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Microscale versus Mesoscale

Fluid velocity: Navier—Stokes eq. no-slip
BC on particle surface
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I = Fluid force + collisions

Very fine grid needed to predict forces
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¢ This random behavior may reflect some chaotic properties (e.g.
Brownian motion) or some other behavior (e.g. microscale
turbulence — NDF can be treated as any other scalar field)
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o Therefore ng(£) d¢ represents number of disperse entities
contained in phase-space volume d¢ centered at & per unit of
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DescHptonict ¢ Arbitrary integer moment of NDF is defined by

Polydisperse
Flows

Population Balance

uation _ k k,
mex = f £ Eng(£) dg
Population Balance Q§

Equation

Simple Example

where k = (ky,...,ky)
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% Different Types of NDF

e Different definitions of univariate NDF are used in literature

e Choice is problem dependent (e.g. colloids, aerosols, droplets,
etc.)

¢ A change of variables allows to go back and forth:
np(L)dL = ny(V)dV = ny (M) dM

so it suffices to know relation between length L, volume V and
mass M
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Definiion and so it suffices to know relation between length L, volume V and
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Functions

L For example, if M = pV = pL3:
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dav 1
Descr‘iption of M — M _ = _ M
l;::)lzv(;lsperse nM( ) nV( /p)dM an( /,0)
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(M) = ng [(M/p)'" §11L4 3, M |[/p)'"]
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Professor o Total number concentration can be calculated as:
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Simulation Methods

Number-averaged particle size can be defined as

Number Density
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Different Types of
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my
N

Mesoscale
Description of
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1 00
Lo = — Lni (L)dL =
10 NI) n (L)

We define k" moment of length-based NDF as

Population Balance
Equation

Generalized 00
Population Balance
Equation my g f LknL (L) dL

Simple Example 0
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Francqul ky = /6, cube: ky = 1, etc.), we can define volume density
Frofessor function V(L) representing volume of particles per unit spatial
Introduction to volume with lengths between L and L + dL: Vi, = kyL3n;.
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e After normalizing Vi to unity, volume-fraction density function
avy(L) represents volume fraction of particles with a specific

Simulation Methods

3
oot length over total particle volume: ay(L) := =
g P V= T b
o e Mean particle length calculated from volume-fraction

Mesoscale . . .
Description of density function is
Polydisperse

Flows

:oz::ia;i:n Balance 0 mr, 4
G:neralized L43 = ay (L)L dL =
Population Balance 0 mL,3

Equation
Simple Example
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e « If volume and length scale with third power as V = kyL?,

o relationship between length-based and volume-based NDFs is
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Disperse straightforward: ny (L) = 3kyL?ny(kyL?)

Multiphase Flows

petiiion and e Moments of volume-based number NDF are defined as
Simulation Methods

Number Density 00 X

Functions -

Different Types of myi = V nV(V) dv

NDF 0
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P and can be easily related to moments of length-based NDF:

Flows

Population Balance 00 3ok '

Equation — =

my = f (ky LY np (L) dL = K my 3
Population Balance 0
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Professor fractal dimension (sphere: Dy = 3, diffusion-limited aggregate:
Introduction to Df = 18, etC)

Disperse

Multphase Flows ¢ Length-based and mass-based NDFs are related by
I n(L) = Dk L ny (kL")

Simulation Methods

L) e Their moments are related by: myx = k],i,lmL,ka

Functions

nor P! e ltis often the case that in closed systems total particle mass is
e of conserved, i.e., myy is constant

S « In practical applications, choice of NDF with which to work often
Bt depends on which moments can be measured experimentally

e . (e.g. light scattering = L, etc.)
Equation
Siqmple Example
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Velocity-Based NDF

e Special case of considerable interest occurs when
internal-coordinate vector is particle velocity vector: v
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% Velocity-Based NDF

e Special case of considerable interest occurs when
internal-coordinate vector is particle velocity vector: v

¢ Velocity-based NDF ny(z, x, v) is parameterized by 3 velocity
components v = (v, vp,v3)

e Total number concentration is defined by integrating over all
possible values of particle velocity:
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N = myo = f nU(V) dv
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Prfessor o Total number concentration is defined by integrating over all
Introduction to possible values of particle velocity:
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Multiphase Flows
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Examples N = myo = ny (V) dv
Simulation Methods Q,

Number Density
Functions

Difrent Types o e Because particles may have different velocities,
Mososcale number-weighted particle velocity U, can be calculated as:
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Professor o Total number concentration is defined by integrating over all
Introduction to possible values of particle velocity:

Disperse
Multiphase Flows

Effﬂ,f.‘lla"d N = my, = f ny(v) dv
Qy

Simulation Methods

Number Density
Functions

Difrent Types o e Because particles may have different velocities,
number-weighted particle velocity U, can be calculated as:

Mesoscale
Description of
Polydisperse

1 ny

Flows 5

Population Balance Up = = VnU(V) dv= ——

Equation N Q, mU,O

Generalized

Population Balance . . . . .
Eriey e Number-weighted particle velocity is only used when all particles

Simple Example

have same mass!
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Velocity-Based NDF

e NDF n;¢ and velocity-based NDF ny have same mathematical
meaning but particle velocity is a particular internal coordinate
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% Velocity-Based NDF

e NDF n;¢ and velocity-based NDF ny have same mathematical
meaning but particle velocity is a particular internal coordinate
o We distinguish between passive internal coordinates such as

particle size, volume, area, or temperature, from active internal
coordinates such as particle velocity
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Simulation Methods (G PB E)

Number Density
Functions

o] ¢ In PBE, velocity of disperse phase is assumed to be known and
o NDF can be treated as advected scalar field

Mesoscale
Description of

Polydisporss o Scalar fields appearing in GPBE are usually active (i.e.,
o o anee momentum exchange between particles depends on internal
Cauaton coordinates such as length) and thus velocity of disperse phase

Generalized

Etion must be computed from seperate momentum balance

Simple Example
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o Disperse multiphase systems can be modeled at different levels
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Summary

o Disperse multiphase systems can be modeled at different levels

e Microscale simulations contain most detail, but are too
expensive for most applications
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o Disperse multiphase systems can be modeled at different levels

e Microscale simulations contain most detail, but are too
expensive for most applications

e Mesoscale simulations use physical approximations to
formulate a PBE or GPBE for NDF
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T ¢ Mesoscale simulations use physical approximations to
Detniion 38 formulate a PBE or GPBE for NDF
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MESOSCALE DESCRIPTION OF
POLYDISPERSE FLOWS
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Multiphase Di sl f i
Systems q irect numerical simulation

Kinetic theory
+ density function closures

Introduction to

D Mesoscale Model

Multiphase Flows Volulme or efnseﬂrgble avgragss Kinetic equation

" +

E:Srr:sloer;and closures for “fluctuations Euler-Lagrange models
\

Simulation Methods

Number Density

Functions Moments of density
Different Types of + moment closures
NDF

Mesoscale
e Macroscale Model
:"Vd'sPerse Hydrodynamic description
ows
" Euler-Euler models
Population Balance .
Equation
Generalized
Population Balance
Equation

e Mesoscale model incorporates more microscale physics in closures!
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e 2| [ dx | dEngf+ [ dE | ngv-dAg
Simulation Methods ot Qy Qg Qg 00y

Number Density

S " f dx f nek - dAg = f dx f o he
NoF N Q% Q, Q¢

Mesoscale
Description of

D  where v is (known) velocity vector for particulate system, & is
Population Balance continuous rate of change in phase space, and /; is

Equation . . . . . .
S discontinuous jump function representing discrete events
Equation

Simple Example
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Reynolds-Gauss theorem

Given control volume Qy and its boundary 9Qy oriented by
outward-pointing normals, flux of vector v across boundary is equal to
volume integral of divergence of v (i.e., Vx - v) inside control volume

ngv - dAy = f (Vx - vng) dx
Q

; 0
Jo e one= [ (g o)
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0 0
::r;itsr::;?ionlo a_[ (Lx dx L{ df”«f) + \fg;x dx 0 dfa_x * Vng

Multiphase Flows

Definition and

o .
= s f dx f aed en, = f dx f 0€ e
Number Density x Q¢ af Qy Q¢

Functions

Different Types of
NDF

N ° % = Vx = (0/0x1,0/0x,,0/0x3) is gradient operator in physical
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When is CFD needed vs. well-stirred model?

e Latex particles aggregation due to coagulant
e Aggregation rate depends on shear rate G seen by particles
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A Simple Example: Particle Aggregation and
Breakage in CSTR

Eventually aggregation and breakage balance each other and steady

state is reached (dynamic equilibrium)
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e When mixing is much faster than aggregation 7,; < 74 and

breakage 7); < 75 spatial gradients of CMD are very small and
problem can be solved in terms of volume-averaged CMD:

n(t, &) =

J, n(,x,€) dx
1%

e |ts evolution is dictated by volume-averaged PBE:

ané) 1

—A YIRS N ’ ’
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(1,6) fo (G £, &1, &) d
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Closure Problem

Closure problem appears always in following form:

1= fQ n(©g(&) dé

where n(¢) is unknown univariate NDF and € is integration interval

QBMM use a Gaussian quadrature

In Gaussian quadrature theory NDF is weight function or measure for
which integer moments

mkzm(k)=<§’<>:=fgn(§)§kd§ k=0,1,2,...
3

must exist
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Quadrature Theory

e Coefficients a, and b, can be written in terms of moments
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e Coefficients a, and b, can be written in terms of moments

o Coefficients necessary for construction of polynomial of order N
can be calculated from first 2¥ — 1 moments of NDF
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Quadrature Theory
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Models for
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Particulate and o Coefficients a, and b, can be written in terms of moments

Multiphase

B o Coefficients necessary for construction of polynomial of order N
P can be calculated from first 2N — 1 moments of NDF

International

Francqui

Professor o For example with mg, m;, m, and ms, it is possible to calculate
Quadrature- the fo”0W|ng CoeffICIentS

Based Moment
Methods
Closure Problem ao

Computing
Quadrature mo
P ——

Realizable Moments m3mg + m? - 2m2m1m0

" al =
Generalized
Population momgy + m% - Zm%mo
Balance ) )
ten momg + my — 2mimy
NDF for b =
Fluid-Particle 1 B)
Systems mo
GPBE for

Fluid—Particle
Systems

e which suffice for calculation of polynomial P,(¢)

Equations

my

Real-Space
Advection
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Quadrature-Based Moment Methods

Why are we interested in orthogonal
polynomials?
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Multiphase e Closure problem can be overcome by using a quadrature

Systems

Rodney O. Fox fOqula: y
International
Professor f n(&)g(&) dé ~ Z Wag(€s)
Qe a=1
Quadrature-
Metods where w, and &, are weights and nodes/abscissas of quadrature

Closure Problem formula, and N is number of nodes
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Generalized
Population
Balance
Equation
NDF for
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Quadrature-Based Moment Methods

Computational
Models for
Polydisperse
Particulate and

i e Closure problem can be overcome by using a quadrature
ystems
formula:

Rodney O. Fox
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Francqui

N
[ mos@ de = Y waste
3 a=1

Quadrature-
Based Moment

e where w, and &, are weights and nodes/abscissas of quadrature
) formula, and N is number of nodes

Computing
Quadrature

o e Accuracy of quadrature formula is quantified by its degree of
Realizable Moments aCCu racy

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations
Real-Space
Advection
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Quadrature-Based Moment Methods

Computational
Models for
Polydisperse
Particulate and

Multiphase e Closure problem can be overcome by using a quadrature

Systems

Rodney O. Fox formU|a' N
International
e f n(@)g) dé ~ ) waglés)
Q; a=1
Quadrature- . .
pased foment where w, and &, are weights and nodes/abscissas of quadrature
S formula, and N is number of nodes
omputing
Pl e Accuracy of quadrature formula is quantified by its degree of
Realizable Moments aCCu racy
General_ized . . .
i e Degree of accuracy is equal to d if quadrature formula is exact
Fauation when the integrand is a polynomial of order less than or equal to
e d and there exists at least one polynomial of order d + 1 that

Pl Poricle makes quadrature formula inexact
Systems

Moment Transport

Equations

Real-Space

Advection
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Quadrature-Based Moment Methods
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Models for
Polydisperse
Particulate and
Multiphase
Systems

Rodney O. Fox GAUSSIAN QUADRATURE

International

Francqui Necessary and sufficient condition for following formula:

Professor

Quadrature- &

Based Moment

f n(@)g(€) dE = ) g(EIwa + Ry(g)
Closure Problem Q¢ a=1

Computing

Quadrature

Approximation

Realizable Moments to be Gaussian quadrature approximation or, equivalently, that it has
Generalized degree of accuracy of 2N — 1, is that its nodes {&,} coincide with the

Populati . . .
S N roots of polynomial Py(¢) of order N orthogonal in Q, with respect
Equation q q !
:Df.o, _ to weight function n(¢)
S

GPBE for

Fluid—Particle

Systems

Moment Transport
Equations
Real-Space
Advection
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Methods

Closure Problem
‘Computing
Quadrature
Approximation
Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
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Real-Space
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Computing Quadrature Approximation

HOW DO WE CALCULATE THE QUADRATURE APPROX?
N weights and N abscissas can be determined by solving a

non-linear system:

N
my = Z Wa

a=1

N
= ) Wb
a=1

N
_ IN-1
Mon_1 = Z Wwel,
a=1

using Newton-Raphson method, or any other non-linear equation
solver (very good initial guess needed to ensure convergence!)
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Models for
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Particulate and

Mlitproes Better way is to employ recursive relationship for orthogonal
SRS polynomials:
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Professor P()(g) 0 1 1 P0(§) O
Quadrature- Pl (6) bl @ Pl (éj) 0

Based Moment

Methods é: = T, . +

S Py_2(&) 1 ||Pv—2(&) 0

e — Py-1(§) ay_ | 1Pv-1E] [Py(£)
Generalized

Batnce. Nodes of quadrature approximation {&,} (i.e., roots of Py(¢)), are
P eigenvalues of tridiagonal matrix appearing above

Fluid-Particle
Systems

GPBE for
Fluid—Particle
Systems

Moment Transport
Equations
Real-Space
Advection
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Computing Quadrature Approximation
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Models for
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Particulate and

Mlitproes Better way is to employ recursive relationship for orthogonal
SRS polynomials:

Rodney O. Fox
International
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Professor P()(g) 0 1 1 P0(§) O
Quadrature- Pl (6) bl @ Pl (éj) 0

Based Moment

Methods é—' = T . +

1 ||Pv—2(&) 0

il Py-a(§)

eatzalfoments Py_1(&) ay_i | IPN-1(E)] 1PN(&)
General_ized

Batnce. Nodes of quadrature approximation {&,} (i.e., roots of Py(¢)), are
P eigenvalues of tridiagonal matrix appearing above

e Matrix is re-written in terms of equivalent tridiagonal symmetric

GPBE for

Fluid-Partict (Jacobi) matrix

Systems
Moment Transport
Equations
Real-Space
Advection
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Computing Quadrature Approximation

Computational
Podiaorse Matrix can be made symmetric (preserving eigenvalues) by a diagonal
Particulate and similarity transformation to give a Jacobi matrix:

ultiphase

Systems

Rodney O. Fox [ ap vV b] 1
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Professor
Vb @ Vb3

Quadrature-
Based Moment /b a
Methods J= 3 3

Closure Problem

Computing
Quadrature
Approximation
Realizable Moments

ay- Vby_i

Generalized

Population - an-1 1

Balanl_:e

E:::"'“ Procedure transforms ill-conditioned problem of finding roots of polynomial
ST into well-conditioned problem of finding eigenvalues and eigenvectors of

GPBE for tridiagonal symmetric matrix

Fluid—Particle
Systems

Moment Transport
Equations
Real-Space
Advection
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Computing Quadrature Approximation

Computational
Podiaorse Matrix can be made symmetric (preserving eigenvalues) by a diagonal
Particulate and similarity transformation to give a Jacobi matrix:

ultiphase

Systems

Rodney O. Fox [ [N \Y b] ]
International
Francqui Vbl a) VbZ
Professor
Vby  ar Vb3

Quadrature-
Based Moment /b a
Methods J= 3 3

Closure Problem

Computing
Quadrature
Approximation

Realizable Moments - ay-2 Vby_1

Generalized
Population
Balance

ten Procedure transforms ill-conditioned problem of finding roots of polynomial

NDF for

Fiuid-Particle into well-conditioned problem of finding eigenvalues and eigenvectors of

Systems

oPBEfor tridiagonal symmetric matrix

uid—Particle N . .

