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Primary Objective: Bioreactor Scale-Up

Cell factories Laboratory scale Industrial scale
d=pm d=0.1m d=10 m

Space/time gradients in concentrations, shear, etc.
are unavoidable at industrial scale



Stirred Tank Scale-Up Constraints'

Interdependence of Scale-Up Parameters

Production fermenter, 10,000 L.

80-L Constant Constant Constant
Scale-up criterion® Designation  fermenter Po/V N N Di Constant Re
Energy input Po 1 125 3125 25 0.2
Volumetric energy input Po/V 1 1 25 0.2 0.0016
Impeller rotation number N 1 0.34 1 0.2 0.04
Impeller diameter Di 1 5 5 5 5
Pump rate of impeller Q 1 425 125 25 5
Circulation time®< V/Q, te 1 2.94 1 5 25
Maximum impeller tip speed ~ NDi 1 1.7 5 1 0.2
Reynolds number NDiZp/u 1 8.5 25 5 1

“Scale-up criterion indicates the variable conserved constant between the two scales.
Calculated as the inverse of the volumetric pump rate of impeller.

‘tc = tm/4, where tm is mixing time.

Adapted from Oldshue (1).

Macroscale, mesoscale and microscale mixing times
cannot all be held constant during scale up

"Lara et al. Molecular Biotechnology (2006)



Time Scales for Biological Processes
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Ratio of mixing to biological time scales determines
which processes may change during scale up



Adaptation to External Heterogeneity?

Genotype Culture history

STRESS or NEW ENVIRONMENT ——— ([ @ {7 X 107) ————» EFFECT
(e.g.altered growth rate,
/ 0 loss of viability)

Stimulus for altered gene expression Selection of fitter variants
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Unlike chemical systems, biological systems can
adapt (i.e., change their time scales)

?Ryall et al. Microbiology and Molecular Biology Reviews (2012)



Variations in Microbial Population® (10° cells)
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3Ryall et al. Microbiology and Molecular Biology Reviews (2012)



Models to Account for Microbial Heterogeneity”

R Lencastre Fernandes et al. / Biotechnology Advances 29 (2011) 575-599

Unsegregated Unstructured Unsegregated Structured

Intracellular Models

Biomass as a black box (e.g. Metabolic networks)

Heterogeneityin Heterogeneityin
the population the single cell

Single-stage

1Dimension
(e.g. age-, mass-structured)

Different biomass
subpopulations

(e.g. multiorganism of a single cell
cultivations)

2 or + Dimensions

(e.g. chemically-structured)
sl

Segregated Unstructured Segregated Structured

Population balances with one or more internal
variables needed to capture cell-to-cell variations

*Lencastre Fernandes et al. Biotechnology Advances (2011)



Population Balance Model for Growth Rate Distribution

Experimental evidence: shift of the dilution rate (D=Q/V), perfectly homogeneous reactor
D=0.1 hl to D'= 0.4 h'! at t =4 h (Kéterrer et al. 1986)

Growth rate distribution
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Morchain J, Fonade C. AIChE Journal. 2009, Morchain et al. AIChE Journal 2012

Growth rate p(r) distributed around equilibrium g*



Coupling to PBM with Computational Fluid Dynamics

Compartment Model Approach
for bioreactor hydrodynamics

Population balance model
for cell heterogeneity

X ;)
3 biological limitation
= environmental lmtaton

oalllln.nl

~ Cocal concentrations;

Predictive metabolic model
for specific reaction rates

Laws of equilibrium
(Monod, Pirt)

S | __J

Equilibrium z* depends on local concentrations,
temperature, shear rate, etc. in reactor

Pigou & Morchain, CES 2015



What is Computational Fluid Dynamics?

Principal steps:

© Computational grid for bioreactor

© Select conservation eqns and closures
o (Bio)mass

Chemical species (internal/external)

Momentum (gas/liquid)

Energy (temperature)

multiphase, population balance, ...

© Discretize conservation equations
o Finite volume for space
e ODE solver for exchange/reactions
e Moment method for population balance
e Lagrangian method for cells

© Solve discretized equations

© Post-process results (lifelines, etc.)



CFD for Polydisperse Bubbly Flows

Bubble size/concentration distribution



CFD Model for Bubbly Flow

Two phases: gas and liquid
@ Mass & momentum balances

Buoyancy & drag forces

Added mass & lift forces

Strong phase coupling

Flow regimes (flooded/dispersed/etc.)

