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Motivation
Polydisperse gas-liquid flows are relevant to several engineering 
fields:

◦ Chemical

◦ Bubble columns

◦ Stirred-tank reactors

◦ Environment

◦ Waste processing

◦ Energy

◦ Boilers

◦ Nuclear reactors

◦ Production of biofuels

◦ Bioengineering

◦ Fermentation
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Challenges
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Polydispersity
Size distribution
Shape distribution

Polycelerity
Velocity of bubbles is a 
function of their size



Requirements of a CFD model for gas-liquid flows

Physical

• Account for the physically relevant force 
terms

• Describe the evolution of the bubble 
size distribution (polydispersity)

• Account for the difference in velocity 
for bubbles of different size 
(polycelerity)

• Must correctly degenerate in the 
monodisperse limit

Numerical

• Robustness in case of phase separation 
(regions with only one phase)

• Adaptivity to accurately capture 
significant changes in size distribution

• Moderate computational cost to allow 
adoption for engineering applications
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Conventional Euler-Euler approaches

• One continuity and momentum equation for each phase

• Accounts for bubble size distribution

• Assumes the same local velocity is shared by all sizes (no polycelerity)

Two-fluid model + Population balance

• Multiple continuity and momentum equations for the gas phase

• One “virtual phase” per each size (or size group)

• Higher computational cost

• Exchange terms to account for size evolution

Multi-fluid model + Population balance
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Kinetic equation for bubble populations [1]
The behavior of a population of bubbles can be described by means of a number density 
function (NDF) 𝑓(𝐱, 𝑡, 𝜉, 𝐯):
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𝜕𝑓

𝜕𝑡
+ 𝐯 ⋅

𝜕𝑓

𝜕𝐱
+

𝜕

𝜕𝐯
⋅ 𝐀 + 𝐠 𝑓 − 𝒟dis

𝜕 ln 𝑛

𝜕𝐱
𝑓 = ℂ 𝜉, 𝐯

where:
◦ 𝐀 is the acceleration due to forces (drag, lift, added mass, …) acting on bubbles, excluding the 

gravitational acceleration

◦ 𝐠 is the gravitational acceleration

◦ 𝒟dis is the dispersion coefficient

◦ ℂ 𝜉, 𝐯 accounts for interactions between bubbles (i.e. breakup, coalescence)

The bubble size distribution is the marginal NDF:

𝑛 𝜉 = න
ℝ3
𝑓 𝐱, 𝑡, 𝜉, 𝐯 d𝐯



Kinetic equation for bubble populations [2]

Kinetic 
equation

Fluid 
solver

Accurate 
description of 
polydisperse 

gas-liquid 
flows

However:
◦ The NDF 𝑓(𝐱, 𝑡, 𝜉, 𝐯) has a high dimensionality

◦ 3 spatial dimensions

◦ 1 temporal dimension

◦ 1 (at least) internal coordinate describing bubble mass or 
size

◦ 3 velocity component

◦ Direct discretization is prohibitively expensive for 
applications: 7 dimensions + time

◦ Lagrangian description of bubbles
◦ Accurate

◦ Costly

◦ Numerical difficulties due to strong coupling with the fluid 
phase

◦ In engineering applications accurately knowing 
some moments of the NDF is sufficient
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Moment methods for gas-liquid flows – Basic concepts
In moment methods:

◦ The idea of solving for the NDF is abandoned

◦ Moments of the NDF are transported:
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𝑚𝑝,𝑖,𝑗,𝑘(𝐱, 𝑡) = න
ℝ3
න
ℝ+
𝜉𝑝𝑢x

𝑖𝑢y
𝑗
𝑢z
𝑘𝑓(𝐱, 𝑡, 𝜉, 𝐯)d𝜉d𝐔

where
◦ 𝑝 is the order of the moment with respect to the size coordinate 𝜉

◦ 𝑖, 𝑗, 𝑘 are the orders of the moments with respect to the velocity components

Applying the definition of joint moment to the kinetic equation, 
partial differential equations for the spatio-temporal evolution 
of the moments of the NDF are found.