Systems N weights are calculated as w, = m0¢§1 where ¢, is first component of o
Moment Transport . . n
Equatons eigenvector ¢, of Jacobi matrix
Real-Space

Advection

ay-1 |
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Product-Difference Algorithm

@ Construct matrix P with components P, g:

Pog=Pig1Por18-2 — P1g2Por1 -1
pel3,....2N+landacl,....2N+2 -0

@ first row of matrix is

Rodney O. Fox International Francqui Professor
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% Product-Difference Algorithm

@ Construct matrix P with components P, g:
Pog=Pig1Por18-2 — P1g2Por1 -1
pel3,....2N+landacl,....2N+2 -0
@ first row of matrix is
Par,l =0, a€l,....,2N+1

©® 6.1 is Kronecker delta and components in second column of P
are

Por=(-1D)"""myy a€l,...,2N
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Models or @ Construct matrix P with components P, g:

Particulate and
Multiphase
Systems

Pog=Pig1Por18-2 — P1g2Por1 -1
Rodney O. Fox
pe3,....2N+landacl,...2N+2-5

Francqui

Professor

@ first row of matrix is
Quadrature-

Based Moment
Methods

Closure Problem P(Ysl = 6‘11 a € 1’ Tt 2N +1

Computing
Quadrature

s ©® 6.1 is Kronecker delta and components in second column of P
ealizable Moments

General_ized are a—1

::::::::;on Pa,2 = (—1) My-1 Q€ 1,,2N

Equation . . H

NOF for O Calculate coefficients of continued fraction {{,}:

Fluid-Particle
Systems

GPBE for

Fluid—Particle —_
Systems gaf -

Moment Transport Pl,(rPl,a—l
Equations

P1 a1
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oot and © Coefficients of Jacobi matrix are obtained from sums and

Systems prodUCtS of fa:
Rodney O. Fox
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Francqui g = 42(1 + 420_1 @ € 1, e ,N

Professor

EE e by = V(ar1l2a @€1,...,N-1
Methods
= @ For example with N = 2, P matrix is
omputing
Quadrature

Approximation

Realizable Moments my mq momyp — m% mygy (m3m1 - m%)
G lized
Population — (momz — mymy)

Balance
Equation
NDF for
Fluid-Particle
Systems
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Systems
Moment Transport
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Real-Space
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C tati | . . . . .
odels for Consider a normal (or Gaussian) distribution:
Polydisperse

Particulate and

Multiphase 1 (é«‘ — ”)2)

Systems ”l(f) - eXp _

Rodney O. Fox \[27-(0-2 20’2
International
Francqui
Riotessoy Moments of distribution:
Quadrature- _ _ _ 2 2
Based Moment my = 1 mp =g m=u +0o
Methods 3 5
Closure Problem ms = W + 3uo
Computing 4 - .
Aonrodmaton my = p* +6u°o” + 30
Realizable Moments
) 3.2 4
Generalized ms = l'l + 10” o+ 15#0—
Population
B me = b + 15u* 0 + 4520 + 150°
Equation : s 3 4 6
D my =p' + 210" + 1051 0" + 105u0
Systems
mg = b +28u80? + 210uc* + 420p%0® + 1055°
Fluid—Particle
Systems
Moment Transport Use PD algorithm to calculate quadrature approximation of order four (i.e.,

Equations

Real-Space N = 4) fOI’ﬂ =5ando =1

Advection
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Rl First eight moments of distribution are needed:
Particulate and

Multiphase

Systems my = 1 my; = 5 my = 26 ms3 = 140

Rodney O. Fox _
International m4 - 778
Professor ms = 4450

Quadrature- me = 26140

Based Moment
Methods my = 157400
Closure Problem

Computing

Quadrature Atfter applying PD algorithm Jacobi matrix is obtained:

Approximation
Realizable Moments

Generalized

Population

Balance J
Equation

NDF for

Fluid-Particle

Systems

GPBE for

Fluid—Particle

Systems resulting in: w; = 0.0459, w, = 0.4541, ws = 0.4541, w, = 0.0459, and
B &1 =2.6656, & = 4.2580, & = 5.7420, &4 = 7.3344

Real-Space
Advection
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Models for PD algorithm works well when & is positive, but not when distribution

Polydisperse

Particulate and has zero mean (moment of order one null)

Multiphase

SIS Example: Gaussian distribution with u =0 and o = 1
Rodney O. Fox
International

Francqui my = 1

Professor

Quadrature- my = O
Based Moment

Methods nmyp = 1
Closure Problem

Computing nms = 0
Quadrature

Approximation

Realizable Moments my = 3

Generalized —
Population ms = 0

Balance

Equation me = 15
NDF for

Fluid-Particle —
Systems my = O

GPBE for
Fluid-Particle

ST In general, Wheeler algorithm should be used (see Numerical

Moment Transport . .

i Recipes for details)
—

Advection
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% Realizable Moments

Computational
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LT Moment inversion algorithm only works if moments are realizable
articulate an
Multiphase
Systems Definition: Realizable moments correspond to a non-negative NDF
Rodney O. Fox
Iztev‘iﬁllonaol
Francqui

e Hankel matrices are used to check if moments {mg, m,, ..., myy} are

realizable:
Quadrature-

Based Moment my ny ny . my
Methods

Closure Problem mi ny ms3 v my+1
Computing .

oo Hy:=|m mj . Mg

Realizable Moments

Generalized

Population

Balance my myy1 Myy2 ... nmon

Equation

Pl partcl

i Moment set {mg, m, ..., myy} is realizable iff [Hy| > 0
Fluid—Particle

Systems

Moment Transpor With N-node QMOM, [Hy| = 0, but [H,| > 0forn =0,1,...,N -1

Real-Space
Advection
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Particulate and

Multiphase

Systems |H0| = my

Rodney O. F

Iﬁ:e’\:‘nyallonaolx |H1| = mopnip — m%
Francqui 2

Frofessor IHy| = my(momy — m?) — m3(moms — mymy) + ma(mymz — m3)

Quadrature-

Based Moment

Methods Or, using central moments, Cy = 1, C; = 0, C, = variance:

e

Approximation |H0| = 1

Realizable Moments

Generalized |H1| = C2

Population 5 R
Balance — _ .
Equation |H2 I C4 C2 C3 C2
NDF for

Fluid-Particle

Systems

With 2-node QMOM, [H| = 0, and n*(§) = w10(&§ — £1) + wad(€ — &)

Fluid—Particle
o anspon When [Hy| = 0, but |[H,| > 0forn=0,1,...,N — 1; we say that
moments are on boundary of moment space

Equations

Real-Space
Advection
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Multiphase .
Systems e Moment space is convex: let M; and M, be two sets of
Rodney O. Fox realizable moments, then M* = a;M; + a,M, is realizable when

International

Francqui ay and a are non‘negatlve

Professor
P e If [Hy| = 0, then M is on boundary of moment space

Based Moment

Methods o If |[Hy| = 0, then myy has smallest possible value

Closure Problem

Computing o If |[Hy| = 0, then n* is sum of N weighted delta functions

Quadrature
Approximation

T TR e If [Hy| > 0, then M is in interior of moment space
e o If [Hy| > 0, then n*(¢£) is continuous function of &
Balance

Equation

NDF for

Fluid-Pariile Quadrature-Based Moment Methods reconstruct n*(¢) for the

Systems

T boundary of moment space by satisfying all moments
{mo,mq,...,mon_1}

.,mpy} live in finite moment space:

Systems
Moment Transport
Equations
Real-Space
Advection

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computaton! Modelsor
Pohspers Portcte
and Wuphase Systems.

Variation: Gauss—Radau Quadrature

Computational
Models for
Polydisperse
Particulate and
Multiphase
Systems

Rodney O. Fox
International
Francqui
Professor

Quadrature-
Based Moment
Methods
Closure Problem
Computing
Quadrature
Approximation
Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations
Real-Space
Advection

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for
Polydisperse
Particulate and
Multiphase
Systems

Rodney O. Fox
International
Francqui
Professor

Quadrature-
Based Moment
Methods
Closure Problem
Computing
Quadrature
Approximation
Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
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Variation: Gauss—Radau Quadrature

¢ In many cases, it is advantageous to include even-numbered

moment myy: evaporation, nucleation, spatial fluxes, reconstruct
continuous NDF (EQMOM), etc.
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Variation: Gauss—Radau Quadrature

Computational

Models for ¢ In many cases, it is advantageous to include even-numbered
Polydisperse

Particulate and moment myy: evaporation, nucleation, spatial fluxes, reconstruct

Multiphase

Systems continuous NDF (EQMOM), etc.

=  Moment set M = {mg, mi,...,may} has 2N + 1 degrees of
Francqui freedOm

Professor

Quadrature-
Based Moment
Methods
Closure Problem
Computing
Quadrature
Approximation
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Generalized
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Balance
Equation
NDF for
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Systems
GPBE for
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Moment Transport
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% Variation: Gauss—Radau Quadrature

Computational

Models for ¢ In many cases, it is advantageous to include even-numbered

Polydisperse

Particulate and moment myy: evaporation, nucleation, spatial fluxes, reconstruct
Multiphase

Systems continuous NDF (EQMOM), etc.
Rodney O. Fox e Moment set M = {mg, my,...,myy} has 2N + 1 degrees of

Francqui freedOm

Professor
e Gauss—Radau quadrature fixes one node &, but weight wy is
Quadrature-

Based Moment fl’ee
Methods

N

Closure Problem

f OO dE = > wig(é)

Quadrature

Approximation i=0

Realizable Moments . . .
' e.g., & is smallest particle mass in system

Generalized

Population

Balance

Equation

NDF for

Fluid-Particle

Systems

‘GPBE for

Fluid—Particle

Systems

Moment Transport

Equations

Real-Space

Advection
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% Variation: Gauss—Radau Quadrature

Computational o .
Models for In many cases, it is advantageous to include even-numbered
Polydi: . . .
Particulate and moment m,y: evaporation, nucleation, spatial fluxes, reconstruct
Multiphase

Systems continuous NDF (EQMOM), etc.
Rodney O. Fox e Moment set M = {mg, my,...,myy} has 2N + 1 degrees of

International

Francqui freedOm

Professor
e Gauss—Radau quadrature fixes one node &, but weight wy is
Quadrature-

Based Moment fl’ee
Methods

Closure Problem

N
f 2N dE = ) wigl&)
i=0

Quadrature
Approximation

Realizable Moments

ceneratized e.g., & is smallest particle mass in system
Population e There are N + | weights w; and N nodes &; that must be found

Balance

Equation from moments for k =0, 1,...,2N:
D

Systems

N
GPBE for - k _ k
Fluid-Particle my = f n(f)df = E W,’fi
Systems

Moment Transport i=0
Equations

Real-Space

Advection
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Variation: Gauss—Radau Quadrature

Computational o .
Models for In many cases, it is advantageous to include even-numbered
Polydi: . . .
Particulate and moment m,y: evaporation, nucleation, spatial fluxes, reconstruct
Multiphase

Systems continuous NDF (EQMOM), etc.
Rodney O. Fox e Moment set M = {mg, my,...,myy} has 2N + 1 degrees of

International

Francqui freedOm

Professor
e Gauss—Radau quadrature fixes one node &, but weight wy is
Quadrature-

Based Moment fl’ee
Methods

Closure Problem

N
f 2N dE = ) wigl&)
i=0

Quadrature
Approximation

Realizable Moments

ceneratized e.g., & is smallest particle mass in system
Population e There are N + | weights w; and N nodes &; that must be found

Balance

Equation from moments for k =0, 1,...,2N:
D
Systems

N
GPBE for - k _ k
Fluid-Particle my = f n(é“) df = E W,’fi
Systems £
Moment Transport i=0
Equations

Reak Space ¢ Small change in Wheeler algorithm (see Numerical Recipes)

Advection
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Systems
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Systems
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Summary of QBMM for Solving PBE
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Models for

Polydisperse e Starting from PBE for n(z, ¢), formally derived unclosed moment

Particulate and

Multiphase equatlons M(t) = {m()(t)7m](t)a e 7mk(t)} | k = Oa 1’ ] 2N

Systems

Rodney O. Fox

dmk dM
International - S M — - = S M
Francqui t k( ) dt ( )

Professor d

Quadrature-
Based Moment
Methods
Closure Problem
Computing
Quadrature
Approximation
Realizable Moments

Generalized
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Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
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Real-Space
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% Summary of QBMM for Solving PBE

Computational
Models for

Polydisperse e Starting from PBE for n(z, ¢), formally derived unclosed moment

et equations M(¢) = {my(t),m(t), ..., m(®)} |k =0,1,...,2N:

Systems

Rodney O. Fox d dM
InIFerz::;cllci::ﬂl % = Sk(M) —4 3 = S(M)

Professor d

Quadrature- ¢ Close moment equations with quadrature:

Based Moment

Methods

Closure Problem N

Computing «

a =~ = : - &
Semomein n(t,€) ~ n'(6,6) = ) wio¢ - &)
Realizable Moments i=0

Generalized

R where w; and &; are found from M(¢) with Wheeler algorithm
Equation

NDF for
Fluid-Particle
Systems

GPBE for
Fluid—Particle
Systems
Moment Transport
Equations
Real-Space
Advection
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% Summary of QBMM for Solving PBE

Computational
Podiaorse e Starting from PBE for n(t, £), formally derived unclosed moment
Particulate and

Multiphase equatlons M(t) = {m()(t)7m](t)a e 7mk(t)} | k = Oa 1’ ] 2N

Systems

Rodney O. Fox dmk dM
International _— = S M — —_— = S M
E] T T
Quadrature- ¢ Close moment equations with quadrature:

Based Moment

Methods

Closure Problem N

Computing «

a =~ = : - &
Semomein n(t,€) ~ n'(6,6) = ) wio¢ - &)
Realizable Moments i=0

Generalized
R where w; and &; are found from M(¢) with Wheeler algorithm
Faaton e Use numerical ODE solver to advance in time:

Fluid-Particle
Systems

Pl Poricle M(z + Ar) = M(z) + S(M(2))At
Systems
Mym:‘e_mTranspon i Lo .
Fauations given initial conditions M(0)
Real-Space

Advection
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From Microscale to Mesoscale Model

Computational

Models for
Partouiie and Microscale Description
Multiphase -

Systems

Quadrature- Define phase space of Model changes to one particle’s
z‘:ﬁgd":m“e"‘ mesoscale variables needed mesoscale variables due to all other
Closure Problem to describe a “particle” particles, fluid, body forces, etc.
Computing (velocity, volume, etc.) (one-particle density function)
Fher

Realizable Moments

Generalized

Population

Balance

Equation
NDF for

s Mesoscale Model
GPBE for —

Fluid—Particle
Systems

Moment Transport . . .
ER Closure occurs at the level of the one-particle density function
Real-Space

Advection
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NDF for Fluid—Particle Systems
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Polydisperse e Let us consider population of N, particles characterized by
Particulate and
Multiphase

T variables: position {X™}, velocity {U}”} and composition {£}"}

Rodney O. Fox
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Based Moment
Methods
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% NDF for Fluid—Particle Systems

Computational
Models for

Polydisperse e Let us consider population of N, particles characterized by

Particulate and

Multiphase variables: position {X™}, velocity {U}”} and composition {£}"}

Systems

Rodney O. Fox e State of n'" particle will change according to following

International

Francqui Lagrangian (following particle) equations:

