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ABSTRACT
Сassava’s productivity in Madagascar is affected by pests and diseases, among 
which the whitefly Bemisia tabaci (Gennadius) transmitting cassava mosaic be
gomoviruses (CMBs) is most important. The pre sent study sought to establish 
the abundance and diversity of B. tabaci cryptic species on cassava and other 
host plants in Madagascar. In addition, cassava mosaic disease (CMD) incidence 
and symptom severity were assessed. The identity and genetic diversity of B. 
ta baci samples collected on cassava and other plant species in Central High
lands and Tsaratanana Massif in northwestern region were studied using the 
par tial mitochondrial cytochrome oxidase I (mtCOI) gene. The analyses of the 
mtCOI sequences revealed three B. tabaci cryptic species—SubSaharan Africa 
1 (SSA1), Mediterranean (MED) and the Indian Ocean (IO)—in the sampled 
areas. SSA1 was the do mi nant cryptic species, with 100 % occurrence on cas
sava crops. For the first time, we report the occurrence of MED in Madagascar. 
Both MED and IO, the in di genous species in the South West Indian Ocean is
lands of Anajouan Mayotte, Grande Comore, Mauritius, Reunion, Seychelles 
and Mada gascar, occurred on noncassava hosts. As opposed to previous reports, 
we re corded no B. tabaci Middle East Asia Minor 1 – MEAM1 cryptic spe cies 
(for merly also known as the Bbiotype) on any of the sampled plants and lo ca
tions. Generally, the abundance of adult whiteflies was low (<1 specimen per 
plant) on cassava in all the sampled locations, except in Analavory (3.93) and 
Am pitolova (3.00) in Central Highlands. Similarly, the whitefly abundance was 
low on the noncas sava plant species, likely hosts for B. tabaci Io and meD. 
Cas sava mosaic di sease was observed in 100 % of the surveyed cassava fields. 
The disease symp toms were generally mild, with severities of 2.00–3.13 (ave
rage, 2.62). Lo ca tions differed significantly (P<0.001, LSD=5.00) in CMD in
ci dences. The CMD incidence ranged between 30–100 % (averaged ca 59 %). 
Our findings provide current knowledge of the economically important B. tabaci 
species, which is vital to the development of sustainable management practices 
for the vector and cassava viral diseases in Madagascar.
KEYWORDS: Agricultural pests, cassava, B. tabaci, whitefly, genetic diversity, 
cryptic species, SSA1, MED, Afrotropical, Madagascar.
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INTRODUCTION

Bemisia tabaci (Gennadius, 1889) (Hemiptera: Aleyrodidae) is a pest of glo bal 
importance due to its ability to transmit many plant viruses, particularly bego mo
viruses (Geminiviridae), to agricultural crops and cause considerable yield losses 
(Brown et al. 1995) in the tropical (Brown 2000) and subtropical (Brown & Bird 
1992; Fishpool & Burban 1994; Jones 2003) regions of the world. There are at 
least 34 putative morphologically indistinguishable cryptic species that comprise 
this complex agricultural pest (Boykin et al. 2012, 2018). In high abundance, B. 
tabaci causes physical damage to plants through extraction of large quantities of 
phloem sap, induction of phytotoxic disorders, irregular fruit ripening, chlorosis 
of leaves and honey dew excretes, which encourage growth and development of 
sooty mold fungi that darkens foliage and fruit (Byrne & Bellows 1991; Costa & 
Brown 1991). In cassava (Manihot esculenta Crantz), physical damage by B. ta
baci was reported to cause between 40–50 % yield loss (Thresh et al. 1997; legg 
et al. 2011). 