Mono-kinetic assumption

The Stokes number of 
bubbles is relatively small, 
even though not negligible

It is acceptable to assume 
that, locally, bubbles with 
the same size move with 

the same velocity

This corresponds to rewriting the NDF as
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𝑓 𝐱, 𝑡, 𝜉, 𝐯 = 𝑛 𝐱, 𝑡, 𝜉 𝛿(𝐱, 𝑡, 𝐯 − 𝐔 𝜉 )

where:
◦ 𝑛 𝐱, 𝑡, 𝜉 is the bubble mass distribution

◦ 𝛿(𝐱, 𝑡, 𝐯 − 𝐔 𝜉 ) is a Dirac delta distribution

◦ 𝐔 𝜉 is the bubble velocity conditioned on the 
bubble mass

We need to define a procedure to reconstruct 
𝑛 𝐱, 𝑡, 𝜉 and determine 𝐔 𝜉 from the moments to 
close the moment evolution equations



Moment transport equations
With the mono-kinetic assumption, we can:

◦ Close the bubble mass distribution considering 2𝑁 moments in bubble mass
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◦ Find the functional form of 𝐔 𝜉 from the first-order velocity moments: 

𝑀𝑝 = 𝑚𝑝,0,00, 𝑝 ∈ 0, 1, … , 2𝑁 − 1 ,

𝓤𝑝 = (𝑚𝑝,1,0,0, 𝑚𝑝,0,1,0, 𝑚𝑝,0,0,1) , 𝑝 ∈ {0, 1, … , 𝑁 − 1}

𝜕𝓤𝑝

𝜕𝑡
+ 𝛻 ⋅ 𝒫p = 𝑀𝑝𝐠 + න

ℝ+
𝑛 𝜉 𝜉𝑝 𝐀(𝜉) − 𝒟dis∇ ln 𝑛 𝜉 d𝜉

+
𝛼b𝑔0
𝜏c

𝑀𝑝𝐔𝑏 −𝒰𝑝 +න
ℝ+
𝑛 𝜉 𝜉𝑝𝐔 𝜉 ℂ 𝜉 d𝜉

𝜕𝑀𝑝

𝜕𝑡
+ ∇ ⋅ 𝒰𝑝 = න

ℝ+
𝜉𝑝ℂ ξ d𝜉

𝒫𝑝 = න
ℝ+
𝑛 𝜉 𝜉𝑝𝐔 𝜉 ⊗ 𝐔 𝜉 d𝜉



Closure of the moment equations [1]
The moment equations are unclosed:

◦ Terms containing the NDF

◦ Moment fluxes

We close these terms by means of Gaussian 
quadrature:

◦ The bubble mass NDF is written as weighted sum 
of Dirac delta distributions:

Weights and abscissae are found from the 2N
moments 𝑀𝑝, 𝑝 ∈ 0,… , 2𝑁 − 1 .
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𝑛 𝜉 = 

𝛼=0

𝑁−1

𝑤𝛼𝛿(𝜉 − 𝜉𝛼)

which leads to:

𝑀𝑝 = 

𝛼=0

𝑁−1

𝑤𝛼𝜉𝛼
𝑝

𝑀𝑝, 𝑝 ∈ 0,… , 2𝑁 − 1

𝑤𝛼 , 𝜉𝛼 , 𝛼 ∈ {0,… , 𝑁 − 1}

Inversion

algorithm

J.C. Wheeler, Modified moments and Gaussian quadratures, 
Rocky Mountain J. Math. 4 (1974) 287–296. 
doi:10.1216/RMJ-1974-4-2-287.

https://doi.org/10.1216/RMJ-1974-4-2-287


Closure of the moment equations [2]
For each size node 𝛼, the velocity conditioned on size 𝐔𝛼 are found from the velocity moments 
𝒰𝑝 using the conditional quadrature method of moments by solving the family of linear systems:
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𝓤0

𝓤1

⋮
𝓤𝑁−1

=

w0 0 … 0
0 w1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … wN−1

1 1 … 1
𝜉0 𝜉1 … 𝜉𝑁−1
⋮ ⋮ ⋱ ⋮

𝜉0
𝑁−1 𝜉1

𝑁 … 𝜉𝑁−1
𝑁−1

𝐔0
𝐔1
⋮

𝐔𝑁−1

Reconstruction of 𝐔(𝜉)

C. Yuan, R.O. Fox, Conditional quadrature method of moments 
for kinetic equations, Journal of Computational Physics. 230 
(2011) 8216–8246. doi:10.1016/j.jcp.2011.07.020.

https://doi.org/10.1016/j.jcp.2011.07.020


Some considerations on the computational cost
We compare the cost of the solution of the 
proposed approach to a multi-fluid model.