Professor

Quadrature- (n)
Based Moment dX _
Methods —
Closure Problem di )
Computing dU n
Quadrature

e — A(”) A(") + C("l)]

P

Realizable Moments d[

Generalized (n)
Population (n) (n)
Balance —_— = Gp + C &
Equation dt P
NDF for
Fluid-Particle
Systems

GPBE for
Fluid—Particle
Systems
Moment Transport
Equations
Real-Space
Advection
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NDF for Fluid—Particle Systems

Computational
Models for

Polydisperse e Let us consider population of N, particles characterized by
Multiphase variables: position {X™}, velocity {U}”} and composition {£}"}

Systems

Rodney O. Fox e State of n'" particle will change according to following

International

Francqui Lagrangian (following particle) equations:

Professor

Quadrature- (n)

Based Moment dX — Ugl)

Methods —

Closure Problem di )

Computing dU n

2:::::::|ion — A(”) A;") + Cgll)]

Realizable Moments d[

Generalized (n)
Population p (n) (n)
— =G, +C
paence ar o or T e
NDF for
Fluid-Particle . .
Systems e Operators on right-hand sides (mesoscale models) depend on
‘GPBE for

complete set of variables for all particles

Systems
Moment Transport
Equations
Real-Space
Advection
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NDF for Fluid—Particle Systems

Computational
Models for

Polydisperse e Let us consider population of N, particles characterized by
Multiphase variables: position {X™}, velocity {U}”} and composition {£}"}

Systems

Rodney O. Fox e State of n'" particle will change according to following

International

Francqui Lagrangian (following particle) equations:

Professor

Quadrature- (n)

Based Moment dX - U(”)

Methods dt p

Closure Problem

Computing dU(n)

Apweimaton P_ Ag) +AY +Cf)"z)f

Realizable Moments d[

Generalized (n)
Population p

Bal _— =
Equation dr

NDF for

Fluid-Particle . .
Systems e Operators on right-hand sides (mesoscale models) depend on
GPBE for

complete set of variables for all particles

Systems

(n) (n)
G, + Cp{f

e e In principle, they can be found from microscale simulations
Real-Space
Advection
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NDF for Fluid—Particle Systems
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et ¢ In most descriptions of fluid—particle flows, mesoscale

S fluid—particle acceleration A(f") includes a drag term of form
Rodney O. Fox p
International

Francqui

Professor Aﬁg)(t) o C(Dn) |U§n)(t) - U;n)(t)| [Ui‘n)(t) - Ug’)(t):l

Quadrature-

Based M . . . . . .
Mothods where C{ is drag coefficient, and U (r) is characteristic fluid
e el velocity in neighborhood of X™(r)
Quadrature

Approximation

Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations
Real-Space
Advection
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NDF for Fluid—Particle Systems
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Polydisperse
Particulate and

e ¢ In most descriptions of fluid—particle flows, mesoscale
SEELD fluid—particle acceleration A(f;) includes a drag term of form

Rodney O. Fox
International
Francqui

Professor Aﬁg)(t) o C(Dn) |U§n)(t) - U;n)(t)| [Ui‘n)(t) - Ug’)(t):l

Quadrature-
Based Moment

Methods where C{ is drag coefficient, and U (r) is characteristic fluid
ot velocity in neighborhood of X ()

Quadrature

Approximation

dopmaten o UM (1) = Up(t, X™ (1) + u," (1) is called “fluid velocity seen by n'"
PR— solid particle”, which is difficult to model a priori but is included in

Population . .
Balance set of particle properties to be tracked
Equation

NDF for

Fluid-Particle

Systems

GPBE for

Fluid—Particle

Systems

Moment Transport

Equations

Real-Space

Advection
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NDF for Fluid—Particle Systems

Computational
Models for
Polydisperse Lo . .
et ¢ In most descriptions of fluid—particle flows, mesoscale
SEELD fluid—particle acceleration A(f;) includes a drag term of form
Rodney O. Fox
International
Francqui

Professor Aﬁg)(t) o C(Dn) |U§n)(t) - U;n)(t)| [Ui‘n)(t) - Ug’)(t):l

Quadrature-

Based M . . . . . .
Mothods where C{ is drag coefficient, and U (r) is characteristic fluid
Closure Problem

S velocity in neighborhood of X™(r)

Quadrature

Approximation . U(f”)(t) = U(t, X™() + u;(”)(t) is called “fluid velocity seen by '

Realizable Moments

PR— solid particle”, which is difficult to model a priori but is included in

Boance. set of particle properties to be tracked

Equation . . . .

orer ¢ In general it will be necessary to introduce some additional
uid-Particle . . ) R )

— internal coordinates representing other fluid properties seen by

Fluid—Particle nth partlcle fgl)

Systems
Moment Transport
Equations
Real-Space
Advection
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NDF for Fluid—Particle Systems

Computational
Models for
Polydisperse
Particulate and

Multiphase e State of N, particles immersed in continuous phase is completely
SRS defined by multi-particle—fluid joint PDF:

Ty (8 LAV ) V), ) A} VY)Y i) V) diag”)

Quadrature- T

Based Moment Np ) (n) W ) . .
O {(x® < X1 <x® +dx™)  particle positions

Closure Problem

Methods P [

Gonatirg n (V(”) <UP(n) <V + dV(’”) particle velocities
Approximation

Fealizebl Noments n( W <&@ <) + dn"‘)) particle compositions
Generalized

Population

Balance (
Equation

NDF for

I n( "< €00 <" + dn("))}] seen fluid compositions

Systems
GPBE for

Fluid-Particle In principle, it is known from microscale simulations

Systems

NV <UP@) < V& + dV(")) seen fluid velocities

Moment Transport
Equations
Real-Space
Advection
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Computing
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NDF for Fluid—Particle Systems

Computational
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Polydisperse e Multi-particle joint PDF can be reduced to single-particle joint PDF by

Particulate and

Multiphase integrating out state variables for all particles except n™"

Systems

Rodney O. Fi
Iﬁ:e":‘nyallonaolx f(") (t X(”) V(n) ”(Il) V(”),ni‘n)) .
Franc
Prtofoszl(l;lr

Quadrature-
Based Moment
Methods

Closure Problem

f fN ( X(m) {V;m)}, {’];m)}’ {V;m)}, {";m)}) dx™ dvém) d”l(am) dv(fm) dﬂim)
m#n

Computing
Quadrature
Approximation

Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
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NDF for Fluid—Particle Systems

Computational
Models for

Polydisperse e Multi-particle joint PDF can be reduced to single-particle joint PDF by

Particulate and

Multiphase integrating out state variables for all particles except n™"

Systems

Rodney O. Fox
International f(n) (t X(n) V(n) ﬂ(n) V(”),ni‘n)) .
Francqui
protesser Y VO 0 (VO (0 dx™ AV dpt dve dp
,fN X { p }’{’]p }’{ £ }7{'lf } X p ”p f nf
Quadrature- m#n
Based Moment
Methods

Closure Problem e Fluid—particle NDF is therefore defined as
e
Approximation

Realizable Moments

Np
= N .
ceneratized n(t, X, Vp, &y, V1, §p) 1= Z‘fl (t,X, Vp, &1, Vi €¢)
p=

Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations
Real-Space
Advection
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NDF for Fluid—Particle Systems

Computational
Models for

Polydisperse e Multi-particle joint PDF can be reduced to single-particle joint PDF by
Multiphase integrating out state variables for all particles except n™"

Systems

Rodney O. Fox

International f(n) (t X(n) V(n) ﬂ(n) V(”),ni‘n)) .
Francqui
protesser Y VO 0 (VO (0 dx™ AV dpt dve dp

,fN X { p }’{’]p }’{ £ }7{'lf } X p ”p f nf

Quadrature- m#n

Based Moment

Methods

Closure Problem e Fluid—particle NDF is therefore defined as
e
Approximation

Realizable Moments

Generalized
Population
Balance
Equation . . . . . .
T e |n limit of identically distributed particles NDF becomes:
:Iyusl:)e—"P':mcle

T n(t, X, Vp, €5, Ve, §¢) = Np f1(8, X, Vp, &, Ve, &)
Systems

Bt i.e. numbering is arbitrary

Real-Space
Advection

Np
n(t, %, Vo, &9 Vi £0) 1= 170X, Vg &y Vi £0)
n=1
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Quadrature-

Based Moment Based on these definitions, how can we derive transport

equations for fluid—particle systems?
oy
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Generalized
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Moment Transport
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e Starting from mesoscale models for particle properties
(validated with DNS of fluid—particle system when possible), we
first derive generalized transport equation for fy, (generalized

Liouville equation)
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% GPBE for Fluid—Particle Systems

Computational

Models for . . .
A— e Starting from mesoscale models for particle properties
Particulate and

Multiphase (validated with DNS of fluid—particle system when possible), we

Systems

ooy 6 For first derive generalized transport equation for fy, (generalized
inermationl Liouville equation)
Frofessor o From this equation we find transport equation for one-particle
Criome PDF f, ") by integrating out all degrees of freedom except those
Methods associated with n!" particle (loss of information and generation of

Closure Problem

Gomputing unclosed terms)
Quadrature
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Realizable Moments
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% GPBE for Fluid—Particle Systems

Computational

Models for . . .
A— e Starting from mesoscale models for particle properties
Particulate and

Multiphase (validated with DNS of fluid—particle system when possible), we
Systems . n B " N
ooy 6 For first derive generalized transport equation for fy, (generalized
International L|Ouv|"e equat|0n)

Francqui
Professor

e From this equation we find transport equation for one-particle
Quadrature- PDF f, ") by integrating out all degrees of freedom except those

Based Moment

Methods associated with n!" particle (loss of information and generation of

Closure Problem

computng unclosed terms)
¢ Finally, using definition of fluid—particle NDF we derive GPBE:

Approximation
Realizable Moments

Generalized

Population

Balance an 0
Equation

NDF for ot (9X

Fluid-Particle

0
%,
Systems

8 0
e + v (Aedi+ Aon)n+ 20 (Gin = S,

Moment Transport
Equations

V- © (Ao + A+ g Gy

Real-Space
Advection
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GPBE for Fluid—Particle Systems

e We consider only mesoscale models where phase-space fluxes
and source terms in GPBE are closed, in other words, depend
only on independent variables (z, x, vy, &,, vr, §) and on NDF
f’l(t, X, Vp, fp’ V¢, ff)
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Partioulate and Summary
Multiphase .

Systems e We consider only mesoscale models where phase-space fluxes

Rodney . Fox and source terms in GPBE are closed, in other words, depend

International

Francqui

S only on independent variables (z, x, vy, &,, vr, §) and on NDF

Quadrature- f’l(t, X, VP’ ‘fp’ Vi, ff)

Metods e Finding accurate mesoscale closures is highly non-trivial task
o (e.g. drag coefficient for dense particulate systems, aggregation
B integrals and kernels, etc.)
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Systems e We consider only mesoscale models where phase-space fluxes
IEYE and source terms in GPBE are closed, in other words, depend

International

SErA only on independent variables (z, x, vy, &,, vr, §) and on NDF
Quadrature- n(t, X, Vps fp’ M ff)
pased foment ¢ Finding accurate mesoscale closures is highly non-trivial task
comptty (e.g. drag coefficient for dense particulate systems, aggregation
SO integrals and kernels, etc.)
o e In order to reduce dimensionality of GPBE it is sometimes
Population possible to work with selected moments of NDF by solving their

Balance .
Equation transport equations
NDF for
Fluid-Particle
Systems

GPBE for
Fluid-Particle
Systems

Moment Transport
Equations

Real-Space
Advection
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GPBE for Fluid—Particle Systems
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Polydi:
Partioulate and Summary

Multiphase .
Systems e We consider only mesoscale models where phase-space fluxes
e and source terms in GPBE are closed, in other words, depend
SErA only on independent variables (z, x, vy, &,, vr, §) and on NDF
X
Quadrature- n(t’ ? Vp’ fp’ Vf’ ff)
pased foment e Finding accurate mesoscale closures is highly non-trivial task
Slesur Pobie (e.g. drag coefficient for dense particulate systems, aggregation
omputing A
oo o integrals and kernels, etc.)
o e In order to reduce dimensionality of GPBE it is sometimes
ieneralizet . . . .
LI possible to work with selected moments of NDF by solving their
alance K
Equation transport equations
NDF for
S o Let us see how to derive moment equations and what additional
o problems are generated in their derivation (moment closure
omnt Tanspor problem)

Equations

Real-Space
Advection
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but it is worth mentioning that a set of consistency constraints

has to be satisfied

Rodney O. Fox International Francqui Professor

Computational Models for Polydisperse Particulate and Multiphase Systems



% Moment Transport Equations

Computational
Models for
Polydisperse
Particulate and
Multiphase

S ¢ At this point we will not enter into details of mesoscale models
Rodney O. Fox but it is worth mentioning that a set of consistency constraints

International

Francaul has to be satisfied

Professor

Quadrature-
Based Moment

Methods e Mesoscale models are designed to satisfy consistency

Closure Problem

Computing constraints (e.g., conservation of mass, species, momentum,

Quadrature

i energy, etc.)

Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations.
Real-Space
Advection

Rodney O. Fox International Francqui Professor

Computational Models for Polydisperse Particulate and Multiphase Systems



% Moment Transport Equations

Computational

Models for

Polydisperse
Parlicl{late and . . . . .

Mo e At this point we will not enter into details of mesoscale models
Rodney O. Fox but it is worth mentioning that a set of consistency constraints
" Erancaul has to be satisfied

Professor

Based Moment . . .

Methods e Mesoscale models are designed to satisfy consistency
oty constraints (e.g., conservation of mass, species, momentum,
Pl energy, etc.)

Realizable Moments

Generalized

Population

Balance . Py . .
Equation e Operation of deriving moment transport equations requires
Pl parce manipulation of multivariate integrals, it is therefore useful to
Systems . . .

arstor review some integration rules
;I‘;Jsl:ie—"P‘:rllcle

Moment Transport

Equations

Real-Space

Advection

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Moment Transport Equations

Computational
Models for

Polydi: . . .
Particulate and Treatment of time and space derivatives

Multiphase
S Let g(vp, &, Vi, ) be arbitrary function of its variables
ney O. Fox
Rlzlljerigllon; Then
Francqui
Professor

on 0
e ament f (5 o Vp")gdvp dg;, dvr dg;

Methods

Closure Problem 8gn 8
Computng —— + — -vpgn| dv dve
Quad f ( ot O0x p8 ) P dfp dff

Approximation
Realizable Moments

. 0 9
Papdation 61‘ (f gndvy dg, dvg dff) ox (f vpgn dvy A&, dve dgy
Balance
Equation

0

NDF for

;::::::nicle <g > + <Vpg >

‘GPBE for

Fluid—Particle .

