0

∫ ∞

0
lvkal−1 [Ga(v, a) + Sa(v, a)] n(v, a) dv da

+
1
2

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

[
(v + v∗)k(a + a∗)l − vkal − v∗ka∗l

]
β(v, v∗, a, a∗) n(v, a) n(v∗, a∗) dv∗ da∗ dv da

where Ug is gas-phase velocity from flow code

QBMM are needed to close the RHS
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Application of CQMOM to Moments

Reconstructed NDF: Nv = Na = 3

n∗(v, a) =

Nv∑
i=1

Na∑
j=1

wi,jδ(v − vi)δ(a − ai,j)

CQMOM approximation for 21 moments:

mk,l =

Nv∑
i=1

Na∑
j=1

wi,jvk
i al

i,j

m0,0 m0,1 m0,2 m0,3 m0,4 m0,5

m1,0 m1,1 m1,2 m1,3 m1,4 m1,5

m2,0 m2,1 m2,2 m2,3 m2,4 m2,5

m3,0 ↓ ↓ ↓ ↓ ↓

m4,0 〈a〉1 〈a2〉1 〈a3〉1 〈a4〉1 〈a5〉1 → {w1,j, a1,j}

m5,0 〈a〉2 〈a2〉2 〈a3〉2 〈a4〉2 〈a5〉2 → {w2,j, a2,j}

↓ 〈a〉3 〈a2〉3 〈a3〉3 〈a4〉3 〈a5〉3 → {w3,j, a3,j}

{wi, vi}

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Application to
Fine-Particle
Formation
Overview of
Modeling Approach

Flame Synthesis of
Nanoparticles

LES Results

Application to
Bubbly Flows
QBMM for Bubble
Columns

Flows with
Coalescence and
Breakage

Simulation of Stirred
Tanks with QBMM

Application of CQMOM to Moments

Reconstructed NDF: Nv = Na = 3

n∗(v, a) =

Nv∑
i=1

Na∑
j=1

wi,jδ(v − vi)δ(a − ai,j)

CQMOM approximation for 21 moments:

mk,l =

Nv∑
i=1

Na∑
j=1

wi,jvk
i al

i,j

m0,0 m0,1 m0,2 m0,3 m0,4 m0,5

m1,0 m1,1 m1,2 m1,3 m1,4 m1,5

m2,0 m2,1 m2,2 m2,3 m2,4 m2,5

m3,0 ↓ ↓ ↓ ↓ ↓

m4,0 〈a〉1 〈a2〉1 〈a3〉1 〈a4〉1 〈a5〉1 → {w1,j, a1,j}

m5,0 〈a〉2 〈a2〉2 〈a3〉2 〈a4〉2 〈a5〉2 → {w2,j, a2,j}

↓ 〈a〉3 〈a2〉3 〈a3〉3 〈a4〉3 〈a5〉3 → {w3,j, a3,j}

{wi, vi}

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Application to
Fine-Particle
Formation
Overview of
Modeling Approach

Flame Synthesis of
Nanoparticles

LES Results

Application to
Bubbly Flows
QBMM for Bubble
Columns

Flows with
Coalescence and
Breakage

Simulation of Stirred
Tanks with QBMM

Application of CQMOM to Transport Equation

Final result:

∂mk,l

∂t
+ ∇x · Ugmk,l = J(T , φ)vk

0al
0 nucleation

+

Nv∑
i=1

Na∑
j=1

wi,jkvk−1
i al

i,jGv(vi, ai,j) volume change

+

Nv∑
i=1

Na∑
j=1

wi,jlvk
i al−1

i,j

[
Ga(vi, ai,j) + Sa(vi, ai,j)

]
area change

+
1
2

Nv∑
i=1

Na∑
j=1

Nv∑
m=1

Na∑
n=1

wi,jwm,n aggregation[
(vi + vm)k(ai,j + am,n)l − vk

i al
i,j − vk

mal
m,n

]
β(vi, vm, ai,j, am,n)

RHS is now closed
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Implementation in LES code

Governing equations 

26 
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Results - normalized particle volume & area 

40 

• m10 mean particle volume
• m01 mean particle surface area
• Npp primary particles (nuclei)
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Summary for Fine-Particle Applications

• Complex flow physics
• Turbulence in non-canonical geometries
• Coupling with turbulent mixing and combustion
• Heat transfer, acoustics, compressible flow

• Complex chemistry
• Non-equilibrium chemistry (rich, lean)
• Premixed/nonpremixed/partially premixed combustion
• Fine particles (‘slow’ chemistry, high Sc, radiation)

• Fine particle dynamics
• Particle size/chemical composition distribution
• Nucleation, oxidation, surface growth
• Aggregation, coagulation, sintering
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QBMM for Bubble Flows
Monokinetic assumption

Bubble velocity distribution

• Due to ρg � ρl, bubble have very small Stokes numbers
• In GPBE, bubble velocity is monokinetic:

n(vp, ξ) = n(ξ) δ
(
vp − Up(ξ)

)
• In words, bubble velocity depends only on “size” and velocity

fluctuations for fixed “size” are negligible
• However, many forces in addition to drag are needed

Moments
• Size moments needed to reconstruct n(ξ)
• Joint size-velocity moments 〈ξkvp〉 needed to approximate Up(ξ)
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QBMM for Bubble Columns
Geometry description

Rectangular bubble column

• Contaminated
air–water

• Superficial gas
velocity: 2.4–21.3
m/s

• Exp. measur.: gas
hold-up, plume
oscillation period
(POP), mean Sauter
diameter

Diaz, M.E., Montes, F.J., Galan, M.A., 2008. Chemical Engineering and Processing 47, 1867-1876.
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QBMM for Bubble Columns
Computational details for OpenFOAM

• QMOM and CQMOM implemented in OpenFOAM solver
compressibleTwoPhaseEulerFoam (two-phase Eulerian-Eulerian
equations) with compressibility effects disabled (isothermal system)

• Drag coefficient calculated through terminal velocity (20 cm/s) and
other drag correlations but other interfacial forces neglected

• Standard k–ε model for liquid turbulence

• PBM solved with QMOM for four moments (M0, M1, M2, M3)
corresponding to a two-node quadrature and CQMOM for nine
moments (M0,0, M1,0, M2,0, M3,0, M4,0, M5,0, M0,1, M1,1, M2,1)
corresponding to a three-node quadrature

• Adaptive first-order Euler time discretization scheme with ∆t chosen so
that CFL condition is respected

• Inlet condition for gas bubbles: αG = 0.5; inlet gas velocity to match
gassing rate; lognormal BSD centered on mean size2

2Geary, N.W., Rice, R.G., 1991. AIChE J. 37, 161-168.