We consider three size nodes (𝑁 = 3): 
generally sufficient to accurately predict the 
bubble size evolution (in some cases 4 nodes 
are needed)

The number of partial differential equations to 
solve for the bubble phase is:

◦ 2𝑁 pure size moments

◦ 3𝑁 velocity moments (one velocity per size)

◦ Total: 5𝑁 scalar PDEs
◦ 𝑵 = 𝟐: 10 scalar PDEs

◦ 𝑵 = 𝟑: 15 scalar PDEs

◦ 𝑵 = 𝟒: 20 scalar PDEs

For a multi-fluid model (liquid equations 
excluded):

◦ 3 bubble classes
◦ 3 continuity equations (3 scalar PDEs)

◦ 3 momentum equations (9 scalar PDEs)

◦ Total: 12 scalar PDEs

◦ 4 bubble classes
◦ 4 continuity equations (4 scalar PDEs)

◦ 4 momentum equations (12 scalar PDEs)

◦ Total: 16 scalar PDEs

◦ 5 bubble classes
◦ 5 continuity equations (5 scalar PDEs)

◦ 5 momentum equations (15 scalar PDEs)

◦ Total: 20 scalar PDEs
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The adaptivity intrinsic to quadrature-based 
moment methods contains the cost and helps 
preserving accuracy.



Numerical approach - Challenges

Pressure-based two-fluid solver with 
shared pressure

Robustness at gas-liquid 
“interfaces” and in 

absence of one phase

Flux-corrected limited scheme
Boundedness of the 

volume fractions

Kinetic fluxes and realizable moment 
advection

Moment realizability

QUADRATURE-BASED MOMENT METHODS FOR POLYDISPERSE GAS-LIQUID FLOWS



Solution algorithm [1]
We leverage the existing structure of the two-
fluid solver in OpenFOAM 5.x

◦ Pressure-based solver with shared pressure

◦ Flux-corrected scheme for the advection of the 
volume fraction

The moment equations need to be modified to 
be incorporated in the existing two-fluid 
framework.

We start from:
◦ Size moments transport

◦ Velocity moment transport

with
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𝜕𝑀𝑝

𝜕𝑡
+ ∇ ⋅ 𝓤𝑝 = න

ℝ+
𝜉𝑝ℂ ξ d𝜉

𝜕𝓤𝑝

𝜕𝑡
+ ∇ ⋅ 𝓟𝑝

= 𝑀𝑝𝐠 + න
ℝ+
𝑛 𝜉 𝜉𝑝 𝐀(𝜉) − 𝒟dis∇ ln 𝑛 𝜉 d𝜉

+
휀𝑏𝑔0
𝜏c

𝑀𝑝𝐔𝑏 −𝓤𝑝 +න
ℝ+
𝑛 𝜉 𝜉𝑝𝐔 𝜉 ℂ 𝜉 d𝜉

𝓟𝑝 = න
ℝ+
𝑛 𝜉 𝜉𝑝𝐔 𝜉 ⊗ 𝐔 𝜉 d𝜉



Decomposition in mean and deviation transport
We introduce the relative velocity with respect 
to the mean:

This allows the advection terms for both mass 
and velocity moments to be written as:
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𝓥𝑝 = න
ℝ+
𝑛 𝜉 𝜉𝑝(𝐔 𝜉 − 𝐔𝑏) d𝜉

𝓟𝑣 = න
ℝ+
𝑛 𝜉 𝜉p𝐔 𝜉 ⊗ (𝐔 𝜉 − 𝐔b)d𝜉

𝐕𝛼 = 𝐔𝛼 − 𝐔𝑏

We then define the moments:

∇ ⋅ 𝒰𝑝= ∇ ⋅ 𝑀𝑝𝐔𝑏 + ∇ ⋅ 𝒱𝑝

∇ ⋅ 𝒫𝑝= ∇ ⋅ 𝒰𝑝 ⊗𝐔𝑏 + ∇ ⋅ 𝒫𝑣

Kinetic fluxes can be 
used to discretize the 
advection terms with 
respect to the mean 
velocity.