S where (o) denotes integral w.r.t. n
loment Transport

Equations

Real-Space
Advection

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



ansport Equations

Computational
Models for
Polydisperse
Particulate and
Multiphase

Systems Treatment of velocity derivatives
Rodney O. Fox

S With velocity derivatives, it is necessary to use integration by parts:

Francqui
Professor

Quadrature- a

Based Moment — . ((A + (A )n dv, d&. dv.
Methods fg[)v (< fp)1 + (Ap)i p A&, dvr déy
Closure Problem P

Computing

Ay = ((Afp)l + <Ap>1)gn'v 7+Oo_f(<Afp>1 + (Ap)1)-§Tgn dvy, d¢, dvr dé;
P P

Realizable Moments

Generalized

Population First term corresponds to flux normal to surface bounding velocity

Balance

T phase space and since velocity space extends to infinity, this flux

NDF for

Fluid-Particle

s must be null
GPBE for
Fluid—Particle
Systems

Moment Transport
Equations
Real-Space
Advection

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Moment Transport Equations

Computational
Models for
Polydisperse
Particulate and

Meyeme. Treatment of internal-coordinate derivatives

Rodney O. Fox

Ty OLG Also for internal-coordinate derivatives it is necessary to use
Fiancau integration by parts:

Professor

Quadrature- a

Based Moment

Methods 8- (Gp)indv, dg, dv; d&;
Closure Problem 6§ P

Computing

Quadrature

Approximation

R::IizableMomenls <Gp>]gi’l|£ =max <G >1gl’l|§ —min f(Gp>l f
Generalized

Population

o Since for particle internal coordinates phase space does not often
D extend to infinity, flux normal to phase-space boundaries might not be
it null (e.g. particle dissolution, droplet evaporation)
Fluid—Particle
Systems

—> ndv, d€, dv; dé;

Moment Transport
Equations
Real-Space
Advection

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computaton! Modelsor
Pohspers Portcte
and Maliphase Systoms

Disperse-Phase Number Transport

Computational
Models for
Polydisperse
Particulate and
Multiphase
Systems

Rodney O. Fox
International
Francqui
Professor

Quadrature-
Based Moment
Methods

Closure Problem
Computing
Quadrature
Approximation
Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations.
Real-Space
Advection

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Disperse-Phase Number Transport

Computational

Models for o Total number concentration N(z, x) corresponds to zero-order

Polydi: . . .

Particulate and moment of NDF (i.e., g = 1) and is defined by
Multiphase
Systems

Rod O. F —
=y Ni= [ navag, aveag,
Francqui

Professor

Quadrature-
Based Moment
Methods

Closure Problem
Computing
Quadrature
Approximation
Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations.
Real-Space
Advection

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



<

% Disperse-Phase Number Transport

Computational .
Models for o Total number concentration N(z, x) corresponds to zero-order
Polydisperse . . .
Particulate and moment of NDF (i.e., g = 1) and is defined by
Multiphase
Systems
ot N:= f ndvp dg, dvr dgy
Francqui
Professor
e |ts transport equation can be found from GPBE

Quadrature-

L N0
Closure Problem E =+ 0—X N = N

Computing
Quadrature
Approximation

Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations.
Real-Space
Advection

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



% Disperse-Phase Number Transport

Computational

Madsisfor o Total number concentration N(z, x) corresponds to zero-order
0| isperse . . .
Particulate and moment of NDF (i.e., g = 1) and is defined by

Multiphase

Systems

oty N:= f ndvy g, dvr dé;
Francqui
Professor .
e |ts transport equation can be found from GPBE
Quadrature-
Based Moment aN 6
Methods
— + — - UNN = SN
— or  0x
omputing
Quadrature

ppeexination e Number-average disperse-phase velocity is defined by

Realizable Moments

Closure Problem

Generalized 1

Population —
Balance UN =N prl’l de dfp de dff
Equation

NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems

Moment Transport
Equations
Real-Space
Advection

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



% Disperse-Phase Number Transport

Computational

Models for o Total number concentration N(z, x) corresponds to zero-order
Polydisperse . . .
Particulate and moment of NDF (i.e., g = 1) and is defined by

Multiphase

Systems

Rod O. F —

=y Ni= [ navag, aveag,
Francqui
Professor

e |ts transport equation can be found from GPBE
Quadrature-
Based Moment aN 6
Methods

— + — - UNN = SN

Closure Problem
Computing at 0X
Quadrature N . . .
ppeexination e Number-average disperse-phase velocity is defined by

Realizable Moments

Generalized 1

Pe lati ©—
Populaion Ux : f Vo dv, dg, dvy d&;

Equation N

NDF for .
Particle-number source term by

Fluid-Particle
Systems

GPBE for
Fluid-Particle

Swi= [ Siav,ag v

Equations

Real-Space
Advection

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computaton! Modelsor
Pohspers Portcte
and Wuphase Systems.

Disperse-Phase Volume Transport

Computational
Models for
Polydisperse
Particulate and
Multiphase
Systems

Rodney O. Fox
International
Francqui
Professor

Quadrature-
Based Moment
Methods

Closure Problem
Computing
Quadrature
Approximation
Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations.
Real-Space
Advection

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Disperse-Phase Volume Transport

Computational

Models for o [f first internal coordinate &;; is particle volume (V},)

Partouiie and disperse-phase volume fraction is defined as (g = &, = V,):
Multiphase
Systems

Rodney O. Fox ap = ffpln de dfp de dff
International

Francqui
Professor

Quadrature-
Based Moment
Methods

Closure Problem
Computing
Quadrature
Approximation
Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations.
Real-Space
Advection

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



<

% Disperse-Phase Volume Transport

odslafor o If first internal coordinate &,; is particle volume (V,)

Partouiie and disperse-phase volume fraction is defined as (g = &, = V,):
Multiphase
Systems

Rodney O. Fox ap = ffpln de dfp de dff

International
Francqui

LR e |ts transport equation can be derived from GPBE:

Quadrature- aap a

Based M
Methods 2t o ~apUy = [Gpllv + Sv

Closure Problem

Computing
Quadrature
Approximation

Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations.
Real-Space
Advection

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



% Disperse-Phase Volume Transport

odslafor o If first internal coordinate &,; is particle volume (V,)
Partouiie and disperse-phase volume fraction is defined as (g = &, = V,):
Multiphase
Systems

Rodney O. Fox ap = ffpln de dfp de dff
International
Francqui

LS e |ts transport equation can be derived from GPBE:

Quadrature- a ap a

Based Moment

— *+ = Uy = [Glly + Sy
":::::ls?mblem at 6X p P
S ¢ Volume-average disperse-phase velocity is defined by

Approximation

Realizable Moments

1
Generalized UV = a,_ ffp]Vpn de d{"p de d{"f
P

Population

Balance

Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations.
Real-Space
Advection

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



% Disperse-Phase Volume Transport

Computational

Models for o [f first internal coordinate &;; is particle volume (V},)

Polydisperse

iR e disperse-phase volume fraction is defined as (g = &1 = V;,):

Multiphase

Systems
Rodney O. Fox ap = ffpln de dfp de dff
International
Francqui
LS e |ts transport equation can be derived from GPBE:
Quadrature- aa a
Based M p
Venods —— + = Uy = [Gpllv + Sy
Closure Problem ot ox
S ¢ Volume-average disperse-phase velocity is defined by

Approximation
Realizable Moments

1
Generalized UV = a,_ ffp]Vpn de d{"p de d{"f
P

Population
Balance
Equation
NDF for
Fluid-Particle
Systems

GPBE for |[Gp]]V = f(Gp] )17’1 de dfp de dgf

Particle-volume source terms are defined by

Fluid—Particle
Systems

Moment Transport
Equations

Real-Space SV = ffplSl de dfp de dff

Advection

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computaton! Modelsor
Pohspers Portcte
and Maliphase Systoms

Fluid-Phase Volume Transpor

Computational
Models for
Polydisperse
Particulate and
Multiphase
Systems

Rodney O. Fox
International
Francqui
Professor

Quadrature-
Based Moment
Methods

Closure Problem
Computing
Quadrature
Approximation
Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations.
Real-Space
Advection

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



mputaicnsi oot for

and Maliphase Systoms

Computational
Models for
Polydisperse
Particulate and
Multiphase
Systems

Rodney O. Fox

Int tional
ancqui
Professor

Quadrature-
Based Moment
Methods

Closure Problem
Computing
Quadrature
Approximation
Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations.
Real-Space
Advection

Fluid-Phase Volume Transport

e If we let internal coordinate &;; be equal to fluid volume seen by
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o If disperse phase has particles with different volumes and
different masses (or material densities), at least two internal
coordinates are necessary
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Constant (and equal) volume and mass

e In case where &, = V, and &,, = M,, are constant and equal for
all particles (monodisperse): gp = M,N = pyap

e Average particle velocities are all equal: U, := Uy = Uy = Uy

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for
Polydisperse
Particulate and
Multiphase
Systems

Rodney O. Fox
International
Francqui
Professor

Quadrature-
Based Moment
Methods

Closure Problem
Computing
Quadrature
Approximation
Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations
Real-Space
Advection

Towards the Two-Fluid Model

Constant (and equal) volume and mass

e In case where &, = V, and &,, = M,, are constant and equal for
all particles (monodisperse): gp = M,N = pyap

e Average particle velocities are all equal: U, := Uy = Uy = Uy
e Governing equations become (incompressible fluid):
oap, 0
ot 0x

%+ﬁ'a’fo=0

wlp =0 B+ o

Rodney O. Fox International Francqui Professor

Computational Models for Polydisperse Particulate and Multiphase Systems



% Towards the Two-Fluid Model

Computational
Mod(lels for

T, Constant (and equal) volume and mass
Multiphase

Systems e In case where &, = V,, and &, = M, are constant and equal for
Rodney O. Fox all particles (monodisperse): gp = M,N = pyap

International

Francqui

Tortreer e Average particle velocities are all equal: U, := Uy = Uy = Uy
Governing equations become (incompressible fluid):

Quadrature-
Based Moment
Methods

Closure Problem o 0 a(l'f 0
2L U,=0 4L U0
Quadrature ot ox ot O0xX

Approximation
Realizable Moments

Sum of two continuity equations yields realizability constraint for

Generalized

e velocity fields: Vy - Uy = 0, Uyl := @, U, + Uy, that must be
Fauation incorporated into conditional source terms in fluid-phase
S momentum transport equation (fluid-phase pressure)

GPBE for
Fluid—Particle
Systems

Moment Transport
Equations

Real-Space
Advection

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Towards the Two-Fluid Model

Computational
Mod(lels for

I, Constant (and equal) volume and mass
Multiphase

Systems e In case where &, = V,, and &, = M, are constant and equal for
Rodney O. Fox all particles (monodisperse): gp = M,N = pyap

International

Francqui

Tortreer e Average particle velocities are all equal: U, := Uy = Uy = Uy
Quadrature- e Governing equations become (incompressible fluid):

Based Moment
Methods

Closure Problem aap 0 a(l'f 0

Computing — t+— -, U, =0 — 4+ — U =0

e a ox P o ox

Realizable Moments i i . . . . .
Generalized e Sum of two continuity equations yields realizability constraint for
Batance. velocity fields: Vy - Uy = 0, Uyl := U, + ¢ Uy, that must be
Fauation incorporated into conditional source terms in fluid-phase

S momentum transport equation (fluid-phase pressure)

GPBE for . . .

LT  Note that, in general, Uy # Unix unless fluid and particles have

= same material densities

Equations

Real-Space
Advection

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Computaton! Modelsor
Pohspers Portcte
and Maliphase Systoms

Disperse-Phase Momentum Transpor

Computational
Models for
Polydisperse
Particulate and
Multiphase
Systems

Rodney O. Fox
International
Francqui
Professor

Quadrature-
Based Moment
Methods

Closure Problem
Computing
Quadrature
Approximation
Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations.
Real-Space
Advection

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Disperse-Phase Momentum Transport

Computational

Models fi . . . .
Polydisperse « Disperse-phase momentum density is defined by
Particulate and

Multiphase

Systems

Rodney O. Fox QPUM = ngZVpn de dfp de dgf

International
Francqui
Professor

where &, = M, corresponds to particle mass
Quadrature-

Based Moment
Methods

Closure Problem

Computing

Quadrature

Approximation

Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations.
Real-Space
Advection

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



% Disperse-Phase Momentum Transport

Computational

Models fi . . . .
Polydisperse « Disperse-phase momentum density is defined by
Particulate and

Multiphase

Systems

Rodney O. Fox QPUM = ngZVpn de dfp de dgf

International
Francqui
Professor .
where &, = M, corresponds to particle mass
Quadrature- . . . .
S e ¢ As usual its transport equation is derived from GPBE (g = &5, vp):
lethods

z:’:‘;'f:i:;mm 80,Un 8
B =+ — 0ok = opl[Asp Il + 0pl[AL Dl + [Gp ]l + 0, (S,
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e Surface forces on particles due to surrounding fluid (e.g., drag,
lift, and pressure forces)

©p [[Afp]]P = f(fpz(Afpz)] n de dfp dvy dff

Body forces (such as gravity):

QP'[AP]]p = fpr(AP2>|n dVP dfp de dff

Momentum added to particle phase due to mass transfer from
liquid

[Gplp := pr<Gp2>1nded§pded§f

Discontinuous changes in particle momentum due to collisions
and particle nucleation:

Qpl[s]]p = fé‘:pZVpSI de dfp dvy dé;
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Towards the Two-Fluid Model

C ant (and equal) volume and mass

e For monodisperse particles, disperse-phase mass density is
Op = Ppp, Mass average can be replaced by number average,
and transport equation for disperse-phase momentum density is

OppapU, 0 0
T ar & 'pPaPUP ® UP ar 6_x -ppa/p[[upup]]N =

Pp@p[ArIN + ppap[AplN + opapop[Sln
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Towards the Two-Fluid Model

C ant (and equal) volume and mass

e For monodisperse particles, disperse-phase mass density is
Op = Ppp, Mass average can be replaced by number average,
and transport equation for disperse-phase momentum density is

Oppap Uy 0
T ar & 'pPaPUP ® UP ar 6_x -ppa/p[[upup]]N =

Pp@p[ArIN + ppap[AplN + opapop[Sln

e Disperse-phase pressure tensor, [u,u,lln = Fx - U, ® U, is
central second-order moment
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e « Disperse-phase pressure tensor, [upu,]y = Fx — U, @ Up,, is
Bal

Equation central second-order moment

Fusa aricl e Term for collisions can also generate separate spatial flux term

Systems
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Towards the Two-Fluid Model

C ant (and equal) volume and mass

e From GPBE we can also derive a transport equation for
fluid-phase momentum density (after applying constraints)

anUf 0
2 orlUr ® Ugls =
o +8x ot [Ur ® Ut]l

0
& : Sf + QfAf - Qp[[Afp]]p - [[Gp]]p - Qp[[s]]p
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Towards the Two-Fluid Model

Constant (and equal) volume and mass

e From GPBE we can also derive a transport equation for
fluid-phase momentum density (after applying constraints)

anUf 0
2 orlUr ® Ugls =
o +8x ot [Ur ® Ut]l

0
& : Sf + QfAf - Qp[[Afp]]p - [[Gp]]p - Qp[[s]]p

e S¢ and A; denote the viscous/pressure stress tensor and body
forces acting on fluid phase
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Towards the Two-Fluid Model

Constant (and equal) volume and mass

e From GPBE we can also derive a transport equation for
fluid-phase momentum density (after applying constraints)

anUf 0
2 orlUr ® Ugls =
o +8x ot [Ur ® Ut]l

0
& : Sf + QfAf - Qp[[Afp]]p - [[Gp]]p - Qp[[s]]p

e S¢ and A; denote the viscous/pressure stress tensor and body
forces acting on fluid phase

e Convection term

[U0¢ ® Uglls := fff]Vf R vin de dfp dvy dff

requires separate model for microscale (pseudo) turbulence
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B ricte ¢ This expression does not contain terms for momentum transfer
i between phases but can be solved only when U is very close
i to Us (i.e., very small Stokes numbers)
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Moment Transport Equations
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e Through ensemble average and by using some simplifying
hypotheses NDF for multiphase system has been defined
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ansport Equations

e Through ensemble average and by using some simplifying
hypotheses NDF for multiphase system has been defined

e NDF completely defines multiphase system
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Moment Transport Equations

e Through ensemble average and by using some simplifying
hypotheses NDF for multiphase system has been defined

e NDF completely defines multiphase system

e Moments of NDF correspond to relevant measurable properties:
disperse-phase number concentration, disperse- and fluid-phase
volume fractions and mass densities, mixture mass density,
number-, volume- and mass-average velocities for disperse and
fluid phases and mass-average mixture velocity
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Moment Transport Equations

e Through ensemble average and by using some simplifying
hypotheses NDF for multiphase system has been defined

e NDF completely defines multiphase system

e Moments of NDF correspond to relevant measurable properties:
disperse-phase number concentration, disperse- and fluid-phase
volume fractions and mass densities, mixture mass density,
number-, volume- and mass-average velocities for disperse and
fluid phases and mass-average mixture velocity

e Evolution of NDF is dictated by GPBE and from it, transport
equations for moments can be derived simply by applying
moment transform
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e e Evolution of NDF is dictated by GPBE and from it, transport