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Application to
Fine-Particle
Formation
Overview of
Modeling Approach

Flame Synthesis of
Nanoparticles

LES Results

Application to
Bubbly Flows
QBMM for Bubble
Columns

Flows with
Coalescence and
Breakage

Simulation of Stirred
Tanks with QBMM

QBMM for Bubble Columns
Computational details for OpenFOAM

Numerical schemes and boundary conditions
Variable Scheme Inlet Outlet Wall

Gas vol. frac.
Limited Second

0.5 Gradient zero Gradient zero
Order Upwind

Gas velocity
Limited Second

Dep. on flow rate
Gradient zero

Free-slip wall
Order Upwind with backflow

Liquid Limited Second
0.0 m/s Gradient zero No-slip wall

velocity Order Upwind
Pressure First Order Upwind Gradient zero 1 bar Gradient zero

k
Limited Second Based on turb. 1 · 10−4m2s−2

Gradient zero
Order Upwind Int. = 5% (backflow only)

ε
Limited Second length scale equal 1 · 10−5m2s−3

Gradient zero
Order Upwind to the hole diam. (backflow only)

Moments First Order Upwind Log-normal distrib. Gradient zero Gradient zero

Mk = M0 exp
{

kµ +
k2σ2

2

}
, µ = log

(
m2

√
v + m2

)
σ =

√
log

( v
m2 + 1

)

Gas vol. frac. = kV M3 = kV M0 exp
{

3µ +
9σ2

2

}
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QBMM for Bubble Columns
Computational details for OpenFOAM

Computational grids

1 coarse grid (17 width
× 7 depth × 45
height)

2 medium grid (32
width × 11 depth ×
70 height)

3 fine grid (62 width ×
19 depth × 128
height)
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QBMM for Bubble Columns
Grid independence

Mesh size effect on calculated gas hold-up, Plume Oscillation Period
and Sauter Diameter compared with experiments for UG = 2.4 mm/s

Grid size Num. Hold-up POP (s) d32 (mm)

Coarse 5355 0.64% 7.78 5.78

Medium 24640 0.62% 10.57 6.92

Fine 150784 0.57% 11.71 5.93

Experiment 0.69% 11.37 6.83
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QBMM for Bubble Columns
flow field and gas profile at 2.4 mm/s

Experiment Gas. vol. frac. Liq. vel. field
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QBMM for Bubble Columns
Flow field and gas profile at 11.9 mm/s

Experiment Gas. vol. frac. Liq. vel. field
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QBMM for Bubble Columns
Flow field and gas profile at 21.3 mm/s

Experiment Gas. vol. frac. Liq. vel. field
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Results QBMM
Mean bubble size

2.4 mm/s 11.9 mm/s 21.3 mm/s (m)
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QBMM for Bubble Columns
Mean bubble size

Effect of inlet mean bubble size
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QBMM for Bubble Columns
Mean bubble size

Effect of inlet lognormal std deviation
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QBMM for Bubble Columns
Plume oscillation period
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Gas hold-up
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QBMM for Bubble Columns
Summary

Comparison of experimental data and calculated results for global
gas volume fraction (hold-up), POP and mean Sauter diameter

varying the superficial gas velocity UG
Superf. vel. (mm/s) Hold-up POP (s) d32 (mm)
2.4 0.62% 10.10 6.01
Exp. 0.69% 11.37 6.83
7.1 1.61% 8.26 6.28
Exp. 1.81% 5.69 7.05
11.9 2.45% 5.83 6.89
Exp. 2.63% 4.27 6.50
16.6 3.36% 3.80 7.01
Exp. 3.36% 3.01 6.40
21.3 4.19% 3.84 7.96
Exp. 4.10% 2.84 7.73
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QBMM for Bubble Columns
CQMOM implementation for oxygen transfer

UG = 21.3 mm/s (t = 1.5 s)
Gas vol. frac. / Sauter d. (m) / liq. ox. conc. (mol/m3)
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QBMM for Bubble Columns
CQMOM implementation for oxygen transfer

UG = 21.3 mm/s (t = 1.5 s)
gas ox. conc. (mol/m3) / liq. ox. conc. (mol/m3)
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Coalescence and Breakage

• Consider a batch homogeneous GAS–LIQUID system (i.e. one
isolated cell of computational domain)

• Gas bubbles are characterized by SIZE (L) and by composition
through MOLES (φ) of active component

• Bubbles undergo ONLY coalescence and breakup (no mass
transfer)

• Initial condition: bivariate (in size and composition) Gaussian
distribution

• There is no flux of bubbles through cell
• Evolution of NDF is predicted with DSMC
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Coalescence and Breakage

NDF at steady state for bubble size and concentration
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Coalescence and Breakage, Mass Transfer,
Chemical Reaction and Convection

• Consider one single cell of finite volume code
• Bubble coalescence, breakup, mass transfer, chemical reaction

in liquid phase
• Initial condition: bubbles with same concentration and lognormal

bubble size distribution
• Constant flux of bubbles enters cell with NDF corresponding to

initial condition
• Evolution of NDF is predicted with DSMC
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Coalescence, breakage and mass transfer. Solid black line: DSMC method. Red line CQMOM with N1 = 3 and N2 = 1 and DQMOM with
N = 3.
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Mean percentage error of QBMM for examined case at steady state
M0,0 M1,0 M2,0 M3,0 M4,0 M5,0 M6,0 M7,0

N=2 10.1 7.9 4.6 0.5 6.5 22.3 38.3 50.1
N=3 7.9 5.2 2.3 0.5 3.3 6.2 8.2 6.9
N=4 7.7 5.1 2.4 0.4 3.3 6.4 9.5 12.7

M0,1 M1,1 M2,1 M3,1
N=2 2.1 6.5 21.4 44.6
N=3 1.9 1.8 4.7 6.2
N=4 3.2 1.7 3.4 6.4
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Comparison DSMC with QBMM

• With DSMC evolution of population of bubbles is represented through
its stochastic equivalent (with N ≈ 100 notional bubbles)

• With QBMM evolution is tracked deterministically with N ≈ 3 − 6
macro-bubbles!