Conventional 
advection schemes 
used in two-fluid 
solvers can be used 
for mean transport



Kinetic fluxes
We indicate with 𝜑 = 𝐔 f ⋅ 𝐒f the face flux (dot product of velocity and cell face normal vector)

Size moment kinetic fluxes

Velocity moments kinetic fluxes
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∇ ⋅ 𝓥𝑝 =

α

(𝑤𝛼ξα
𝑝
)neimin 𝜑𝛼 − 𝜑𝑏, 0 + 𝑤α𝜉α

𝑝

own
max 𝜑𝛼 − 𝜑𝑏, 0

∇ ⋅ 𝓟𝑣 =

𝛼

(𝑤𝛼𝜉𝛼
𝑝
𝐔𝛼)neimin 𝜑𝛼 − 𝜑𝑏, 0 + 𝑤𝛼𝜉𝛼

𝑝
𝐔𝛼 own

max 𝜑𝛼 − 𝜑𝑏, 0



Steps of the solution procedure [1]
We use an iterative, pressure-based approach and integrate it with the quadrature-based 
moment method.

1. Compute 𝑤𝛼 , 𝜉𝛼 , 𝐔𝛼 at cell centers using the inversion algorithm

2. Compute 𝐕𝛼 = 𝐔𝛼 − 𝐔𝑏 using the value of 𝐔𝑏 from the previous time-step

3. Define 𝓥𝑝 = σ𝛼𝑤𝛼𝜉𝛼
𝑝
𝐕𝛼 and 𝓟𝑝,𝑣 = σ𝛼𝑤𝛼𝜉𝛼

𝑝
𝐕𝛼 ⊗𝐔𝛼

4. Advect size moments 𝑀𝑝 and velocity moments 𝓤𝑝 with respect the mean, using kinetic 
fluxes, by solving:
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𝜕𝑀𝑝

𝜕𝑡
+ ∇ ⋅ 𝓥𝑝 = 0 ⇒ 𝑀𝑝

∗

𝜕𝓤𝑝

𝜕𝑡
+ ∇ ⋅ 𝓟𝑝,𝑣 = 0 ⟹ 𝓤𝑝

∗

Note
𝑀1 is unchanged in this step



Steps of the solution procedure [2]
5. Recompute 𝑤𝛼 , 𝜉𝛼 , 𝐔𝛼 at cell centers using the inversion algorithm applied to 𝑀𝑝

∗ and 𝓤𝑝
∗

6. Recalculate 𝐕𝛼 = 𝐔𝛼 − 𝐔𝑏 noting that 𝐔𝑏 = 𝓤1
∗/𝑀1: fluxes used in the two-fluid solver 

must be updated (including the total flux)

7. Observe that 𝑀1 = 휀𝑏𝜌𝑏 and 𝓤1 = 휀𝑏𝜌𝑏𝐔𝑏 and use a two-fluid solver to solve
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𝜕

𝜕𝑡
휀𝑏𝜌𝑏 + ∇ ⋅ 휀𝑏𝜌𝑏𝐔𝑏 = 0

𝜕

𝜕𝑡
휀𝑏𝜌𝑏𝐔𝑏 + ∇ ⋅ 휀𝑏𝜌𝑏𝐔𝑏 ⊗𝐔𝑏 + 𝑝𝑐𝐈 + 𝛕𝑐

= 휀𝑏𝜌𝑏𝐠 + න
ℝ+
𝜉 𝐀(𝜉) − 𝒟dis∇ ln 𝑛(𝜉) d𝜉



Momentum exchange term in the two-fluid model [1]
Buoyancy force
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න
ℝ+