In Africa and Asia, B. tabaci is the key vector of cassava mosaic begomoviru
ses (CMBs) (Bock & Woods 1983; Dubern 1994; Fishpool & Burban 1994), the 
causative agents of cassava mosaic disease (CMD). Bemisia tabaci was also re-
ported to transmit cassava brown streak ipomoviruses (CBSIs) causing cassava 
brown streak disease (CBSD), albeit at low rates (Maruthi et al. 2005, 2017; 
mware et al. 2009). Cassava mosaic disease seriously limits the production of 
cas sava, a major staple crop for more than 300 million households in SubSaharan 
Af rica (SSA) (Horton 1988; IITA 1990; Dahniya 1994). Annual economic losses 
at tributed to CMD alone in East and Central Africa have been estimated at US$ 
1.9–2.7 billion (legg et al. 2006). The two viral diseases continue to devastate 
cas sava crops in eastern, central and southern Africa, where they threaten food se
curity of the mainly rural households (Alicai et al. 2007, 2016; Bigirimana et al. 
2011; legg et al. 2011, 2014, 2015; Mulimbi et al. 2012; ndunguru et al. 2015; 
Patil et al. 2015; Ateka et al. 2017; Maruthi et al. 2017). 

In Madagascar, CMD was first reported in 1932, but was of minor impor tance 
at that time (Francois 1937). In 1934, a CMD outbreak was reported west of Lake 
Alatroa on the central plateau, which spread in many cassavagrowing areas of 
the island (Cours 1951) and resulted in the abandonment of cassava cultivation 
(Frappa 1938). The government intervened by initiating the first major cassava 
germplasm improvement program, which aimed at development of CMDresistant 
varieties (Cours 1951). The first resistant varieties were widely distributed in 
the 1940s and drastically reduced the CMD frequency. In 1998, a countrywide 
survey was carried in key cassava producing regions of Madagascar to establish 
the status of whiteflies and whiteflytransmitted viruses (WTVs) on cassava and 
sweet potato by the Systemwide Tropical Whitefly IPM project (Ranomenja na 
hary et al. 2005). The study found adult whitefly populations on cassava to be 
highest in Antananarivo (7.1) and lowest in Mahajanga (2.5), while whiteflies 

https://en.wikipedia.org/wiki/Silverleaf_whitefly
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were very scarce on sweet potato. The CMD incidence, mainly due to use of virus
infected cuttings, was responsible for 86 % of all cases and was highest (71 %) in 
Fiana ran tsoa and lowest (31 %) in Antananarivo. The CMD symptoms were re la
tively mild in Antananarivo, but severe elsewhere (Ranomenjanahary et al. 2005).

Until recently, genetic methods targeting the diversity of the mitochondrial cy
tochrome oxidase I (mtCOI) gene were considered most reliable for distinguishing 
whitefly populations and cryptic species occurring on different crops and plant 
species (Brown 2000; De Barro et al. 2000, 2011; Bosco et al. 2006; Dinsdale et 
al. 2010). At least five B. tabaci cryptic species—SSA1, SSA2, SSA3, SSA4 and 
SSA5—have been reported on cassava in the Afrotropics (Legg et al. 2002, 2014; 
sseruwagi et al. 2005, 2006; Boykin et al. 2007, 2018; Dinsdale et al. 2010; mu-
ger wa et al. 2012; Esterhuizen et al. 2013; TockoMarabena et al. 2017). In mada-
gascar and the SWIO Islands, previous studies identified the IO/MS and Middle 
East Asia Minor 1 (MEAM 1)/B biotype as the main B. tabaci cryptic species on 
cassava and several other hosts (Delatte et al. 2005, 2006, 2012). Recently, Wosula 
et al. (2017) used NextRAD sequencing of whitefly genomic DNA and iden ti
fi cation of single nucleotide polymorphisms (SNPs), as well as comparisons of 
mtCOI sequences from the same whiteflies, to demonstrate that whiteflies collected 
during their surveys on cassava in eight African countries (including Madagascar) 
belonged to the SSA group; however, only limited whitefly collections were made 
in Madagascar. The identified nuclear SNPs will complement the ongoing efforts 
to obtain a species tree for the B. tabaci species complex. The development of 
other markers, such as the nuclear gene markers, to distinguish B. tabaci species 
has been elusive for a long time, due to the requirement for large amounts of insect 
RNA for transcriptome studies. However, the recent successful identification of 
SNPs that can differentiate cryptic species and reveal some level of hybridization 
between cryptic species along their distribution range (Wosula et al. 2017), and the 
method of extraction of the RNA and transcriptomes of individual fieldcollected 
B. tabaci specimens (Sseruwagi et al. 2017) provide a great breakthrough. These 
methods may not only resolve the species identity issues, but also identify a gene 
flow to track hybrids of different B. tabaci cryptic species. 