• These macro-bubbles are centered at quadrature nodes

• Therefore all unclosed terms appearing in equations for moments are
closed with great accuracy

• Two distributions share same moments of NDF:

Mk,l(x, t) =

"
n(L, φb; x, t)Lkφl

b dL dφb

• Sharing same moments does not imply that quadrature has to be
realizable (for example M2,1 has to be included!)
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Quadrature Realizability

Coalescence and breakage WITHOUT MASS TRANSFER
N = 2 for 6 moments N = 3 for 9 moments
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Without including M2,1 quadrature is not realizable!
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DSMC for Stirred Tanks

Let us now consider a realistic stirred tank
• Rushton turbine (six blades) - reactor volume 15,3 l
• Gassing rate ≈ 0,062 l/s; stirring rate 100–300 rpm
• Flow field simulation ANSYS/Fluent13 - DSMC in-house code

Wu & Patterson, Chem. Eng. Sci., 44, 2207-2221, 1989
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Compartment model
Tot. numb. comp. Turb. diss. rate m2s−3 N ≈ 2
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Compartment model
Tot. numb. comp. Turb. diss. rate m2s−3 N ≈ 5
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Compartment model
Tot. numb. comp. Turb. diss. rate m2s−3 N ≈ 10
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Effect number of comp. on gas hold-up and Sauter diameter
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Bubble size-composition in two regions
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Effect of chemical reaction (Ha =
√

kCO2 D/kl)
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Drag Laws

Drag force is evaluated from terminal velocity taking into account
effect of turbulence and swarms (Ut = 13 – 8 cm/s)
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Power-Number Reduction (RPD)

Power-number reduction (RPD) due to presence of liquid
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Laakkonen M, Alopaeus V, Aittamaa J. Validation of bubble breakage, coalescence and mass transfer models for gas–liquid dispersion in

agitated vessel. Chemical Engineering Science. 2006, 61: 218-228.
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Different gassing and stirring rates were investigated
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CQMOM: 10 additional scalars are now transported: 9 moments and
1 oxygen concentration inside liquid phase

1 9 moments of distribution are inverted in order to find weights
and nodes of quadrature
M0,0, M1,0, M2,0, M3,0, M4,0, M5,0, M0,1, M1,1, M2,1 → w1, w2, w3, L1, L2, L3, φ1,

φ2, φ3

2 Source terms of moments due to coalescence, breakage and
mass trasfer are calculated

3 Source term of the chemical species in liquid is calculated

4 To speed up calculation moment equations are solved at each
time step whereas flow field is updated (for 2 sec) every 6 sec
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Results and comparison with experimental data for configuration 1
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Experimental and simulated mean bubble size (mm) in five different points of
the stirred tank for configuration 1

SR, RPM GR, vvm R2 R4 R8 R9 R12
155 0.018 Exp. 2.37 2.48 2.29 1.65 3.31

Sim. 3.10 2.56 2.57 2.63 3.09
220 0.041 Exp. 2.56 3.34 2.57 1.76 3.81

Sim. 2.66 3.04 2.47 2.50 3.20
220 0.052 Exp. 2.74 2.93 2.17 2.01 3.18

Sim. 2.45 3.31 2.55 2.65 3.57
250 0.093 Exp. 2.96 3.25 2.43 2.23 3.33

Sim. 2.56 3.27 2.59 3.05 3.35
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Global gas hold-up for 390 rpm for configuration 2
Drag coefficient with terminal velocity (Ut=13-8 cm/s)
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Specific surface area of bubbles (m−1) at 250 rpm and 0.052 vvm
(left) and at 155 rpm and 0.018 vvm (right)
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Mass transfer coefficient kl (m s−1) at 250 rpm and 0.052 vvm (left)
and at 155 rpm and 0.018 vvm (right)
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Oxygen concentration (mol m−3) in gas (left) and in liquid (right) at
250 rpm and 0.052 vvm
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Time evolution of oxygen concentration in liquid
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Example of poor performance of fixed-constant bubble 3-D simulation
for mass transfer!
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Part 6

APPLICATION TO GAS–PARTICLE FLOWS
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Gas–Particle Flows

Principal characteristics
• gas phase
• particle phase
• finite particle inertia
• collisions
• variable mass loading
• size distribution
• multiphase turbulence

Stp is not negligible, must account
for velocity fluctuations

Bidisperse gas–particle flow (PR-DNS of

S Subramaniam)
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Modeling Challenges in Gas–Particle Flows

• Strong coupling between gas and particle phases
• Wide range of particle volume fractions (even in same flow!)
• Inertial particles with wide range of Stokes numbers
• Collision-dominated to collision-less regimes in same flow
• Granular temperature can be small and large in same flow
• Polydispersity (e.g. size, density, shape) is always present

Need a modeling framework that can handle all aspects!
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Mesoscale Kinetic Equation for Particle Phase

Mesoscale equations are closed to reproduce physics from
microscale
• Kinetic equation (KE) for monodisperse particles: n(t, x, v)

∂n
∂t

+
∂

∂xi
(vin) +

∂

∂vi
[Ai(t, x, v)n] = C

with closed acceleration A and collision operator C

• Generalized population balance equation (GPBE): n(t, x, v, ξ)
∂n
∂t

+
∂

∂xi
(vin) +

∂

∂vi

[
Ai(t, x, v, ξ)n

]
+

∂

∂ξ

[
G(t, x, v, ξ)n

]
= C

with closed acceleration A, growth G and collision operator C

KE/GPBE is coupled to Navier-Stokes equation for gas phase
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Complexity of Solutions for Gas–Particles Flows

Cluster-induced turbulence
EL simulations: J. S. Capecelatro & O. Desjardins

• average volume fraction:
αp = 0.01

• ρp/ρg = 1500, Rep = 1
• elastic collisions
• full 2-way coupling

Eulerian moment model
should yield identical results

(if closure is accurate)
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Particle Trajectory Crossing in 2-D

10-moment, 9-node CHyQMOM
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Particle Trajectory Crossing in 3-D

16-moment, 27-node CHyQMOM
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Do Eulerian and Lagrangian Models Agree?