𝜉𝑛 𝜉 −
1

𝜌𝑏
∇𝑝𝑙 − ∇𝜏𝑙

∗ d𝜉 = −

𝛼

𝑤𝛼𝜉𝛼
𝜌𝑏

∇𝑝𝑙 − ∇𝜏𝑙
∗

Drag force

න
ℝ+
𝜉𝑛 𝜉

𝐾drag

𝜌𝑏
𝐔𝑙 − 𝐔 d𝜉 =

𝛼

𝑤𝛼𝜉𝛼
𝜌𝑏

𝐾drag 𝐔𝛼, 𝑑𝑏,𝛼 𝐔𝑙 − 𝐔𝛼

=

𝛼

𝑤𝛼𝜉𝛼
𝜌𝑏

𝐾drag 𝐔𝛼, 𝑑𝑏,𝛼 𝐔𝑙 − 𝐔𝑏 −

𝛼

𝑤𝛼𝜉𝛼
𝜌𝑏

𝐾drag 𝐔𝛼, 𝑑𝑏,𝛼 𝐕𝛼

Lift force
න
ℝ+
𝜉𝑛 𝜉

𝐶𝐿𝜌𝑙
𝜌𝑏

𝐔𝑙 − 𝐔 × (∇ × 𝐔𝑙)d𝜉

=

𝛼

𝑤𝛼𝜉𝛼
𝜌𝑏

𝐶𝐿,𝛼
𝜌𝑙
𝜌𝑏

𝐔𝑙 − 𝐔 × (∇ × 𝐔𝑙)

Implicit Explicit



Momentum exchange term in the two-fluid model [2]
Dispersion 
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−න
ℝ+
𝜉𝑛 𝜉 𝒟dis 𝜉 ∇ln n(𝜉)d𝜉 = −

𝛼

𝒟dis∇
𝑤𝛼𝜉𝛼
𝜌𝑙

Virtual mass

න
ℝ+
𝜉𝑛 𝜉 𝜌𝑙𝐶𝑉𝑀

𝑑𝐔𝑙
𝑑𝑡

−
𝑑𝐔

𝑑𝑡
d𝜉

=

𝛼

𝑤𝛼𝜉𝛼
𝜌𝑏

𝐶𝑉𝑀,𝛼𝜌𝑙
𝑑𝐔𝑙
𝑑𝑡

−
𝑑𝐔𝑏
𝑑𝑡

−
𝑑𝐔𝛼
𝑑𝑡

−
𝑑𝐔𝑏
𝑑𝑡



Steps of the solution procedure [3]
8. Start from 𝑀𝑝

∗ and 𝒰𝑝
∗ to finish updating 𝑀𝑝 and 𝒰𝑝

9. Update the total flux and 𝐔𝑏

10. Return to step 1
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𝜕𝑀𝑝

𝜕𝑡
+ ∇ ⋅ 𝐔b

† = 𝒞𝑝

𝜕𝓤𝑝

𝜕𝑡
+ ∇ ⋅ 𝓟𝑝,𝑏

† + ∇ ⋅
𝑀𝑝

𝑀1
†
𝑝𝑐𝐈 − 𝜏𝑐

† = 𝑀𝑝𝐠 + න
ℝ+
𝜉𝑝𝑛(𝜉) 𝐀(𝜉) − 𝒟dis∇ ln 𝑛 𝜉 d𝜉

+
휀𝑏𝑔0
𝜏c

𝑀𝑝𝐔𝑏 −𝓤𝑝 + 𝒞𝑝,𝑖,𝑗,𝑘



Verification in the monodisperse limit
Case setup

◦ Monodisperse flow in a bubble column with central injection

◦ Bubble size: 2 mm

◦ Gas flow rate: 48 l/h

Objective
◦ Verify the QBMM model correctly degenerates in the two-fluid 

model in mono-disperse case

◦ Reference solver
◦ twoPhaseEulerFoam (OpenFOAM-dev, OpenFOAM Foundation release).
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Pfleger, S. Gomes, N. Gilbert, H.-G. Wagner, Hydrodynamic simulations 
of laboratory scale bubble columns fundamental studies of the 
Eulerian-Eulerian modelling approach, Chemical Engineering Science. 
54 (1999) 5091–5099. doi:10.1016/S0009-2509(99)00261-4.
.

https://doi.org/10.1016/S0009-2509(99)00261-4


Case setup
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Boundary 𝑝 𝐔𝑏, U𝑙 𝛼𝑏

Inlet Neumann Dirichlet Neumann

Walls Neumann No-slip Neumann

Outlet Dirichlet Neumann Neumann

Phases
◦ Gas: air, 𝜌𝑔 = 1.2 kg m−3

◦ Liquid: water, 𝜌𝑙 = 1000 kg m−3

Isothermal system at room 
temperature

Numerical setup
◦ Mesh

◦ Regular, hexahedral

◦ Δx = 5 mm

Boundary conditions
◦ See table

Submodels
◦ Drag and lift: Tomiyama (1998)