Madagascar’s economy relies heavily on agriculture, which depends on small
scale subsistence farmers yet accounts for almost 30 % of the gross domestic pro
duct and employs about 75 % of the work force (Raveloharison 2017). Rice is the 
key staple of the Malagasy diet and its paddy production was 2,550,000 tons in 1999 
(FAO 1999). However, following declining yields and severe damage to rice crops 
by cyclones in the 1980–1990s, cassava’s untapped potential as a food security 
and industrial crop in Madagascar was recognized. A drive to oversee the develop
ment of the crop led to the introduction and screening of new germplasm (Abass 
et al. 2012). Currently, however, like elsewhere in SSA, cassava’s productivity is 
li mited by pests and diseases, among which CMD is most important. To address 
threat to food security caused by CMD, collaborative efforts were established in 
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2017 between Mikocheni Agricultural Research Institute based in Tanzania and 
authorities in Madagascar, to share experience and expertise in diagnostics and 
ma nagement of cassava viral diseases and their insect vectors. The activity was 
car ried out under the ‘Disease diagnostics for sustainable cassava productivity in 
Africa’ project, a regional effort that sought to build human and infrastructure ca
pacity of National Agricultural Research Systems in seven countries in east and 
southern Africa, including Kenya, Malawi, Mozambique, Rwanda, Uganda, Zam
bia and Tanzania. Therefore, the main objective of this study was to establish di
versity and abundance of B. tabaci species on cassava and several other host plant 
species in Madagascar. In addition, we also assessed the incidence and symptom 
severity of CMD and CBSD in smallholder farmers’ fields. 

MATERIALS AND METHODS

Whitefly and disease assessments 
Adult whitefly abundance, CMD incidence and symptom severity were assessed 

as described by Sseruwagi et al. (2004) on 15 plants per field, in 3–5 months 
old cassava fields selected randomly at equal intervals along motorable roads in 
11 locations, viz. Amboatany, Ambodahy, Ambohitravao, Amborovy, Ambovona, 
Am pitolova, Analavory, Itasy, Tsararano (Central Highlands region), Antsanitia 
and Betangirika (Tsaratanana Massif region in Northwest), in January 2017. In 
each field, adult whitefly populations were counted on the top five leaves per plant. 
Cassava mosaic disease infection and symptom severity were assessed per plant 
using a scale of increasing severity from 1 (no symptoms) to 5 (very severe symp
toms) (Hahn et al. 1980). Disease incidence was calculated as the proportion or 
percentage of plants with CMD symptoms (Fargette 1987). Geocoordinates (la
ti tude, longitude and altitude) were recorded for each location using a global po
sitioning system (GPS) (etrex, HC Sumit) and the data (Table 1) used to construct 
a map showing the geographic distribution of sampled areas in Madagascar. 

Whitefly sample collection and DNA extraction 
Adult whiteflies were collected on cassava and noncassava weed and shrub spe

cies growing within and near the sampled cassava fields in each location, using an 
aspirator and placed in Eppendorf tubes with 90 % ethanol for laboratory ana lyses 
at Mikocheni Agricultural Research Institute, Dar es Salaam, Tanzania. At least 
three single female adult whiteflies were selected per plant species per location 
and genomic DNA was extracted according to Frohlich et al. (1999). Each insect 
was placed in a small well with 10 µl of extraction buffer (5 mM TrisHCl, pH 
8.0, 0.5 mM EDTA, 0.5 % Nonidet P40, 1 mg/mL proteinase K) on an inverted 
petri dish covered with parafilm and was gently ground using the tips of 0.2 µl 
polymerase chain reaction (PCR) tubes to release total DNA. Additional 30 µl 
of extraction buffer were added to each spot and the mix was transferred to new 
Eppendorf tubes. The extracts were incubated in a water bath (Gesellschaft für 
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La bortechnik mbH, Germany) at 65 °C for 15 min and at 95 °C for 10 min using a 
block heater (Grant QBD2, England). The DNA was then centrifuged at 15,493× g 
for 5 min to pellet the debris. The supernatant was transferred to new Eppendorf 
tubes and the contents stored at 20 °C until use. 