Cluster-induced turbulence

Simulation parameters

• Cases 1–6 in Capecelatro et al.
JFE (2015)

• volume fraction: αp = 0.01
• ρp/ρg = 1000, Rep = 0.5
• terminal velocity: V = 0.1 m/s
• cluster length: L = 2.5 mm
• Case 6: Lx/L = 129

(2048 × 512 × 512)

Euler-Lagrange and Euler-Euler
simulations performed on same grid,

but not with same numerical
schemes
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Governing Equations for Eulerian Model

10 velocity moments in 3-D

∂M
∂t

+ ∇ · F = A + C Mγ
ijk =

∫
vi

1vj
2vj

3 f (v) dv

M0
000 = αp

M
1
100

M1
010

M1
001

 = αpUp

M
2
200 M2

110 M2
101

M2
110 M2

020 M2
011

M2
101 M2

011 M2
002

 = αp(Up ⊗Up + Pp)

Gauss–Hermite quadrature for free-transport flux F
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Qualitative Comparison of Clustering

Case 2 Case 4 Case 6

Similar shapes, but EE has slightly longer/wider clusters
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Quantitative Comparison of One-Point Statistics

αp PDF Inhomogeneity Drift velocity

EE has slightly fewer high αp values (due to numerics?)

EE has slightly higher drift velocity (due to larger
clusters?)
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Concluding Remarks

Quantitative Comparison of One-Point TKE
Statistics

Θp kp kf

EE has lower uncorrelated TKE (due to EL
post-processing?)

EE has higher correlated TKE (due to larger clusters?)
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Quantitative Comparison of TKE Anisotropy

Pp Reynolds stressp Reynolds stressf

EE has slightly higher anisotropy (due to larger clusters?)

CIT is highly anisotropic =⇒ need full pressure tensor
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Quantitative Comparison of Two-Point Statistics

αp vertical Up vertical Up horizontal

EE has longer clusters (horizontal nearly identical)

EE has larger energetic vortices (due to longer clusters?)
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Quantitative Comparison of Energy Spectra

αp Up Uf

Good agreement at small wavenumbers (κdp < 0.1)

EE has less energy than EL at large wavenumbers
(due to EL filter for coupling, numerics?)
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Gas–Particle Model for Dilute to Dense Flows

Particle-phase KE

∂n
∂t

+ v ·
∂n
∂x

+
∂

∂v
· An = C

• n (t, x, v): number density
function (NDF)

• v: particle velocity
• A: particle acceleration
• C: rate of change of n due to

Boltzmann–Enskog
collisions and frictional
stresses

Fluid-phase equations

∂

∂t
αgρg + ∇ · αgρgUg = 0

∂

∂t
αgρgUg + ∇ · αgρgUgUg

= ∇ · αgτg + βg + αgρgg

• αg = 1 − αp: gas volume
fraction

• βg: mean particle drag
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Particle-phase KE
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+
∂

∂v
· An = C

• n (t, x, v): number density
function (NDF)

• v: particle velocity
• A: particle acceleration
• C: rate of change of n due to

Boltzmann–Enskog
collisions and frictional
stresses

Fluid-phase equations

∂

∂t
αgρg + ∇ · αgρgUg = 0

∂

∂t
αgρgUg + ∇ · αgρgUgUg
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fraction
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Governing Equations with Collisional and
Frictional Fluxes

10 velocity moments in 3-D (dilute regime):

∂M
∂t

+ ∇ · F = S Mγ
ijk =

∫
vi

1vj
2vj

3 f (v) dv

M0
000 = αp,

M
1
100

M1
010

M1
001

 = αpUp,

M
2
200 M2

110 M2
101

M2
110 M2

020 M2
011

M2
101 M2

011 M2
002

 = αp(Up⊗Up +Pp)

Particle-phase equations (dense regime =⇒ 3Θp = trace(Pp)):

∂ρpαp

∂t
+ ∇ · ρpαpUp = 0

∂ρpαpUp

∂t
+ ∇ · ρpαp

(
Up ⊗ Up + Pp + Gp + Zp

)
= ρpαpg + ρpαpMpg

∂ρpαpPp

∂t
+ ∇ · ρpαp

(
Up ⊗ Pp + Qp + Hp

)
+ ρpαp

[
(Pp + Gp) · ∇Up +

(
∇Up

)T
· (Pp + Gp)

]
= ρpαpEpg + ρpαpCp
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Kinetic, Collisional and Frictional Fluxes
Dense Regime

Kinetic flux:
Up ⊗ Up + Pp

Pp = ΘpI − σp = ΘpI − 2νp,kSp

Sp =
1
2

[
∇Up +

(
∇Up

)T
−

2
3

(
∇ · Up

)
I
]

Collisional flux (pressure infinite for finite αp ≈ 0.63):

Gp =
pp,c

ρpαp
I − 2νp,cSp

Frictional flux (pressure infinite for finite αp ≈ 0.63, null when αp < 0.55):

Zp =
pp,f

ρpαp
I − 2νp,f Sp

Energy fluxes: Up ⊗ Pp + Qp + Hp = Up ⊗ Pp −
2
3 kΘ∇ ⊗ Pp
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Kinetic Flux-Splitting Scheme for All Flow
Regimes

∂M
∂t

+ ∇ · h1F + ∇ · (h2F + G + Z) = S

h1 + h2 = 1

h2 =

(
pp,c + pp,f

pp,k + pp,c + pp,f + ε

)p

Step 1: KBFVM
∂M
∂t

+ ∇ · h1F = 0

Step 2: Hydrodynamic solver
∂M
∂t

+ ∇ · (h2F + G + Z) = S
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Solution Procedure