Balance

Equation equations for moments can be derived simply by applying
NDF for moment transform

Fluid-Particle

Systems . . q .

speEtr e Two-fluid model and mixture model are directly derivable from
S moment transport equations with additional hypothesis of
o ,

S— constant and equal particle mass and volume
Galfpacs

Advection

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Moment Closure

Computational
Models for

Polydisperse ¢ In general moment transport equations are not closed, as

Particulate and

Multiphase terms appearing in them cannot be written in terms of moments
SR themselves

Rodney O. Fox
International

e e In all these cases NDF has to be reconstructed

Professor

Quadrature-
Based Moment
Methods

Closure Problem
Computing
Quadrature
Approximation
Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations.
Real-Space
Advection

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Moment Closure

Computational
Models for

Polydisperse ¢ In general moment transport equations are not closed, as

Particulate and

Multiphase terms appearing in them cannot be written in terms of moments
SR themselves

Rodney O. Fox

nternational ¢ In all these cases NDF has to be reconstructed

Francqui
Professor

e Parameterized NDF: functional form for NDF in terms of a few
Qe lower-order moments (e.g. single Dirac delta function,
Methods log-normal distribution)

Closure Problem
Computing
Quadrature
Approximation
Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations.
Real-Space
Advection
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Moment Closure

Computational
o « In general moment transport equations are not closed, as
Particulate and

Multiphase terms appearing in them cannot be written in terms of moments
SR themselves

Rodney O. Fox
International

e e In all these cases NDF has to be reconstructed

Professor

Quadrature-
Based Moment
Methods
Closure Problem
Computing

Quadrature ¢ Functional expansion for NDF: similar to previous one but in

Approximation

Realzable Moments order to increase number of degrees of freedom in systematic
Generalized manner functional expansion can be used to represent NDF

Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations.
Real-Space
Advection
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% Moment Closure

Computational
o « In general moment transport equations are not closed, as

Particulate and

Multiphase terms appearing in them cannot be written in terms of moments
SR themselves

Rodney O. Fox
B ¢ In all these cases NDF has to be reconstructed
Professor

Quadrature-
Based Moment
Methods
Closure Problem
Computing
Quadrature
Approximation
Realizable Moments

Generalized
Population
Balance

Equation o Discrete NDF: discrete form for phase-space variables,
o e discretized on grid (e.g. uniform, geometric series, etc.)

Systems
GPBE for
Fluid—Particle
Systems

Moment Transport
Equations
Real-Space
Advection
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% Moment Closure

Computational
o « In general moment transport equations are not closed, as
Particulate and

Multiphase terms appearing in them cannot be written in terms of moments
SR themselves

Rodney O. Fox
International

e e In all these cases NDF has to be reconstructed

Professor

Quadrature-
Based Moment
Methods
Closure Problem
Computing
Quadrature
Approximation
Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems

GPBE for e Quadrature-based moment methods: reconstruction of NDF

Fluid-Particle

L using sum of Dirac delta functions located at nodes of
quadrature approximation (i.e. zeros of orthogonal polynomials)

Equations

Real-Space
Advection
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Computaton! Modelsor
Pohspers Portcte
and Wuphase Systems.

o Real-Space Advection and Integration in CFD
Codes

Computational
Models for
Polydisperse
Particulate and
Multiphase
Systems

Rodney O. Fox
International
Francqui
Professor

Quadrature-
Based Moment
Methods

Closure Problem
Computing
Quadrature
Approximation
Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations
Real-Space
Advection
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Real-Space Advection and Integration in CFD
Codes

Computational
Models for .
Polydisperse e Real-space advection (second term on LHS)
Particulate and
Multiphase
Systems

on 0 0 0
Rodney O. Fox J— _ _— A A _—
In::;'q’:}r‘lﬁ::ﬂ ot + Ox Vpnt + (9Vp (< fp)l + < p)l)n + 8§p <Gp>1n

Professor

0 0
+ 2 (Ap1 + A )n+ 2 (Gin =S
Based Moment an aff
Methods
Closure Problem
Computing
Quadrature
Approximation
Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations
Real-Space
Advection
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Real-Space Advection and Integration in CFD
Codes

Computational
Models for .
Polydisperse Real-space advection (second term on LHS)
Particulate and
Multiphase
Systems

on 0 0 0
Rodney O. Fox J— _ _— A A _—
In::;'q’:}r‘lﬁ::ﬂ ot + Ox Vpnt + (9Vp (< fp)l + < p)l)n + 8§p <Gp>1n

Professor
9 i)
uadrature- + — - ({A + (A + — (G :S
gas:d l:lloment an (< pf>1 < f>1) n agf < f)ln 1
Methods

Closure Problem

Computing
Quadrature
Approximation

Realizable Moments 0

It represents the movement of particles in real space:

Generalized

Population ox
Balance
Equation

NDF for

Fluid-Particle

Systems

GPBE for

Fluid—Particle

Systems

Vol = — VN + — VN + —Vp3Nn
P Bxlp szp 3X3p

Moment Transport
Equations
Real-Space
Advection
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Real-Space Advection and Integration in CFD

Codes

Computational
Models for .
Polydisperse e Real-space advection (second term on LHS)

Particulate and
Multiphase
Systems

on 0 0 0
P o T ox Vot 6_vp : ((Afp)l + <Ap>l)n + (9_§p {(Gp)in
Professor

Francqui
0 0
+ 2 (Ap1 + A )n+ 2 (Gin =S
Based Moment an aff

Methods

Closure Problem . .

Compiting e |t represents the movement of particles in real space:

Quadrature

Approximation

Realizable Moments 0 0

Generalized — Vol = — VN + —Vph + —Vp3h
Population 0x P 6x1 P (9)62 P 3)63 P
Balance
Equation

NDF for ¢ Particle velocity plays an important role since it generates spatial
Fluid-Particle . .
Systems transport: active variable

GPBE for
Fluid—Particle
Systems

Moment Transport
Equations
Real-Space
Advection
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Real-Space Advection and Integration in CFD
Codes

Computational
Models for .
Polydisperse e Real-space advection (second term on LHS)
Particulate and
Multiphase
Systems

on 0 0 0
P o T ox Vot 6_vp : ((Afp)l + <Ap>l)n + (9_§p {(Gp)in

Francqui
Professor
0 0
+ 2 (Ap1 + A )n+ 2 (Gin =S
Based Moment an aff
Methods
Closure Problem . R
Compiting e |t represents the movement of particles in real space:
Quadrature
Approximation

Realizable Moments 0 0

Generalized — Vol = — VN + —Vph + —Vp3h
Population 0x P 6x1 P (9)62 P 3)63 P
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid-Particle
Systems

Other internal coordinates (e.g. particle size) are passive
e variables: carried along with given velocity

Real-Space
Advection
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Computaton! Modelsor
Pohspers Portcte
and Wuphase Systems.

o Real-Space Advection and Integration in CFD
Codes

Computational
Models for
Polydisperse
Particulate and
Multiphase
Systems

Rodney O. Fox
International
Francqui
Professor

Quadrature-
Based Moment
Methods

Closure Problem
Computing
Quadrature
Approximation
Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations
Real-Space
Advection
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Real-Space Advection and Integration in CFD

Codes

Computational

Lt ¢ One strategy that facilitates implementation in CFD codes is to integrate
olydisperse

Particulate and NDF with respect to particle velocity (and to assume that phase-space
Multiphase

Systems variables for fluid are slaved to their average values: monokinetic fluid

Rodney O. Fox ||m|t):
International
Francqui

Professor n'(t,x,§,) = fn(t, X, Vp, £,)0(vi = UpA(E; — @) dv,, dve dEg
Quadrature-
Based Moment
Methods

Closure Problem

Computing
Quadrature
Approximation

Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations
Real-Space
Advection
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Real-Space Advection and Integration in CFD

Codes

Computational

Lt ¢ One strategy that facilitates implementation in CFD codes is to integrate
olydisperse

Particulate and NDF with respect to particle velocity (and to assume that phase-space
Multiphase . . . . . .
Systems variables for fluid are slaved to their average values: monokinetic fluid

Rodney O. Fox ||m|t)
International

Francqui

rofessor * P

e WxE) = [ X £~ UBE, - 6 dvy dved,
Quadrature-
Based M t . . . .
Methods e An expression for the real-space advection term is obtained:
Closure Problem
Computing ol . o B 0 . o .
B % Gplé,n™ = o, Uplg,m" + ax2<Up2|§p>n + ax3<Up3|‘fp>”

Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations
Real-Space
Advection
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Real-Space Advection and Integration in CFD

Codes

Computational

Lt ¢ One strategy that facilitates implementation in CFD codes is to integrate
olydisperse

Particulate and NDF with respect to particle velocity (and to assume that phase-space
Multiphase . . . . . .
Systems variables for fluid are slaved to their average values: monokinetic fluid

Rodney O. Fox ||m|t):
International
Francqui

L n*(t, x, fp) = fn(l, X, Vp, fp)t'i(vf = Upd(&; — ¢p) dvy, dve dé;
Quadrature-
i e An expression for the real-space advection term is obtained:

Closure Problem
Computing 6 « 6 « a % a %
e x (Gplém™ = 6—M(Up1|§p>n + a—xz<Up2|§p>n + a—)%<Up3|§p>n

Realizable Moments

Generalized e By definition, conditional particle-phase velocity is

Population
Balance

Equation fv ndv. 1
P p
Uty = T [ vnav [ vnav, [ vanav,
Systems ndavy

GPBE for
Fluid-Particle

Systems and represents mean velocity of particles with internal coordinates
e equal to &, or equivalently average particle velocity conditioned on
s internal coordinates

Advection
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Real-Space Advection and Integration in CFD
Codes

Computational
Models for

Povaiaoers Conditioned particle-phase velocity (U,|£,) can be determined (in
Rariicuiaicland an Eulerian framework) with different approaches:

Multiphase
Systems

fodney 0. For e pseudo-homogeneous or dusty gas model: particles move
International with velocity of continuous phase (St, — 0) including (for

Francqui

Professor submicron particles) or neglecting (with larger particles)
Quadrature- BI‘OWﬂIan dlfoSIon

Based Moment

Tty ¢ equilibrium or algebraic Eulerian model: particles move with

Closure Problem

Computing velocity calculated from algebraic expression (0 < St, < 0.1)

Quadrature

e s o Eulerian two-fluid model: particles move with velocity

Generalized calculated with differential equation (St, > 0.1)

Population 4
Balanf:e . . . .

Fauation Choice depends on particle Stokes number (ratio between particle
S and fluid relaxation time scales):

GP,BE'N '

Spean ppdg

Moment Transport S P - "

Equations 18prfo

Real-Space
Advection
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Computational
Models for
Polydisperse
Particulate and
Multiphase
Systems

Rodney O. Fox
International
Francqui
Professor

Quadrature-
Based Moment
Methods

Closure Problem
Computing
Quadrature
Approximation
Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations
Real-Space
Advection

Real-Space Advection and Integration in CFD
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Computational
Models for
Polydisperse
Particulate and
Multiphase
Systems

Rodney O. Fox
International
Francqui
Professor

Quadrature-
Based Moment
Methods

Closure Problem
Computing
Quadrature
Approximation
Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations
Real-Space
Advection

Real-Space Advection and Integration in CFD

Codes

e There is one particle velocity field, identical to fluid velocity

Rodney O. Fox International Francqui Professor

Computational Models for Polydisperse Particulate and Multiphase Systems



Computational
Models for
Polydisperse
Particulate and
Multiphase
Systems

Rodney O. Fox
International
Francqui
Professor

Quadrature-
Based Moment
Methods

Closure Problem
Computing
Quadrature
Approximation
Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations
Real-Space
Advection

Real-Space Advection and Integration in CFD

sty gas model:
e There is one particle velocity field, identical to fluid velocity

o Preferential accumulation and segregation are not predicted as
particles are transported as scalars in continuous phase
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Computational
Models for
Polydisperse
Particulate and
Multiphase
Systems

Rodney O. Fox
International
Francqui
Professor

Quadrature-
Based Moment
Methods

Closure Problem
Computing
Quadrature
Approximation
Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations
Real-Space
Advection

Real-Space Advection and Integration in CFD

sty gas model:
e There is one particle velocity field, identical to fluid velocity

o Preferential accumulation and segregation are not predicted as
particles are transported as scalars in continuous phase

o |f system is very dilute (one-way coupling), properties of

continuous phase (i.e., density and viscosity) are assumed to be
equal to those of fluid

Rodney O. Fox International Francqui Professor
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Real-Space Advection and Integration in CFD

Computational
Models for
Polydisperse
Particulate and

Multiphase sty gas model:

Systems

Rodney O. Fox e There is one particle velocity field, identical to fluid velocity

International

S o Preferential accumulation and segregation are not predicted as
particles are transported as scalars in continuous phase

Quadrature-
e faoment o If system is very dilute (one-way coupling), properties of
i continuous phase (i.e., density and viscosity) are assumed to be

Computing .
oo equal to those of fluid

Approximation
Realizable Moments

S e |f particle concentration starts to influence fluid phase (two-way
Population coupling), a modified density and viscosity for continuous phase

Balance . .
Equation are generally introduced — mixture
Flud-artle
Systems
GPBE for
Fluid—Particle
Systems

Moment Transport
Equations
Real-Space
Advection
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Real-Space Advection and Integration in CFD

Computational
Models for
Polydisperse
Particulate and

Multiphase sty gas model:

Systems

Rodney O. Fox e There is one particle velocity field, identical to fluid velocity

International

S o Preferential accumulation and segregation are not predicted as
particles are transported as scalars in continuous phase

Quadrature-
e faoment o If system is very dilute (one-way coupling), properties of
i continuous phase (i.e., density and viscosity) are assumed to be

Computing

Quadrature equal to those of fluid

Approximation
Realizable Moments

S e |f particle concentration starts to influence fluid phase (two-way
Population coupling), a modified density and viscosity for continuous phase

Balance

Equation are generally introduced — mixture

NDF for

S e Depending on size of particles Brownian motion may have to be
Pk Partice included

Systems

Moment Transport
Equations
Real-Space
Advection
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Real-Space Advection and Integration in CFD
Codes

Computational
Models for
Polydisperse

et Equilibrium or algebraic Eulerian model:

Systems

Rodney O. Fox e Considering only drag and gravity:

International

Professor DU; >
(Ulé,) = Ur + - — 8| 70(6) +O(x3)
Quadrature-

Based Moment
Method: . . .
e e e One-way coupling (dilute systems): momentum balance equation for

Computing continuous phase and algebraic equation for different particle classes:

Quadrature

Approximation 0 — T =

Realizable Moments Upk T <Up|§p - él:pk> with k = L....N

Generalized e Denser particulate systems (two- or three-way coupling): momentum

P lati . .

Batance | balance equation for mixture

Equation . .
NoRr e Moderately dense particulate systems are generally not well described
Systems due to importance of particle—particle collisions and particle trajectory
GPBE for

Fluid-Particle CrOSSing

Systems

Moment Transport
Equations
Real-Space
Advection
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Real-Space Advection and Integration in CFD
Codes

Computational " "
Models for Eulerian two-fluid model:
Polydisperse

Particulate and A a . .