Bubble size/concentration distribution
@ Population balance equation

e Solve for number density n(v, £)
e Size-conditioned bubble velocity
e Mass transfer gas/liquid

@ Moment methods

e Solve for moments of number density
e Close by reconstructing n(v, £)



Bubble_Volume_Fraction_with_Streamline.mov
Media File (video/quicktime)


CFD for Stirred Reactor with Gas Sparger
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Impeller flooding with high gas flow
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CFD for Stirred Reactor with Gas Sparger

Reactor configuration 1
N =250 RPM; 0.093 vvim

M Experimental data
I Simulation results
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1
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Good agreement between CFD and experiments




Bubble Column with Oxygen Transfer

Gas vol. frac. / Sauter dia. (m) / Oxy. conc. lig. (mol/m?)

diameter]
0.009971

£0.009
0.008
0.007
0.006

+0.005

0.004222

Existing CFD models are adequate for bioreactors



Population Balance Models for Bioreactors®

Batch culture PBE: (spatially homogeneous environment)

on(t, )
ot
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e [1(€, P)n(t, &)1 4+k(E, ¢)n(t, §) = 2/P(€,§’)k(§’,¢)n(h ¢')d¢’
n(t, £) number concentration of cells in state £
w(&, @) growth rate in state £ and environment ¢
)
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3
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Key Question

How should cell states and growth rates be chosen to
account for external heterogeneity?

SFredrickson et al., Mathematical Biosciences (1967)



Population Balance Models for Bioreactors®

Batch culture PBE: cell state determined by specific growth rate

on 0

G 3 Cm o+ Kn. o =2 [ pln s S Ot )

® [t € [lmin, tmax| sSpecific growth rate
n(t, ;1) number concentration of cells with
¢(u, ¢) adaptation rate in environment ¢
k(u, @) rate of cell division (binary) in environment ¢

° p( w, 1) probability of daughter with y for mother with 21/

Average growth rate: (u) := f[/;ndii,,

— Not Same as fiey

Adaptation time scales introduced in (u, ¢) are
much shorter than average growth time scale

®Morchain et al., AIChE Journal (2013)



Coupling Population Balance Models to CFD

Spatially inhomogeneous PBE:

on 0 0 on
—+ —- — — -I''— =RHS
ot * ox (vin) ox  lox

@ uy liquid-phase velocity

o I'; liquid-phase effective diffusivity

@ RHS — all other terms in PBE
Direct solution of RHS to find n(t, x, £) too expensive

Use moment method: My := [ &nd¢ fork=0,1,...,N

oM, 0 o oMy

[ —_— —_— — . —_— k
ot +(9x (M) ox L ox /§RHSd§

CFD code handles LHS, Quadrature-based moment method for
source terms



Key Points for CFD/PBE Models for Bioreactors

@ For purpose of scale up, multiphase CFD provides detailed
information on spatial/temporal gradients in local environment

@ Cell adaptation model is required to predict how individual cells
will react to changes in local environment

© Single-cell data incorporated into a population balance model
should be able account for cell-to-cell variations

© Using moment methods, the PBE can be solved in context of
CFD (or even compartmental models)

At present, weakest link is cell adaptation modeling
(Steps 2 & 3)



Specific Challenges for Biological Systems

@ Number of potential state variables for cell growth is enormous:
which state variables are pertinent?

© Choice of state variables depends on modeling objectives:
e predict growth in transient regime
e predict behavior such as oscillations in steady-state regime
e predict metabolic response to external disturbances

© Constitutive laws are difficult to obtain at single-cell level:
e formulate an hypotheses and see what PBE predicts
e solve inverse problem to find particle-scale rates that yield
observed population-scale distribution



Conclusions & Perspective

@ Time scales for hydrodynamics and cell growth are well
separated at lab scale, but not on larger scales

@ Sensitivity of cell population to operating conditions at scale up
may be due to cellular response to short-lived fluctuations in
local environment

e Computational fluid dynamics can be applied to bioreactors to
predict the local fluid environment (concentrations, temperature,
shear rate, etc.) in which cells live

@ Population balance models describe how cell population evolves
in a given fluid environment

Population balance must contain “internal variables” that mimic
sensitivity of growth rate to external disturbances



Merci pour votre attention !

Questions ?
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