1 Initialize all variables M, {αp,Up,Θp,σp}, and {αg,Ug, pg}

2 Calculate h1 and h2

3 Explicit Free-transport solver:
Compute kinetic-based moment fluxes to transport the moments
Update {αp,Up,Θp,σp} using moments M

4 Iterative Hydrodynamic solver:
Solve {αp,Up,Θp} hydrodynamic transport equations
Solve gas-phase velocity and pressure, {Ug, pg} , equations

5 Solve σp transport equation

6 Update moment set M using {αp,Up,Θp,σp}

7 Advance in time by repeating from Step 2 until simulation is complete
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2-D Bubbling Fluidized Bed

αp h2 Up,y Θp σp,xy
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3-D Wall-Bounded Vertical Channel
Instantaneous Fields

αp = 0.01 αp = 0.1 αp = 0.4

αp Θp αp Θp αp Θp
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Wall-Bounded Vertical Channel
Statistical Results

〈αp〉 〈Up,y〉p/Vt 〈Θp〉p/V2
t 〈Pp〉p/〈3Θp〉p
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Summary for Gas–Particle Flows

• Quadrature-based moment methods solve kinetic equation by
reconstructing velocity distribution function from moments

• For dilute flows, simulations use velocity NDF reconstruction and
kinetic-based finite-volume methods

• For dense flows, use KBFVM for kinetic flux and “two-fluid”
hydrodynamic solver for collisional/frictional fluxes

• Joint mass-velocity NDF allows for polydisperse particles is used
for applications involving particle “size” changes
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Summary for Gas–Particle Flows
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Summary for Gas–Particle Flows

• Quadrature-based moment methods solve kinetic equation by
reconstructing velocity distribution function from moments

• For dilute flows, simulations use velocity NDF reconstruction and
kinetic-based finite-volume methods

• For dense flows, use KBFVM for kinetic flux and “two-fluid”
hydrodynamic solver for collisional/frictional fluxes

• Joint mass-velocity NDF allows for polydisperse particles is used
for applications involving particle “size” changes
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TURBULENCE MODELING FOR DISPERSE
MULTIPHASE FLOWS
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Example: Cluster-Induced Turbulence
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Example: Cluster-Induced Turbulence

Start with homogeneous, laminar flow:
• particles fall under gravity g with ρp � ρf

• Stokes drag time τp =
ρp

ρf

d2
p

18νf

terminal velocity ∝ V = τpg
particle Reynolds number Rep =

dpV

νf

• spontaneous cluster formation
cluster size ∝ L = τpV � dp

fluid-phase Reynolds number Ref = LV

νf

• particle collisions 〈αp〉 ≈ 0.01

• mass loading ϕ =
ρp〈αp〉

ρf 〈αf 〉
≥ 1

• statistically homogeneous, stationary
turbulence when Ref � 1

CIT exists due to momentum coupling
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CIT: Important Questions

1 What are the turbulence characteristics of fully developed CIT?
• integral scales
• dissipation scales
• energy spectra for αp, up, uf , . . .

2 How do these characteristics depend on flow parameters?
• fluid-phase Reynolds number Ref = 1

18
ρp
ρf

Re2
p = 1

2 Stp Rep

• mass loading ϕ
• mean volume fraction 〈αp〉

3 How is turbulent kinetic energy (TKE) produced and transferred
between phases?

4 What are roles of correlated vs. uncorrelated components of
TKE?

5 How do we derive a one-point turbulence model for CIT?
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From Microscale to Mesoscale to Macroscale

microscale DNS

• Resolve flow
around particles

• Particle collisions
resolved

• Fluid stresses on
particles

mesoscale simulation

• Drag model
• Particle collisions

resolved
• Clusters are

resolved

macroscale simulation

• Turbulence model
• Phase-average

variables
• Effect of clusters is

modeled
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Mesoscale Computations
(Capecelatro & Desjardins 2013)

Fluid phase

• NGA arbitrarily high-order DNS/LES code

• Massively parallel

• Conservation of mass, momentum, and kinetic

energy

Particle phase

• Lagrangian particle tracking

• Newton’s 2nd law with Runge-Kutta ODE solver

• Soft-sphere collision model

Interphase exchange terms

• Transfer particle volume and momentum to fluid

• Fully conservative and consistent filtering approach

• Transferred data converges under mesh refinement
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Mesoscale Transport Equations
(Capecelatro & Desjardins 2013)

Gas phase
∂ρf (1 − α̂)

∂t
+ ∇ · ρf (1 − α̂)uf = 0

∂ρf (1 − α̂)uf

∂t
+ ∇ · ρf (1 − α̂)uf uf = −∇pf + ∇ · σf − ρpα̂Â + ρf (1 − α̂)g

Particles (1 ≤ p ≤ Np)

dxp

dt
= vp

dvp

dt
= Ap + Fcol

p + g

Two-way coupling

α̂(t, x) ≈
Np∑
p=1

G(|x − xp(t)|)Vp α̂Â(t, x) ≈
Np∑
p=1

ApG(|x − xp(t)|)Vp

G(x) is an isotropic Gaussian filter with width δf = 8dp

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Application to
Gas–Particle
Flows
Application to
Clustered-Induced
Turbulence

Extension to Dense
Flows

Solution Algorithm
for All Flow Regimes

Turbulence
Modeling for
Disperse
Multiphase Flows
Cluster-Induced
Turbulence

Mesoscale
Simulation of CIT

Turbulence Model
for CIT

Concluding Remarks

Simulation Parameters for CIT

Physical parameters

dp Particle diameter 0.09 mm
ρp Particle density 1000 kg/m3

ρf Fluid density 1 kg/m3

νf Fluid kinematic viscosity 1.8×10−5 m2/s
e Coefficient of restitution 0.9
Np Number of particles 55×106

g Gravity magnitude 2.0002 4.0004 8.0008 m/s2

V Cluster velocity 0.05 0.1 0.2 m/s
L Cluster length 1.25 2.5 5 mm

Non-dimensional parameters

〈αp〉 Mean particle volume fraction 0.01
ϕ Mean mass loading 10.1
Rep Particle Reynolds number 0.25 0.5 1
Ref Fluid Reynolds number 3.5 14 56
Lx/L Domain length 256 128 64
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Time Evolution of Cluster Formation