Multiphase e When particle Stokes number is not small particle velocity must be

Systems calculated from disperse-phase momentum equation:
Rodney O. Fox

International anUp Qppf D a

Fra

P.:fr;csztl)lr +V- QpUp ® Up = —OtpVPf +opgt+ ———Us - Upl(Uf - Up)

ot 2ypp
Quadrature- C i L.
Based Moment + M(Uf ~Uy)- VU + 22— oCLpe 2 (U - Up) x (V x Up)
Methods ypp y
Closure Problem
e e Likewise, fluid-phase momentum balance is
Approximation
Realizable Moments
o, CpA

p— 9Vt | V. o Ur @ Ur = V71— arVpr + org + 2222 1y, U, - Up)
Population o 2ypp
Balance C p Q Lpf
Equation ©OpLvmpft
+ " (U, - Up) - VU; + =—— (U, = Up) X (V X Up)
Fluid-Particle YPp YPp
Systems
Pl Poricle e Approach can be extended to different particle classes,
Systems . . .
Moot Transpor Upi = (Upl§, = &) with k = 1,..., N, by solving multiple momentum
s balance equations: multi-fluid model

Advection
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iisperse Partcte
and Wuphase Systems.

Guidelines for Real-Space Advection

Computational

Jal T There are three key parameters: particle loading, o, /0, particle Stokes
Jolydisperse number, St, and polydispersity, PDI

Multiphase

Systems

Rodney O. Fox
International
Francqui
Professor

Quadrature-
Based Moment
Methods

Closure Problem
Computing
Quadrature
Approximation
Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations
Real-Space
Advection
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Guidelines for Real-Space Advection

Computational

Jal T There are three key parameters: particle loading, o, /0, particle Stokes
Jolydisperse number, St, and polydispersity, PDI
Multiphase

SEenD © Diffusion equation: sub-micron particles subject to Brownian motion

Rodney O. Fox
International
Francqui
Professor

Quadrature-
Based Moment
Methods

Closure Problem
Computing
Quadrature
Approximation
Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations
Real-Space
Advection

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Guidelines for Real-Space Advection

Computational

Jal T There are three key parameters: particle loading, o, /0, particle Stokes
Polydisperse number, St, and polydispersity, PDI

Particulate and
Multiphase

SEenD © Diffusion equation: sub-micron particles subject to Brownian motion
Rodney O. Fox @® Pseudo-homogeneous or dusty-gas model: very small particle

International
:fyafncicyu‘ Stokes number and limited polydispersity (mom. bal. eq. for cont. phase
if system is dilute or mixture otherwise)

Quadrature-
Based Moment
Methods

Closure Problem
Computing
Quadrature
Approximation
Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations
Real-Space
Advection
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Guidelines for Real-Space Advection

Computational There are three key parameters: particle loading, o, /0, particle Stokes

Models for . .
Polydisperse number, St, and polydispersity, PDI
Particulate and

Meyeme. © Diffusion equation: sub-micron particles subject to Brownian motion

Rodney O. Fox @® Pseudo-homogeneous or dusty-gas model: very small particle

International

o Stokes number and limited polydispersity (mom. bal. eq. for cont. phase
if system is dilute or mixture otherwise)

Quadrature-

Based Moment ©® Equilibrium or algebraic Eulerian model with single conditional
Methods . . . .
velocity based on mean particle size: small particle Stokes number

Closure Problem
Gl and limited polydispersity (mom. bal. eq. ...)
Approximation

Realizable Moments

Generalized
Population
Balance
Equation
NDF for
Fluid-Particle
Systems
GPBE for
Fluid—Particle
Systems
Moment Transport
Equations
Real-Space
Advection
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Guidelines for Real-Space Advection

Models for . .
Polydisperse number, St, and polydispersity, PDI
Particulate and

Meyeme. © Diffusion equation: sub-micron particles subject to Brownian motion

Computetions] There are three key parameters: particle loading, o, /0, particle Stokes

Ty @ [ @® Pseudo-homogeneous or dusty-gas model: very small particle

International

o Stokes number and limited polydispersity (mom. bal. eq. for cont. phase
if system is dilute or mixture otherwise)

Quadrature- ags M . o - - ags

Based Moment ©® Equilibrium or algebraic Eulerian model with single conditional
Methods . . . .

Closure Problem velocity based on mean particle size: small particle Stokes number

Computing and limited polydispersity (mom. bal. eq. ...)

Quadrature
Approximation

Realizable Moments O Equilibrium or algebraic Eulerian model with conditional
Generalized velocities: small particle Stokes number and non-negligible

Population . .
Balance polydispersity (mom. bal. eq. ...)
Equation

NDF for

Fluid-Particle

Systems

GPBE for

Fluid—Particle

Systems

Moment Transport

Equations

Real-Space

Advection
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% Guidelines for Real-Space Advection

Computational There are three key parameters: particle loading, o, /0, particle Stokes

Models for . .
Polydisperse number, St, and polydispersity, PDI
Particulate and
Multiphase
Systems

Rodney O. Fox @® Pseudo-homogeneous or dusty-gas model: very small particle

International

o Stokes number and limited polydispersity (mom. bal. eq. for cont. phase
if system is dilute or mixture otherwise)

© Diffusion equation: sub-micron particles subject to Brownian motion

Quadrature- ags M . o - - ags
Based Moment ©® Equilibrium or algebraic Eulerian model with single conditional
Methods

Closure Problem velocity based on mean particle size: small particle Stokes number
Gl and limited polydispersity (mom. bal. eq. ...)

Approximation g - . - . g

Reaizale Moments O Equilibrium or algebraic Eulerian model with conditional
Generalized velocities: small particle Stokes number and non-negligible
Population . .

ot polydispersity (mom. bal. eq. ...)

Equation . . . . .

NDF for @ Eulerian two-fluid model with particle-phase velocity based on
Fluid-Particle . - . . .

Systems mean particle size: small particle Stokes number and limited

Pk Partice polydispersity (in both dilute and dense systems)
Systems

Moment Transport

Equations

Real-Space

Advection
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% Guidelines for Real-Space Advection

Computational There are three key parameters: particle loading, o, /0, particle Stokes

Models for . .
Polydisperse number, St, and polydispersity, PDI
Particulate and
Multiphase
Systems

Rodney O. Fox @® Pseudo-homogeneous or dusty-gas model: very small particle

International

o Stokes number and limited polydispersity (mom. bal. eq. for cont. phase
if system is dilute or mixture otherwise)

© Diffusion equation: sub-micron particles subject to Brownian motion

Quadrature- ags M . o - - ags
Based Moment ©® Equilibrium or algebraic Eulerian model with single conditional
Methods

Closure Problem velocity based on mean particle size: small particle Stokes number
Gl and limited polydispersity (mom. bal. eq. ...)

Approximation g - . - . g

Reaizale Moments O Equilibrium or algebraic Eulerian model with conditional
Generalized velocities: small particle Stokes number and non-negligible

Population . .

ot polydispersity (mom. bal. eq. ...)

Equation . . . . .

NDF for @ Eulerian two-fluid model with particle-phase velocity based on
Fluid-Particle . - . . .

Systems mean particle size: small particle Stokes number and limited

P Partice polydispersity (in both dilute and dense systems)

Systems

TR @ Eulerian multi-fluid model: small particle Stokes number and large

Equations

Real-space polydispersity (in both dilute and dense systems)

Advection
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Compa otor

pohs e
and Maliphase Systoms

Computational
Models for
Polydisperse
Particulate and
Multiphase
Systems

Mesoscale
Models for
Physical and
Chemical
Processes
Formulation
Zero-Order Point
Processes
First-Order Point
Processes
Second-Order Point
Processes
Solution
Methods for
Homogeneous
Systems
Class Method
Monte Carlo
Method of Moments

Quadrature-Based
Moment Methods

MESOSCALE MODELS FOR PHYSICAL AND

CHEMICAL PROCESSES
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Computaton! Modelsor
Pohspers Portcte
and Wuphase Systems.

Computational
Models for
Polydisperse
Particulate and
Multiphase
Systems

Rodney O. Fox
International
Francqui
Professor
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Formulation
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Models for
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Chemical

Processes o Effect of multi-particle statistics on phase-space velocities is

Formulation

generally introduced in form of corrections, based for example

Processes

First.Order Paint on disperse-phase volume fraction, that will reduce to

Processes . . . . . . . .

Second-Order Point isolated-particle statistics in dilute limit

Processes

Solution o We will discuss in particular mesoscale models for continuous
Methods for

oo processes due to fluid—particle momentum transfer ((As,);), heat

Systems and mass transfer ((G,)1) and discontinuous jumps (or point
oo Go processes) contained in the source term S, (zero-, first- and
Quadrature-Based second-order processes)

Moment Methods
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Mesoscale Model for Momentum Transfer

Buoyancy and drag forces (Ap/V, (2d,,) for spheres)

1 5Pf

<Afp>1 == 6X

e Drag model of Schlller and Nauman (Rep [Ur — Upld, /vy):

Cp = Re
0.445

e Drag Cunningham correction factor for rarefied fluid phase:

¢

(1+0.15Re)*)  for Re,, < 1000

Cp Ap p¢

2 V,p | £ = Upl(Ur = Up)

for Re, > 1000

1

Co 1+Kn [2.49 +0.84exp (—122)]

e Drag model of Wen and Yu (8 = 3.65):

Cp =

. [1+0.15(asRep)* | o
p
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Mesoscale Model for Momentum Transfer

Computational
Models for

Polydisperse

Particulate and Buoyancy and drag forces (Eo = gApd,, /o)
Multiphase

Systems

. e Drag model by Tomiyama for pure fluid—fluid systems:
Rodney O. Fox
Frveat [ 16 oss7, 48 | 8( Eo
Cp = —(1+0.15Re**"), — |, =
b = max {mmRep( &) Rep, | 3\Eo+4

Mesoscale
Models for
Physical and

Chemical e Slightly contaminated systems:

Processes
Formulation
Zero-Order Point

[ 24 721 8( Eo
G = in| =—(1 +0.15Re2), —— |, =~
oo P {mm 3 * " Rey| 3 \Bo+d

‘Second-Order Point
Processes

i e Fully contaminated systems:
Solution

Methods for

Homogeneous

Systems

24 8( Eo
Cp = ——(1 +0.15Re)*""), —
oo O P 3\ Bo+4

Method of Moments

Quadrature-Based
Moment Methods
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% Mesoscale Model for Momentum Transfer

Computational
Models for
Polydisperse
Particulate and

Muliphase e Drag model by Buffo (for contaminated systems) with correction
to account for bubble-swarm effect:

Rodney O. Fox
International
Francqui

S C
Professor CD = (1 Ozg) ! max[
€eff

8 Eo
"3Eo+4

(1+0.15Re%7)

Mesoscale
Models for
Physical and . .
Chemical and second correction to account for fluid-phase turbulence:
Processes

Formulation

o Rey = 2P0~ Usl e+ Capr
Ceff = > Meff = M + ZPf;

First-Order Point
Processes HMeft
Second-Order Point
Processes

e C; and C; are fitting parameters

Solution
Methods for

e e For gas-liquid systems: C, = 0.01 and C; = —1.8, predict well
Systems -

Class Method gas h0|d up
Monte Carlo

Method of Moments

Quadrature-Based
Moment Methods
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Additional forces

¢ Virtual mass and (Saffman) lift force:

<Afp>1_p; ™ (Up = Uy) - VU; + 2 (U - U,) x (7 x Up)

pY

where vy effective volume coefficient, C;, = 0.25 and C,,,, = 0.5
e Boussinesg-Basset history force:

9 DU; dU,
=2\ [ o)

PpY
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Mesoscale Model for Momentum Transfer

Computational .
Models for Additional forces
Polydisperse
Particulate and

Multiphase e Brownian force:

Systems

odney O. Fox L v
Rodney O. F <Afp>1 = ﬁ (12dp,llkaTf) W(l)
p

International
Francqui
Professor

Mesoscale e Thermophoretic force for spherical particles and large Knudsen

Phoysioal and numbers (e.g., nanoparticles in flames):

Chemical

Processes 6p:1s OT
Formulation <AI >1 - — & _f
Zero-Order Point P Ty, 0, d., 0x
Processes P¥P
First-Order Point

processes e Knudsen numbers smaller than one (temp. gradient within particle):

‘Second-Order Point
Processes

nsn‘)l;ﬁ%r‘f <A ) _ 36\’%(;5 Pr 1 kf/kp + ZC[Kn 6Tf
g;g;g‘zneous fp/1 = deg Pp 1+ 6CmKn 1+ Zkf/kp + 4C[Kn ox
Class Method

Monte Carlo ks and k, thermal conductivities of fluid and particle, C; = 1.17 thermal
e slip coefficient, C, = 2.18 thermal exchange coefficient, C,, = 1.14
Homentethods momentum exchange coefficient
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Mesoscale Model for Mass Transfer

Computational . R .
Models for Mesoscale variables for particle size
Polydisperse

Particulate and

Multiphase e (Truely) Equidimensional particles: nearly same size or spread in
SRS multiple directions and have constant material density

Rodney O. Fox

nternational e Single internal coordinate: particle mass (or volume), particle surface

Francqui

Professor area or particle length (V, = kyd, and A, = kad;)

Mesoscale e Extension to other systems: possible when particle shrinks or grows

Physical and without changing its shape and morphology
iemical
Processes

. ¢ Define one characteristic length, d;, express real particle volume and
Zero-Order Point surface area: V;, = ky(d;)* and A, = k} (d;)*, and introduce an

Processes

First-Order Point equivalent length, d,, = ¢.d;, equal to: ¢. = 6k, /k}, forcing equivalent or

Processes

3 2
Secondh Order Point averaged shape factors to be: ky = (k;;) /216(k*v) and

" 3 2
e ka = (K3) /36 (k)
Homogeneous
Systoms e |If particle size is (first) internal coordinate then:

Class Method

Monte Carlo Mo k
. . A

Method of Moments G _ —g =M J

Quadrature-Based ( pl )2 é: pl p Y

Moment Methods Pp 3kV
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Mesoscale Model for Mass Transfer

Computational
Models for
Polydisperse
Particulate and
Multiphase

Mesoscale variables for particle size

Systems ¢ |n case of non-equidimensional particles more than one internal
Rodney O. Fox coordinate must be used

International

Tl e Example: needle-like particles described as rectangular parallelepiped

Professor
with length &;; and equal width and depth &;,
Mesoscale

Models f i : = 2. i .
o e Particle volume: V;, = &,1(&2)"; particle surface area:

Chemical Ap =S 2(§p2)2 + 4§pl§P2

Processes

fetipiation o If J12(Up, &,, U, &) molar flux on surface delimited by &, and &;,, and

Zero-Order Point . . .
Processes In(U,, &,, Ut, &) molar flux on surface delimited by &, and &y, resulting
First-Order Point

Processes mesoscale models are:

‘Second-Order Point

Processes

Solution <Gp1>l = é:pl = 2MwJ22/ppv <Gp2>l = §p2 = 4MwJ12/pp
Methods for

Homogeneous . L )

Systems e Alternative description: particle volume and surface area

Class Method

Monte Carlo

Method of Moments Vp = (gpz)zé::p] + 2§p1§p2é":p27 Ap = (2§p2 + 4§p1)§}p2 + 4§p2§"pl

Quadrature-Based
Moment Methods
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Mesoscale Model for Mass Transfer

Computational

Models for . . . . . .
Polydisperse e Particles described as fractal objects: size of the primary particle,
Particulate and

Multiphase &1 = dp, and number of primary particles, &, = N,

Systems

Rodney O. Fox e Fractal dimension: R, = d,/2 (Np/kg
International
Francqui
Professor

Mesoscale B . Mw kAkc
Models for é:pl = dp =

) 1/D¢

e Mass transfer does not change number of primary particles

J and &, =N,=0

Physical and 3k
Chi Pp v
Processes

Formulation e Mass transfer causes obliteration

Zero-Order Point
Processes

First-Order Point s . M, k A kc 1

Processes = A
1
Second-Order Point é:p P pp 3kv (3 - Df)

Processes

J and &, =N, =

kaAkc( Df )NP

" pp 3ky \3-Dr) dy

Solution . .
Methods for e Mass transfer changes number of primary particles
Homogeneous
Systems

Class Method E—d =0 nd &,=N, = M_W ]& kake
Monte Carlo &r=d,=0 a =Ny = o 4k
Method of Moments p =P \4