◦ Virtual mass: Constant coefficient

◦ Wall lubrication: Antal et al. (1991)

◦ Dispersion: Panicker et al. (2018)

◦ Bubble-pressure and viscosity: Biesheuvel and Gorissen
(1990)



Comparison of QBMM with two-fluid model solver – Monodisperse limit
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QBMM Two-fluid model



Comparison of QBMM with two-fluid model solver – Monodisperse limit
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H = 0.13 H = 0.37



Polydisperse case
Same bubble colum as in the monodisperse case

Three bubble sizes:
◦ 1.0 mm

◦ 2.5 mm

◦ 4.0 mm

◦ Equal volume fractions and inlet velocities to match the mean 
bubble diameter in experiments 
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Test on unstructured mesh
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Mixing vessel
◦ Coalescence and breakup

◦ 𝑈𝑔,inlet = 10 m/s



OpenQBMM
The source code of the solver used in this project is part of OpenQBMM, an open-source 
framework for quadrature-based moment methods based on OpenFOAM.

The code is available at:
◦ Website: www.openqbmm.org

◦ GitHub repository: https://github.com/OpenQBMM

If you use OpenQBMM, cite it! Software citations are as important as citations of papers.
◦ DOI for OpenQBMM: 10.5281/zenodo.591651 (all versions)

◦ Specific DOI for a release: https://github.com/OpenQBMM/OpenQBMM/releases
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End
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Interfacial terms
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Tomiyama drag model

Cd = max
24

Reb
1 + 0.15Reb

0.687 ,
8

3

E𝑜

Eo + 4
, 0.44

Kd =
3Cdρl|𝐔l − 𝐔b|

4db
𝐅d = αbKd(𝐔l − 𝐔b)

Constant coefficient virtual mass model

FVM = αbρlCVM
d𝐔l
dt

−
d𝐔b
dt

𝑑𝐔

𝑑𝑡
=
𝜕𝐔

𝜕𝑡
+ 𝐔 ⋅ ∇𝐔

A. Tomiyama, Struggle with computational bubble 
dynamics, Multiphase Science and Technology 10 (4) (1998) 
369 – 405.
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Tomiyama lift model

𝐶𝐿 = ቐ

min 0.288 tanh 0.121Reb , 𝑓 Eod Eod < 4

𝑓 Eod 4 ≤ Eod ≤ 10.7
−0.27 Eod > 10.7

𝑓 Eod = 0.00105Eod
3 − 0.0159Eod

2 − 0.0204Eod + 0.474

𝐸𝑜𝑑 =
𝜌𝑙 − 𝜌𝑏 𝑔𝑑ℎ

2

𝜎𝑏

𝑑ℎ = 𝑑𝑏 1 + 0.163𝐸𝑜𝑑
0.757

1
3

A. Tomiyama, Struggle with computational bubble 
dynamics, Multiphase Science and Technology 10 (4) (1998) 
369 – 405.
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Panicker dispersion model

𝐅dis = CdisKd 1 − aαb + bαb
2 ∇𝛼𝑏

Cdis = 4.544, b = 0.5, a = 1 + b −
1

3

Antal wall lubrication model
𝐅WL = −αb∇pw

pw = ρl 𝐔l − 𝐔b
2

db
𝐱 − 𝐱w

a0 − a1
db

𝐱 − 𝐱w
+ a2

db
2

𝐱 − 𝐱w
2

Cw = 0.0217, a0 = Cw, a1 =
Cw

2
, a2 =

C𝑤

4
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bubbly two-phase ow, International Journal of Multiphase Flow 17 (5) (1991) 635 – 652.
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Biesheuvel and Gorissen bubble pressure
FBP = −Cbpαb ∇pb − ∇ ⋅ 𝛕l

𝑝b = Cbp ρb + ρlCVM αb 𝐔l − 𝐔b
2αbαl

Biesheuvel and Gorissen bubble induced viscosity
νb = Cbdb 𝐔l − 𝐔b αbαl

νl,eff = νl +
αb
αl

ρb
ρl
+ CVM νb

A. Biesheuvel, W. C. M. Gorissen, Void fraction disturbances
in a uniform bubbly fluid, International Journal of 
Multiphase Flow 16 (2) (1990) 211 – 231, ISSN 0301-9322.