• Clusters form due to fluid
instability

• Positive feedback due to
cluster-fluid-velocity
correlation

• Steady state reached when
fluid turbulence breaks up
clusters

• Fluid velocity seen by
particles is negatively
correlated with αp

• Box size must allow fluid
turbulence to fully develop at
large scales!
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Particle Volume Fraction and Fluid Velocity vs. Rep

Rep 0.25 0.5 1 Rep 0.25 0.5 1
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Spatially Correlated and Uncorrelated Velocity

v(i)
p (t) =

up(x(i)
p , t) + δv(i)

p

correlated

up(x, t)
correlated TKE

k∗p = 1
2 up · up

uncorrelated TKE

Θ∗p = 1
3 δvp · δvp
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Filter for Decomposing k∗p and Θ∗p

• κ∗p = 1
2 vp · vp = k∗p + 3

2 Θ∗p is particle property (independent of filter)
• Partition between k∗p and Θ∗p depends on filter!

• Use variable filter width δf (αp) =

(
Npd3

p

αp

)1/3
with Np = 10

• Validate by comparing Lagrangian and Eulerian two-point
statistics:
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Filter Error for Energy Components

Variable filter width yields good decomposition of κ∗p to find k∗p and Θ∗p

k∗p error vs. Np
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Np ≈ 10 agrees with Lagrangian 2-pt statistics
We use adaptive filter to study instantaneous local fields of up and δvp
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Dynamics of Granular Temperature Field

Maximum Θ∗ in front of clusters
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Concluding Remarks

Compressive “Heating” of Particle Phase

• Maximum compression
(−∇ · up) at same location at
maximum Θ∗p

• Cluster fall velocity reduced
by granular pressure
p = αpΘ∗p
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Eulerian Mesoscale Model for Particle Phase

Kinetic equation for particle number density function (NDF): f (t, x, vp)

accumulation +free transport =acceleration +collisions

∂f
∂t

+vp ·
∂f
∂x

= −
∂

∂vp
· [(Ap + g)f ] +C[f , f ]

where fluid coupling is modeled as (drag dominant when ρp � ρf )

Ap(t, x, vp) =
1
τp

(uf − vp) −
1
ρp
∇pf +

1
ρp
∇ · σf

Define particle-phase mass, momentum and pressure tensor
(trace(P) = 3Θp):

αp =

∫
f dvp αpup =

∫
vp f dvp αpP =

∫
v′′p ⊗ v′′p f dvp

closure with these variables yields anisotropic Gaussian (AG) model
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Eulerian Transport Equations

Gas phase
∂ρfαf

∂t
+ ∇ · ρfαf uf = 0

∂ρfαf uf

∂t
+ ∇ · ρfαf uf ⊗ uf = −∇pf + ∇ · σf − ρpαpAp + ρfαf g

Particle phase
∂ρpαp

∂t
+ ∇ · ρpαpup = 0

∂ρpαpup

∂t
+ ∇ · ρpαp(up ⊗ up + P) = ρpαp(Ap + g)

∂ρpαpP
∂t

+ ∇ · ρpαp(up ⊗ P + Q) = −ρpαp(P · ∇up)† − ρpαp
2
τp

P + ρpαp
2
τc

(∆∗ − P)

coupling term Ap is closed, but energy flux Q requires kinetic theory closure
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Concluding Remarks

Particle Volume Fraction
EL vs. EE-AG for Rep = 0.5

Lx/8 Lx/4 Lx

EL EE-AG EL EE-AG EL
EE-AG
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Comparison Between EL and EE-AG

Volume fraction fluctuations Particle settling velocity

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for

Polydisperse
Particulate and

Multiphase
Systems

Rodney O. Fox
International

Francqui
Professor

Application to
Gas–Particle
Flows
Application to
Clustered-Induced
Turbulence

Extension to Dense
Flows

Solution Algorithm
for All Flow Regimes

Turbulence
Modeling for
Disperse
Multiphase Flows
Cluster-Induced
Turbulence

Mesoscale
Simulation of CIT

Turbulence Model
for CIT

Concluding Remarks

Comparison Between EL and EE-AG

Correlated particle energy Granular energy contribution
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Particle Volume Fraction Distribution

Lx/2 Lx

Lx
〈α′2p 〉

〈αp〉
2

〈α′3p 〉

〈α′2p 〉
3/2

〈α′4p 〉

〈α′2p 〉
2

EL 0.837 2.37 12.19
EE-AG 0.744 2.09 9.91
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Concluding Remarks

Energy Spectra

g0 (r) =

〈
αp (x, t)αp (x + r, t)

〉〈
αp (x, t)

〉 〈
αp (x + r, t)

〉
Particle volume fraction

R (r) =

〈
(α1/2

p up) (x, t) (α1/2
p up) (x + r, t)

〉〈
α1/2

p (x, t)α1/2
p (x + r, t)

〉
Particle velocity
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Concluding Remarks

Observations Relevant to CIT

• Euler–Lagrange simulation
• Collisions are treated exactly (i.e. no kinetic theory model)
• Coupling to fluid uses spatial filter (δf ≈ dp)
• Provides most accurate approximation of flow physics

• Euler–Euler simulation
• Collisions are not treated exactly (anisotropic BGK closure)
• Coupling to fluid is exact
• Agreement with EL simulation is satisfactory for collisional flow

• Turbulence model for homogeneous CIT
• Rigorous derivation starting from Eulerian transport equations
• Unclosed terms can be found from EL or EE simulations
• Multiphase Reynolds-stress model (RSM)
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• Rigorous derivation starting from Eulerian transport equations
• Unclosed terms can be found from EL or EE simulations
• Multiphase Reynolds-stress model (RSM)
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Concluding Remarks

Observations Relevant to CIT

• Euler–Lagrange simulation
• Collisions are treated exactly (i.e. no kinetic theory model)
• Coupling to fluid uses spatial filter (δf ≈ dp)
• Provides most accurate approximation of flow physics