Quadrature-Based
Moment Methods
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Mesoscale Model for Mass Transfer

Computational
Models for
Polydisperse
Particulate and

Multiphase e Resulting growth rate

Systems

Diffusion-c

Rodney O. Fox
International d — kA
P 3kv

Francqui
Professor

kdceq(S -1
Pp

Mososcale e Creeping (or Stokes) flow conditions and rigid sphere
Physical and

Chemical

FTotesces Sh=1+(+Pe)'

Formulation

o where Pe = Re,Sc (Sc = v/D, Sh = kyd, /D)
Erp e For larger particle Reynolds numbers: Sh = 2 + 0.724Re)**Sc'”?, valid

‘Second-Order Point

for 100 < Re, <2000 and Sh = 2 + 0.425Re)*Sc'"?, valid for
Methods for 2000 < Re, < 10°

Homogeneous

s e For micron-sized (or smaller) particles moving in turbulent fluids:

Class Method

Sh=2.0+0.52(Re;)" " Sc' where Re; = !*d}* /v is modified
Method of loments particle Reynolds number

Quadrature-Based
Moment Methods
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Mesoscale Model for Mass Transfer

Computational
Models for

Polydisperse Mass transfer to gas bubbles
Particulate and

Multiphase .
Systems e Rate of change of bubble mass: M, = M,,ksA,Ac

Rodney O. Fox

International e In case of gas bubbles their shape is not fixed, bubble aspect ratio: e.g.
Francqui

Professor E=1/1+ 0_]6]3E00A757)

Mesoscale e Real area of bubble:
Models for

Chomical A, 1 B (1 Vi-E
Processes — = n
Formulation Aeq 2E2/3 2vV1 - E2 1-+V1-E2
Zero-Order Point
Processes
O e Under creeping (or Stokes) flow conditions:
Seconrder i Sh = 1+ (1 + 0.564Pe**)*/*, spherical particles with Re, > 70
e
Mothods for sh= 2 (1 = Rzeg‘6/2) Pe!/?; Reynolds number sufficiently large, term
Homogeneous P

Systems
Class Method

in parenthesis is small compared to unity: Sh = 2Pe'/?/ vx

Monte Carlo

For turbulent systems: kq = ¢D% (g¢/v)**

Method of Moments

Quadrature-Based
Moment Methods
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Mesoscale Model for Zero-Order Point Processes

Computational

Models for e |n zero-order point processes S; does not depend on NDF and usually
Polydisperse

Particulate and represents rate of formation (i.e., nucleation or spinodal decomposition)
Multiphase

S of disperse phase:

Rodney . Fox 81 = J($e)5(vy = Up)d(€, — §,0)0(ve = Up)d(§; — &)
Francqui
T where J(¢;) > 0 is rate of formation of particles with properties &,

Mesoscale

Models for

Physical and

Chemical

Processes
Formulation

Zero-Order Point
Processes
First-Order Point
Processes
Second-Order Point
Processes
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Mesoscale Model for Zero-Order Point Processes

e |n zero-order point processes S; does not depend on NDF and usually
represents rate of formation (i.e., nucleation or spinodal decomposition)
of disperse phase:

S1 = J(@)o(vy = Upo(E, — £,0)0(ve — Up)d(&; — €re)
where J(¢;) > 0 is rate of formation of particles with properties &,

e Definitions consistent with mass balance: for example if &, and ¢;, are
masses, then &,.; = m. and &g = —mc
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Mesoscale Model for Zero-Order Point Processes

C tati | .
Vodels for e In zero-order point processes S, does not depend on NDF and usually

Ay represents rate of formation (i.e., nucleation or spinodal decomposition)

Multiphase of disperse phase:

Systems

i St =J(#50Vp = U)o, - £,)00v = Und(€ - &)
Francqui

Professor where J(¢;) > 0 is rate of formation of particles with properties &,
Mesoscale e Definitions consistent with mass balance: for example if &, and ¢;, are

Models fi — —

Sl masses, then &1 = m. and & = —m;

Chemical e Source terms for transport equations for total number concentration:
Formulation

el Su= [ Sidvaf,dvedg =1
First-Order Point

Processes . .

Second-Order Point disperse-phase mass density:

Processes

s Su= [ &Sy dv, o, dvedg = ms
Homogeneous

Systems
Class Method

disperse-phase momentum density:

Monte Carlo

Method of Moments Qp |[S]]p = ffp]VpS[ de dfp d‘,f dgt = mCUfJ

Quadrature-Based
Moment Methods
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Modelsfor where h* is rate of production and /i~ is rate of loss of particles due to
'sical an . .
Chemical first-order point processes

Processes

e Source term in GPBE is usually written as:

Formulation

Zero-Order Point
Processes

First-Order Point
Processes

Second-Order Point

Processes
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Methods for
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Mesoscale . . . .

Modelsfor where h* is rate of production and /i~ is rate of loss of particles due to
ysical an . .

Chemical first-order point processes

Processes

Formlation e First-order processes are generally quantified by b(vp, &, vt, &) dt,
B which is probability that a particle with velocity v, and internal

First-Order Point

s coordinates £, in a fluid with velocity vt and internal coordinates &
pocont Order Point undergoes process under investigation in infinitesimal time interval dr

Solution
Methods for
Homogeneous
Systems

Class Method

e Source term in GPBE is usually written as:

Monte Carlo
Method of Moments

Quadrature-Based
Moment Methods

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Mesoscale Model for First-Order Point Processes

Computational . . .

Models for In first-order point processes S; depends linearly on NDF: used to
olydisperse . . . . . .

Particulate and describe particle deposition and filtration, particle breakage,

Multiph: .
STy coalescence in foams and dense-packed systems

AL B e Source term in GPBE is usually written as:

International
Francqui

Professor Sl — h+ _ h—

Mesoscale . . .

Modelsfor where h* is rate of production and /i~ is rate of loss of particles due to
'sical an . .

Chemical first-order point processes

Processes . .

Formulation e First-order processes are generally quantified by b(vp, &, vt, &) dt,

B which is probability that a particle with velocity v, and internal

First-Order Point

s coordinates £, in a fluid with velocity vt and internal coordinates &
Second-Order Point undergoes process under investigation in infinitesimal time interval dr

Processes

Soltionigy e Quantity b is frequency of process and has units of inverse of time and

Homogeneous therefore:

Systems

Class Method —

M:rsnsecean: h (Vp’ § 5 Ve, ff) = b(Vp, f > Vi, ff)n(vp,f 5 Ve, ff)
Method of Moments

Quadrature-Based
Moment Methods
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Mesoscale
Models for
Physical and
Chemical
Processes
Formulation
Zero-Order Point
Processes
First-Order Point
Processes
Second-Order Point
Processes
Solution
Methods for
Homogeneous
Systems
Class Method
Monte Carlo
Method of Moments

Quadrature-Based
Moment Methods

¢ In order to quantify rate of formation a conditional probability
density (PDF) function that states probability of formation of
daughter particle with v, and &, from mother particle with v;, and
&, has to be formulated: P(vy, &jlvp, £,)
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T, e In order to quantify rate of formation a conditional probability
Multiphase

SH density (PDF) function that states probability of formation of
Rodney O. Fox daughter particle with v, and &, from mother particle with v;, and

International

Francqui &, has to be formulated: P(vy, &jlvp, £,)

Professor

e PDF has to satisfy a normalization condition:
Mesoscale

Models for
Physical and , , , ,
Chemical —
Processes P(Vp, &,1vp. &) dv,dg, = 1
Formulation

Zero-Order Point
Processes

First-Order Point
Processes

Second-Order Point
Processes
Solution
Methods for
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Systems
Class Method
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¢ In order to quantify rate of formation a conditional probability
density (PDF) function that states probability of formation of
daughter particle with v, and &, from mother particle with v;, and
&, has to be formulated: P(vy, &jlvp, £,)

e PDF has to satisfy a normalization condition:

[ P v, = 1

e Instead of PDF an equivalent formulation in terms of a
corresponding conditional NDF, N(vy, &Iy, £,), is used:

f NV, £ £,) AV AE) = V(Y. £,)

where v is number of new particles formed by first-order process
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% Mesoscale Model for First-Order Point Processes

Computational
S « Rate of formation of new particles due to first-order
Particulate and

Multiphase discontinuous processes can be expressed as

Systems

Rodney O. Fox .

International h V. v ) =
Francqui ( P §p7 s ff)
Professor

Mesoscale fN(Vp9 §p|v;)’ f;,)b(V;, f;, Vi, ff)n(V;, g’ , V¢, gf) dV;d{“;

Models for

Physi(l:al and
Fes e Interms of P

.

Processes

First-Order Point h* (Vp, fp’ Vi, f f ) =

Processes

Eh WA " EVDY. E g av’ dé’
solution V(Vp’ gp) (vps fp |Vp B é‘p) (Vp, §P’ Vi, ff)n(vp 5 é‘p > Vi, ff) Vpdé‘p
Methods for
Homogeneous

Systems ¢ Note that these expressions are written under assumption that
Class Method . . iy . .

p—— fluid velocity and composition do not change during first-order
Method of Moments process

Quadrature-Based
Moment Methods
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Turbulent Breakage Kernel (or Frequency) for

Fluid—Fluid Systems

Computational .

Models for e Coulaloglou & Tavlarides (1977):
Polydisperse
Particulate and

Multiphase

stems _ Cro

syn‘ b=Cid 2/38}/3 exp -

Rodney O. Fox P 2/3d5/3
Ppé; dp

International

Francqui

Professor
o Alopaeus et al. (2002):
Mesoscale

Models for
Physical and

mi _ 1/3 o s
Fes b = Cyg; erfc \/C5 Cs

+
273 ;5/3 1/3 A3
pfef/ dp/ foppsf/ dg/

Formulation

Zero-Order Point
Processes

Firs-Order Point e Luo & Svendsen (1996):

Processes

‘Second-Order Point
Processes

1/3 1 2
. &f 1+ 12¢¢0
e bN =0.92| — ——exp|-————— | d¢
:Iﬂo:o;er:eous (df)z] 411/3 ﬂppgtz‘/3d;)5/3éull/3

Systems
Class Method

Werle arlo where £ = /dy, B =3/2, ¢t = 1 + (1 = )P = 11, f = (dy/d})*,

Method of Moments

Quadrature-Based d, is size of daughter particle, and dj, is size of parent particle

Moment Methods

min
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Turbulent Breakage Kernel (or Frequency) for

Fluid—Particle Systems

Computational
Models for

Polydisperse e Particles larger than turbulent microscale: breakage caused by
Multiphase instantaneous normal stresses

Systems

Rodney O. Fox ¢ Particles smaller than turbulent microscale: breakage

International

Francaui caused by shear stresses due to turbulent dynamic velocity
differences:

Mesoscale
Models for

Physical and 1 & 1/2 I
Chemical b= —|— exp |- s
Processe N1/2
Frurmulzlinj V 15 \vr /.lf(gf/Vf) /
Zero-Order Point

Processes

First-Onder Point e Aggregate strength: 7y = %co¢,F/(8nd,) where d, diameter of

Processes

Second-Order Point primary particle, ks, coordination number, F inter-particle force

Processes

coution can be computed as F = Apd,/(12H?)
Homogensous e Coordination number depends on aggregate structure:
e ke ~ 15¢,> where ¢, is volume fraction of solid within aggregates

Monte Carlo ¢p = (0414Df -0.21 1)(dp/d0)Dr—3

Method of Moments

Quadrature-Based
Moment Methods
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Daughter Distribution Function

Computational
Models for
Polydisperse
Particulate and
Multiphase
Systems

Rodney O. Fox
International
Francqui
Professor

Mesoscale
Models for
Physical and
Chemical
Processes
Formulation
Zero-Order Point
Processes
First-Order Poi
Processes
Second-Order Point
Processes
Solution
Methods for
Homogeneous
Systems
Class Method
Monte Carlo
Method of Moments

Quadrature-Based
Moment Methods
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Daughter Distribution Function

Computational

Models for e Simplest functional form is summation of delta functions (v: number of
Polydisperse

Particulate and daughters; £,: parent particle; £,: daughter particle; &,(£;) function
Meyeme. stating relationship between " daughter and parent):

Rodney O. Fox \4
International

NEJE) = Y o€, - €&

Professor i=1

Mesoscale
Models for
Physical and
Chemical
Processes
Formulation
Zero-Order Point
Processes
First-Order Point
Processes
Second-Order Point
Processes
Solution
Methods for
Homogeneous
Systems
Class Method
Monte Carlo
Method of Moments

Quadrature-Based
Moment Methods
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Daughter Distribution Function

Computational . . . . .
Models for e Simplest functional form is summation of delta functions (v: number of
e daughters; £ parent particle; £,: daughter particle; £,(£,) function

Meyeme. stating relationship between i daughter and parent):

Rodney O. Fox \4

s NEJE) = Y o€, - €&

Professor i=1

e e £(&,) is formulated by respecting additional constraints (conservation of

Models for

Physical and mass !)
Chemical

Processes
Formulation

Zero-Order Point
Processes

First-Order Point
Processes

Second-Order Point

Processes
Solution
Methods for
Homogeneous
Systems

Class Method

Monte Carlo

Method of Moments

Quadrature-Based
Moment Methods
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Daughter Distribution Function

Computational . . . . .
Models for e Simplest functional form is summation of delta functions (v: number of

e daughters; £ parent particle; £,: daughter particle; £,(£,) function

OIS stating relationship between i daughter and parent):

Systems

Rodney O. Fox \4

s NEJE) = Y o€, - €&

Professor i=1

Lzl e £(&,) is formulated by respecting additional constraints (conservation of

Models for
Physical and mass !)

Chemical

RieEazs e Binary breakage (v = 2): two identical fragments — symmetric

Formulation .
Zero-Order Point breakage; very unequal fragments: erosion
Processes

First-Order Point
Processes

‘Second-Order Point
Processes

Solution
Methods for
Homogeneous

Systems
Class Method

Monte Carlo
Method of Moments

Quadrature-Based
Moment Methods
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Daughter Distribution Function

Computational . . . . .
Models for Simplest functional form is summation of delta functions (v: number of

e daughters; £ parent particle; £,: daughter particle; £,(£,) function
Meyeme. stating relationship between i'" daughter and parent):

Rodney O. Fox \4

s NEJE) = Y o€, - €&

Professor i=1

Lzl e £(&,) is formulated by respecting additional constraints (conservation of

Models for
Physical and mass !)

Chemical

RieEazs e Binary breakage (v = 2): two identical fragments — symmetric

Formulation

Zero-Order Point breakage; very unequal fragments: erosion

Processes

First-Order Point e Often diversity of particles induces many simultaneous phenomena and

Processes

Second-Order Point continuous distributions are used

Processes

Solution
Methods for
Homogeneous
Systems
Class Method
Monte Carlo
Method of Moments

Quadrature-Based
Moment Methods
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Daughter Distribution Function

Computational . . . . .
Models for Simplest functional form is summation of delta functions (v: number of

e daughters; £ parent particle; £,: daughter particle; £,(£,) function

OIS stating relationship between i daughter and parent):

Systems

Rodney O. Fox \4

s NEJE) = Y o€, - €&

Professor i=1

Lzl e £(&,) is formulated by respecting additional constraints (conservation of

Models for
Physical and mass !)