• Euler–Euler simulation
• Collisions are not treated exactly (anisotropic BGK closure)
• Coupling to fluid is exact
• Agreement with EL simulation is satisfactory for collisional flow

• Turbulence model for homogeneous CIT
• Rigorous derivation starting from Eulerian transport equations
• Unclosed terms can be found from EL or EE simulations
• Multiphase Reynolds-stress model (RSM)
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Concluding Remarks

Glossary of Terms for CIT

Due to spatial homogeneity, the turbulence model has production,
exchange, dissipation and reorientation terms

Key Physical meaning
CD Dissipation/reorientation of P due to collisions
DE Exchange of momentum/Reynolds stresses/P due to fluid drag
DP Production of 〈u′′′2f ,1 〉f by fluid drag due to clusters
PE Exchange of momentum/Reynolds stresses due to fluid pressure
PS Pressure-strain reorientation of Reynolds stresses
VD Viscous dissipation of Reynolds stresses
VE Exchange of momentum/Reynolds stresses due to viscous stresses

Note: CIT is nearly 1-D turbulence with 〈u′′′2f ,1 〉f � 〈u
′′′2
f ,2 〉f = 〈u′′′2f ,3 〉f
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Reynolds-Averaged Equations for CIT I
Statistically Homogeneous

• Particle phase: phase average 〈·〉p = 〈αp·〉/〈αp〉

d〈up,1〉p

dt
=

1
τp

(
〈uf ,1〉p − 〈up,1〉p

)
DE

+
1
ρp

〈∂σf ,1i

∂xi

〉
p
−

〈
∂pf

∂x1

〉
p

 VE/PE

+ g

Rep
〈up,1〉p

V

〈uf ,1〉p

V
DE PE VE g

0.25 -3.009 -1.891 2.236 0.007 10−7 -2
0.5 -2.476 -1.420 4.224 0.013 10−7 -4
1.0 -2.278 -1.246 8.255 0.029 10−7 -8
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Reynolds-Averaged Equations for CIT II
Statistically Homogeneous

1
2

d〈u′′2p,1〉p

dt
=

1
τp

(
〈u′′′f ,1u′′p,1〉p − 〈u

′′2
p,1〉p

)
DE

+

〈
Θp

∂u′′p,1
∂x1

〉
p
−

〈
σp,1i

∂u′′p,1
∂xi

〉
p

PS/VD

+
1
ρp

〈u′′p,1
∂σ′f ,1i

∂xi

〉
p
−

〈
u′′p,1

∂p′f
∂x1

〉
p

 VE/PE

Rep
〈u′′2p,1〉p

2kp
PS VD DE PE VE

0.25 0.809 -0.022 -0.043 0.103 -0.001 10−9

0.5 0.788 -0.075 -0.141 0.274 -0.001 10−9

1.0 0.814 -0.275 -0.539 0.879 -0.005 10−9
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Reynolds-Averaged Equations for CIT III
Statistically Homogeneous

1
2

d〈u′′2p,2〉p

dt
=

1
τp

(
〈u′′′f ,2u′′p,2〉p − 〈u

′′2
p,2〉p

)
DE

+

〈
Θp

∂u′′p,2
∂x2

〉
p
−

〈
σp,2i

∂u′′p,2
∂xi

〉
p

PS/VD

+
1
ρp

〈u′′p,2
∂σ′f ,2i

∂xi

〉
p
−

〈
u′′p,2

∂p′f
∂x2

〉
p

 VE/PE

Rep
〈u′′2p,2〉p

2kp
PS VD DE PE VE

0.25 0.096 0.008 -0.013 0.008 10−4 -10−5

0.5 0.106 0.027 -0.044 0.021 10−4 -10−5

1.0 0.093 0.093 -0.154 0.062 10−3 -10−4
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Reynolds-Averaged Equations for CIT IV
Statistically Homogeneous

1
2

d〈P11〉p

dt
= −

1
τp
〈P11〉p DE

−

〈
Θp

∂u′′p,1
∂x1

〉
p

+

〈
σp,1i

∂u′′p,1
∂xi

〉
p

PS/VD

+
6
√
πdp
〈αpΘ

1/2
p

(
∆∗11 − P11

)
〉p CD

Rep
〈P11〉p

3〈Θp〉p
PS VD DE CD

0.25 0.621 0.022 0.043 -0.082 -0.030
0.5 0.528 0.075 0.141 -0.192 -0.096
1.0 0.507 0.275 0.539 -0.480 -0.402
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Reynolds-Averaged Equations for CIT V
Statistically Homogeneous

1
2

d〈P22〉p

dt
= −

1
τp
〈P22〉p DE

−

〈
Θp

∂u′′p,2
∂x2

〉
p

+

〈
σp,2i

∂u′′p,2
∂xi

〉
p

PS/VD

+
6
√
πdp
〈αpΘ

1/2
p

(
∆∗22 − P22

)
〉p CD

Rep
〈P22〉p

3〈Θp〉p
PS VD DE CD

0.25 0.198 -0.008 0.013 -0.025 0.011
0.5 0.236 -0.027 0.044 -0.086 0.030
1.0 0.246 -0.093 0.154 -0.233 0.119
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Reynolds-Averaged Equations for CIT VI
Statistically Homogeneous

• Fluid phase: phase-average velocity 〈uf ,1〉f = 0

1
2

d〈u′′′2f ,1 〉p

dt
=
ϕ

τp

(
〈u′′′f ,1u′′p,1〉p − 〈u

′′′2
f ,1 〉p

)
+
ϕ

τp
〈u′′′f ,1〉p〈up,1〉p DE/DP

+
1
ρf

(〈
pf

∂u′′′f ,1

∂x1

〉
−

〈
σf ,1i

∂u′′′f ,1

∂xi

〉)
PS/VD

−
ϕ

ρp

〈u′′′f ,1

∂σ′f ,1i

∂xi

〉
p

+

〈
u′′′f ,1

∂p′f
∂x1

〉
p

 VE/PE

Rep
〈u′′′2f ,1 〉p

2kf
PS VD DP DE PE VE

0.25 0.810 -0.465 -0.219 5.747 -5.329 0.012 -10−7

0.5 0.801 -1.380 -0.365 14.21 -12.94 0.030 -10−7

1.0 0.815 -4.643 -0.719 45.89 -41.47 0.116 -10−7
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Reynolds-Averaged Equations for CIT VII
Statistically Homogeneous