Chemical

RieEazs e Binary breakage (v = 2): two identical fragments — symmetric

Formulation .
Zero-Order Point breakage; very unequal fragments: erosion
Processes

First-Order Point e Often diversity of particles induces many simultaneous phenomena and

Processes

Second-Order Point continuous distributions are used
Processes
e Uniform distribution (particle mass internal coordinate)

Solution
Methods for
Homogeneous 0 m < 0
Systems

Class Method N(mlm') =1L 0<m<m
Monte Carlo
Method of Moments m>m'

Quadrature-Based
Moment Methods
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Daughter Distribution Function

Computational
Models for

Polydisperse e By imposing that mass of formed fragments sum up to mass of parent

Particulate and

Multiphase particle

Systems

’

T ’
vm
Rodney O. Fox ’ _
International f mN(m|m )dm = —2
Francqui 0

Professor

it is easy to show that such a function is consistent only for binary
Mesoscale breakage (i.e., v = 2)

Models for

P e Binary parabolic distribution (0 < C < 3)

Processes

Formulation

Zero-Order Point 0 m<0
Processes 2

First-Order Point N(m|m’) =<{C+ (] — %) [24(4) — 24(4) + 6] O<m<wm
Processes m m

‘Second-Order Point
Processes 0

m>m

Solution
Methods for
Homogeneous
Systems

Class Method

For 0 < C < 2 formation of different-sized fragments (i.e., erosion) is
likely, whereas for 2 < C < 3 symmetric breakage is more probable

Monte Carlo

C = 2 recovers uniform distribution

Method of Moments

Quadrature-Based
Moment Methods

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Daughter Distribution Function

Computational
Models for
Polydisperse
Particulate and

e e Distribution can also be written in terms of particle size d;:
oty 0. rox N(dy\d;) = N(mlm")dm/dd,, where dm/dd, = 3ppkyd>
B e Formation of three fragments (Coulaloglou & Tavlarides, 1977)
Professor
Mesoscale 135d2 25 d 3 ?
Mode:lsfor N(d |d,) = — eXpl|——= [3 (_lj) ]
e T R SRR

Processes

Formulation

SoreOndo Paint e p-distribution (v number of fragments formed; ¢ greater than one:
Lot formation of v equally-sized fragments; g smaller than one: formation of

First-Order Point
o e— one large fragment with v — 1 satellite fragments)
Processes

Solution r d 379(v—=1)-1 d 3g-1
e Ny = —-) [1 (%) ] (&) >
Systems r(‘])r(q(V - 1)) dp dp dp

Class Method
Monte Carlo
Method of Moments

Quadrature-Based
Moment Methods
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Daughter Distribution Function

Computational
Models for
Polydisperse
Particulate and
Multiphase
Systems

¢ In case of multiple internal coordinates (particle size, d,,, and
Fintornational composition, ¢)

Francqui
Professor

2 3\2 3\2 4B
lesoscale Nd 5 d,, = 180— — 1 - —P 6 - _p !
mwelsftlzr ( P ¢| ) d [d/ ] [ d],33] [ d]’)3 ]
Physical and
Chemical
Processes

rocesses where d;, and ¢’ represent properties of parent particle, while d, and ¢
S properties of daughter particles

Processes

R e Fragmentation of fractal aggregates (particle volume, V,, and surface
Second-Order Point area, Ap)

Processes

Soluti ’ ’ V}; A;J
Methods for PV 4lVy A7) = 26|V, = 7 |64, -
Class Method

Monte Carlo
Method of Moments

Quadrature-Based
Moment Methods
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Mesoscale
Models for
Physical and
Chemical
Processes
Formulation
Zero-Order Point
Processes
First-Order Point
Processes
Second-Order Point
Processes
Solution
Methods for
Homogeneous
Systems
Class Method
Monte Carlo
Method of Moments

Quadrature-Based
Moment Methods

Mesoscale Model for Second-Order Point
Processes
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Mesoscale Model for Second-Order Point

% Processes

Computational
Models for
Polydisperse

; e Second-order point processes involve two particles (i.e.
Particulate and

Muliphaso coalescence, aggregation, collision) and their rate shows a

TTORT quadratic dependence on NDF
" erancaut
Professor

Mesoscale
Models for
Physical and
Chemical
Processes
Formulation
Zero-Order Point
Processes
First-Order Point
Processes
Second-Order Point
Processes
Solution
Methods for
Homogeneous
Systems
Class Method
Monte Carlo
Method of Moments

Quadrature-Based
Moment Methods
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Mesoscale
Models for
Physical and
Chemical
Processes
Formulation
Zero-Order Point
Processes
First-Order Point
Processes
Second-Order Point
Processes
Solution
Methods for
Homogeneous
Systems
Class Method
Monte Carlo
Method of Moments

Quadrature-Based
Moment Methods

Mesoscale Model for Second-Order Point

Processes

e Second-order point processes involve two particles (i.e.

coalescence, aggregation, collision) and their rate shows a
quadratic dependence on NDF

e Source term in GPBE:

Rodney O. Fox International Francqui Professor

where h* is rate of production and &~ is rate of loss of particles

S =ht-h"
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Mesoscale Model for Second-Order Point

% Processes

Computational
Models for

Polydisperse e Second-order point processes involve two particles (i.e.

Particulate and

Multiphase coalescence, aggregation, collision) and their rate shows a

Systems

TTORT quadratic dependence on NDF
International

Francqui e Source term in GPBE:

Professor

Mesoscale Sl = th —_ h7

Models for
Physical and
Chemical

Processes where h* is rate of production and &~ is rate of loss of particles

Formulation

Zero-Order Point ¢ One particle is located in X" and is characterized by

Processes

Firs-Ordor Pint phase-space vector 1i’; second particle is located in X and has

Processes

Second-Order Point phase'space VeCtOI’ f]

Processes

Solution
Methods for
Homogeneous
Systems
Class Method
Monte Carlo
Method of Moments

Quadrature-Based
Moment Methods
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Mesoscale Model for Second-Order Point

% Processes

Computational
Models for

Polydisperse Second-order point processes involve two particles (i.e.

Particulate and

Multiphase coalescence, aggregation, collision) and their rate shows a

Systems

TTORT quadratic dependence on NDF
" Evancau e Source term in GPBE:
Professor

Mesoscale Sl = th - h7

odels for
Physical and
Chemical . . . .
s where h* is rate of production and 4~ is rate of loss of particles
Formulation . . . . .

2ero-orterpin e One particle is located in x” and is characterized by

Frsorder b phase-space vector 1i’; second particle is located in X and has
Secons-orserpant phase-space vector 7
Solution e Frequency of second-order point process: a(x’, ’; X, i)

Methods for

Homogeneous (symmetric with respect to permutation of particles)

Systems
Class Method
Monte Carlo
Method of Moments

Quadrature-Based
Moment Methods
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Mesoscale Model for Second-Order Point

% Processes

Computational
Models for

Polydisperse Second-order point processes involve two particles (i.e.

Particulate and

Multiphase coalescence, aggregation, collision) and their rate shows a

Systems

TTORT quadratic dependence on NDF
" Evancau e Source term in GPBE:
Professor
Mesoscale Sl = th —_ h7
Models for
Physical and
Chemical . . — . .
s where h* is rate of production and 4~ is rate of loss of particles
Formulation . . . . .
2ero-orterpin e One particle is located in x” and is characterized by
Frsorder b phase-space vector 1i’; second particle is located in X and has
Secons-orserpant phase-space vector 7
Solution e Frequency of second-order point process: a(x’, ’; X, i)
Methods fi . . . .
e (symmetric with respect to permutation of particles)
Systems
Ciass Method e Quantity a(x’, n’; X, fj) dt represents fraction of particles

Monte Carlo . . . . .
thad ot o undergoing point process in time interval dr

Quadrature-Based
Moment Methods
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Physical and
Chemical
Processes
Formulation
Zero-Order Point
Processes
First-Order Point
Processes
Second-Order Point
Processes
Solution
Methods for
Homogeneous
Systems
Class Method
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Method of Moments

Quadrature-Based
Moment Methods

Mesoscale Model for Second-Order Point
Processes
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Mesoscale Model for Second-Order Point
Processes

Computational . . .
Models for e Unknown pair number density function:

Polydisperse

Particulate and

e nd(t,x’, 17, %, i) dx’dyy’ dkdij represents expected number of
Systems particle pairs with (x’,n’) and (X, #)

Rodney O. Fox
International
Francqui
Professor

Mesoscale
Models for
Physical and
Chemical
Processes
Formulation
Zero-Order Point
Processes
First-Order Point
Processes
Second-Order Point
Processes
Solution
Methods for
Homogeneous
Systems
Class Method
Monte Carlo
Method of Moments

Quadrature-Based
Moment Methods
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Mesoscale Model for Second-Order Point
Processes

Computational . . .
Models for e Unknown pair number density function:
Polydisperse

Particulate and

o nd(t,x’, 17, %, i) dx’dyy’ dkdij represents expected number of
Systems particle pairs with (x’,n’) and (X, #)

Fintormational e Closure is often used: n@(1, X', 17, %, i) ~ n(t, X', g’ )n(t, %, ij)
Francqui
Professor

Mesoscale
Models for
Physical and
Chemical
Processes
Formulation
Zero-Order Point
Processes
First-Order Point
Processes
Second-Order Point
Processes
Solution
Methods for
Homogeneous
Systems
Class Method
Monte Carlo
Method of Moments

Quadrature-Based
Moment Methods

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



L

Computational
Models for
Polydisperse
Particulate and
Multiphase
Systems

Rodney O. Fox
International
Francqui
Professor

Mesoscale
Models for
Physical and
Chemical
Processes
Formulation
Zero-Order Point
Processes
First-Order Point
Processes

‘Second-Order Point
Processes

Solution
Methods for
Homogeneous
Systems
Class Method
Monte Carlo
Method of Moments

Quadrature-Based
Moment Methods

Mesoscale Model for Second-Order Point

Processes

e Unknown pair number density function:
n?(t,x', n’, %, ij) dx'dn’ dkd#j represents expected number of
particle pairs with (x’,n’) and (X, #)

e Closure is often used: n@(t,x’, 1, %, i) ~ n(t, X', 5 )n(t, %, ij)

e Based on these definitions, calculate number of events per unit
time involving particle pairs (x’,5’) and (X, 7)) as

a(x’, s X, ipn(t, X', 7")n(t, X, i) dx’dn’ dkdij
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Mesoscale Model for Second-Order Point

% Processes

Computational

Hodelsfor Unknown pair number density function:

ot nd(t,x’, 17, %, i) dx’dyy’ dkdij represents expected number of
Systems particle pairs with (x’,n’) and (X, #)

Fintormational e Closure is often used: n®(1,x', i/, %, ij) ~ n(t, X', ' )n(t, X, i)
Francqui

Professor ¢ Based on these definitions, calculate number of events per unit
Mesoscale time involving particle pairs (x’, ') and (X, 7)) as

Physicaland ax’', s X, ipn(t, X', q')n(t, X, i7) dxX'dry’ dxdij

Chemical . . . .

Processes ¢ Total number of events occurring per unit time and unit volume
e o involving test particles located near (X, #):

Processes

First-Order Point
Processes

Second-Order Point Ne([, i, i]) = fa(x', 7]/, i, i])ﬂ(t, X/, n')n(l, i, i]) dX'dl]'

Processes

Solution

Methods for where integrals are over all locations x” and phase-space

Homogeneous

Systems variables i’ of field particle
Class Method
Monte Carlo
Method of Moments

Quadrature-Based
Moment Methods
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Mesoscale Model for Second-Order Point

% Processes

Computational

Models for Unknown pair number density function:
Polydisperse

ot nd(t,x’, 17, %, i) dx’dyy’ dkdij represents expected number of
Systems particle pairs with (x’,n’) and (X, #)

Fintormational e Closure is often used: n@(1, X', 17, %, i) ~ n(t, X', g’ )n(t, %, ij)
Francqui

Professor ¢ Based on these definitions, calculate number of events per unit
Mesoscale time involving particle pairs (x’, ') and (X, 7)) as

Physicaland ax’', s X, ipn(t, X', q')n(t, X, i7) dxX'dry’ dxdij

Chemical . . . .

Processes ¢ Total number of events occurring per unit time and unit volume
e o involving test particles located near (X, #):

Processes

First-Order Point
Processes

Second-Order Point Ne([, i, i]) = fa(x', 7]/, i, i])ﬂ(t, X/, n')n(l, i, i]) dX'dl]'

Processes

Solution

Methods for where integrals are over all locations x” and phase-space

Homogeneous

Systems variables i’ of field particle

Class Method

HMonte Carlo ¢ In most practical cases a closure is invoked:

Method of Moments

Quadrature-Based n(t’ X’, ]I’)n([, X, ]'7) ~ n([’ X, n/)n([’ X, f])

Moment Methods
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Mesoscale Model for Second-Order Point

Processes

e By using this simplified expression and by inverting order of integrals

No(t, %) = f ( f a1 %) &X' | (e, %, 1 (e, %, ) df

Rodney O. Fox International Francqui Professor

Computational Models for Polydisperse Particulate and Multiphase Systems



Mesoscale Model for Second-Order Point

Processes

Computational . . . . . . . .
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Particulate and

Multiphase
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Formulation
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Particulate and
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Particulate and
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Processes
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Aggregation of fine particles

e Internal coordinate particle mass (£, = &, + Sp; Jacobian equal to unity)

1 P - - e
Si6) = 5 f: BE& & n(E,) &, - fo B, En(EpnE,) dg,

or in terms of final mass &, and of field particle mass &,

1 (% °°
SiE) = 5 f By &= EDnEnE, — &) ¢’ ~ fo B, &m(EnE,) dE,

e Particle size (£, = [£] - (£})°]'; Jacobian equal to £7[&] - (£7)°]7?)

& o -
Sie =2 j: [& - @] BE. 18 - €)1 PnE)

xn([& = &)1'7) dg;, - f B, En(épn(&,) dE;
0
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Coalescence of droplets

e Coalescing droplets characterized by particle mass &, and velocity vy;
continuity statements

‘fp = 'f;l) + fp’ fpvp = ‘f;/;V;; + fpvp
or, equivalently, as

g:p =& - ‘f{)v Vo = (&Vp — ;;V;)/(é:p - f;,;)

z 3
. . . . AV .
e Jacobian for this nonlinear transformation: J = (,g}‘j :}f; = ( ff_"f,) and
& )
resulting source term is

3

1 P . . §
Sip. Vo) = 5 f[j: ﬁ(f{,,vg,fp,f’p)n(-f;,V;)n(fpsf’p)m dff,)
P %

x v, [ BE vy v vy vy a8y v,
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Aggregation kernels due to Brownian motions for fine particles (i.e., St, = 0)
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Class Method
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Multiphase e Short range forces accounted for in terms of aggregation efficiency:
Systems balance between attractive (van der Waals) and repulsive forces

Rodney O. Fox

International e Repulsive forces: due to presence of fluid (double-layer repulsion or
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Professor drainage of fluid)

e e Aggregation efficiency as inverse of Fuch’s stability ratio

Physical and

emical 4 0o J -2
(P::]ocessels W = dP + dp f exp V(h) dp + dp h dah
o nsor o 2 0 kg T; 2
Processes
e h inter-particle distance, V(h) = V,(h) + V,(h) inter-particle potential
e N e Simplified expressions (van der Waals + double-layer):
o tor @= d",; % exp (— fl;";t ) where « is Debye-Huckel parameter and ¢, is
TS energy barrier for particle aggregation

Systems
Class Method °

clss et Simplified expressions (van der Waals + viscous): a = kFI"%!3, where k
Method of Moments is pre-factor of order unity and Fl = 6ru(d;, + d;)Gr/An
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Moment Methods

Rodney O. Fox International Francqui Professor Computational Models for Polydisperse Particulate and Multiphase Systems



Mesoscale Model for Second-Order Point
Processes

Computational

Models for

Polydisperse Coalescence kernels for droplets (continuous phase gas)
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e e Function < 1 is coalescence efficiency that depends on Weber
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Physical and number: We = ‘Lr"p (relative importance of fluid inertia compared to
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Processes interfacial tension)
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First-Order Point very close to one
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ST SRS e As We increases coalescence is possible only for impact factor close to

Processes
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system under investigation

¢ In MC methods evolution of each particle is tracked; continuous
events are represented deterministically whereas discontinuous
events are represented by random events occurring with specific
and prescribed probabilities
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particle volume shape factor and p,, is particle density

e Following reconstruction is done for NDF: n(z, &) = m06( - 'ﬂ)
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