1
2

d〈u′′′2f ,2 〉p

dt
=
ϕ

τp

(
〈u′′′f ,2u′′p,2〉p − 〈u

′′′2
f ,2 〉p

)
DE

+
1
ρf

(〈
pf

∂u′′′f ,2

∂x2

〉
−

〈
σf ,2i

∂u′′′f ,2

∂xi

〉)
PS/VD

−
ϕ

ρp

〈u′′′f ,2

∂σ′f ,2i

∂xi

〉
p

+

〈
u′′′f ,2

∂p′f
∂x2

〉
p

 VE/PE

Rep
〈u′′′2f ,1 〉p

2kf
PS VD DE PE VE

0.25 0.095 0.237 -0.012 -0.266 -0.003 10−4

0.5 0.099 0.705 -0.023 -0.749 -0.010 10−4

1.0 0.093 2.384 -0.044 -2.490 -0.037 10−3
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Kinetic Energy Balance in Fully Developed CIT

Production 
I|up g|

Tf

kf

Np

DE1

mean
drag

DP

fluctuating
drag

VD

DE2

DE1: drag exchange ≈ 22%
DE2: drag dissipation ≈ 78%

Rep
2kf

V2
2κp

V2
kp

κp

0.25 19.52 13.63 0.90
0.5 11.27 7.78 0.88
1.0 8.04 5.41 0.89

In CIT, ≈ 90% of particle-phase KE is spatially correlated
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Reynolds-Stress Model for Fully Developed CIT I

• Particle phase:
〈up,1〉p = 〈u′′′f ,1〉p +V

where drift velocity is
〈u′′′f ,1〉p = Cg〈up,1〉p with Cg =0.63, 0.57, 0.55 (vs. Rep)

0 = τpRp,11 − τpεp,11 + βfp〈u′′2p,1〉
1/2
p 〈u

′′′2
f ,1 〉

1/2
f − 〈u

′′2
p,1〉p

0 = τpRp,22 − τpεp,22 + βfp〈u′′2p,2〉
1/2
p 〈u

′′′2
f ,2 〉

1/2
f − 〈u

′′2
p,2〉p

where βfp = 0.876 and pressure-redistribution tensor is modeled as

Rp,ii = −CR
εp

kp

(
〈u′′2p,i 〉p −

2
3

kp

)
with CR = 0.179 (vs. 1.8)

εp,ii = 2

fs

〈u′′2p,i 〉p

2kp
+ (1 − fs)

1
3

 εp with fs = 0.93
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Reynolds-Stress Model for Fully Developed CIT II

0 = τpεp,11 − 〈P11〉p + Cc
τp

τc

(
∆11 − 〈P11〉p

)
0 = τpεp,22 − 〈P22〉p + Cc

τp

τc

(
∆22 − 〈P2〉p

)
with Cc = 2 and ∆ii = 1

4 (1 + e)2〈Θp〉p + 1
4 (1 − e)2〈Pii〉p

• Fluid phase:

0 = τpRf ,11 − τpεf ,11 + ϕβfp〈u′′2p,1〉
1/2
p 〈u

′′′2
f ,1 〉

1/2
f − ϕβf 〈u′′′2f ,1 〉f +DP11

0 = τpRf ,22 − τpεf ,22 + ϕβfp〈u′′2p,2〉
1/2
p 〈u

′′′2
f ,2 〉

1/2
f − ϕβf 〈u′′′2f ,2 〉f

where βf = 1.03 and pressure-redistribution tensor is modeled as

Rf ,ii = −CR
εf

kf

(
〈u′′′2f ,i 〉f −

2
3

kf

)
− CD

(
DPii −

2
3
DP

)
with CD = 0.139 (vs. 0.6)

εf ,ii = 2

fs 〈u′′′2f ,i 〉f

2kf
+ (1 − fs)

1
3

 εf , DP11 =
2ϕ
τp

Cg〈up,1〉
2
p, DP22 = 0, DP =

1
2
DP11
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Dissipation Rate Model

Form of dissipation model is critical for overall performance!

0 = −C2,εStf εf + 2C3ϕ
(
βfpε

1/2
f ε1/2

p − βf εf

)
+ C4StpDP

0 = −C2,εStpεp + 2C3

(
βfpε

1/2
f ε1/2

p − εp

)
with C2,ε = C4 = 1.92 and C3 = 0.736

Stokes numbers are defined by Stf =
τpεf

kf
and Stp =

τpεp
kp

In fully developed CIT:

Stf = 0.25 Stp = 0.19
kf

kp
≈ 1.6

Compared to sheared turbulence, CR and CD are significantly smaller
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Concluding Remarks

Concluding Remarks on CIT I

Cluster-Induced Turbulence
• CIT arises due to mean velocity difference
• Velocity difference arises due to body force or inlet conditions
• With constant velocity difference, CIT is homogeneous and

stationary
• TKE is produced by fluid velocity fluctuations seen by the

particles
• CIT is anisotropic in direction of mean velocity, but otherwise

diagonal
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Concluding Remarks on CIT II

Mesoscale Simulation of CIT
• Lagrangian particle tracking best captures flow physics
• Wide separation of scales between filter and cluster sizes exists
• Local Eulerian fields can be extracted with αp-dependent filter
• Converged statistics require very large domains� L!

Turbulence Model for CIT
• CIT depends on a relatively small number of correlations
• Drift velocity changes mean drag and produces fluid TKE

through Cg

• Reynolds-stress model needed to describe anisotropy
• Principal modeling challenges stem from εf and εp, but choices

limited
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Concluding Remarks on CIT III

Some Open Questions
• What exactly determines the cluster size distribution?
• Are CIT statistics (one-point, two-point, ...) self similar?
• How do CIT statistics depend on dimensionless parameters

(Rep, ϕ, ...)?
• How do statistics change when homogeneous mean shear is

added?
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Particle-Laden Channel Flow
Effect of mass loading

0.2 1.2
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