Mitochondrial DNA amplification and sequencing
Amplification of the partial mtCOI gene (850 bp) was obtained with the primer 

set: MT10/C1J2195 (5′TTGATTTTTTGGTCATCCAGAAGT3′) and MT12/
TL2N3014 (5′TCCAATGCACTAATCTGCCATATTA3′) as per Simon et al. 
(1994). Polymerase chain reaction amplification was performed using a 2720 Ther
mal Cycler (Applied Biosystem, USA) as follows: first cycle at 95 °C for 2 min, 35 
cycles at 94 °C for 30 sec, 54 °C for 30 sec, 72 °C for 1 min, and final extension at 
72 °C for 10 min. A total reaction mixture of 25 µl was made up of 16.3 µl distilled 
water, 5 µl of 5X One Taq PCR reaction buffer, 0.5 µl of 10 mM dNTPs, 0.5 µl 
10 µM of each primer, 0.2 µl of One Taq DNA polymerase (New England Biolabs, 
Ipswich, MA, USA) and 2.0 µl DNA template. PCR products were electropho
resed using Midicell Primo electrophoretic gel system in 1 % agarose gel stained 
in ethi dium bromide at 100 V for 30 min in 1X TAE buffer. The gel was visualized 
and photographed using the UVP, BioDocIt 201 Imaging System m20V Trans 
il luminator, USA. For sequencing, the PCR products were shipped on dry ice to 
Fas teries SA, PlanlesOuates, Switzerland. The DNA sequences in this study are 
de posited in GenBank with accession numbers MG457760–MG457775.

Table 1. Locations and host plant species sampled for Bemisia tabaci in Central Highlands (CH) and 
Tsaratanana Massif/northwestern regions (TM) of Madagascar, January 2017. In Antananarivo, only 
one plant, a wild cassava relative was sampled. It was not considered as a farmer’s field and therefore 
the location is not included in the disease assessments.

No. Location Region Longitude Latitude Alt., m Host plant Sample ID

1 Antananarivo CH 47.47805 -18.8700 1268.80 Wild Cassava -
2 Ambohitravao CH 47.55472 -18.8036 1277.95 unknown 2A, 2B
3 Amboatany CH 47.53750 -18.7622 1415.20 Cassava -
4 Ambovona CH 47.72030 -18.8111 1442.65 Cassava -
5 Itasy CH 47.14550 -19.0142 1274.90 Cassava -
6 Analavory CH 47.04083 -18.9866 1186.45 unknown 6a

Cassava 6B, 6C
7 Itasy CH 46.72694 -18.0367 1241.35 Cassava 7B, 7C
8 tsararano CH 46.89098 -17.2123 308.00 Cassava -
9 Ambodahy CH 46.89556 -16.3501 92.30 Cassava -
10 Amborovy CH 46.35214 -15.6712 -16.17 unknown 10A‒C
11 Antsanitia tm 46.42177 -15.5733 1.78 Cassava 11A‒C
12 Ampitolova CH 46.37484 -15.6604 11.89 Cassava -
13 Betangirika tm 46.40674 -15.6361 -15.86 unknown 13a 

Cassava 13B, 13C
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Phylogenetic analysis 
Initial species identification

The obtained sequences were loaded into the Whiteflybase (www.whiteflybase.
org; Boykin et al. 2017), which allowed us to narrow down the reference data 
used in the downstream phylogenetic analyses. Thus, all sequences generated in 
this study matched B. tabaci SSA1, MED or IO with over 99 % identical base 
pairs (Table 2), which meant that reference data only included unique haplotypes 
from SSA1, MED and IO in the MrBayes analyses (described below). The Uganda 
B. tabaci species was also included in the analyses as an outgroup. In addition, 
the New World and MEAM1 species were also included because they had been 
found elsewhere (Manani et al. 2017) to be in the same clade as the target species 
identified in our study. This contrasts with previous studies that recommended 
utilising all unique haplotypes in the phylogenetic analyses, which dramatically 
increases time to convergence for the MrBayes runs. 

MrBayes phylogenetic analyses
The final alignment contained 491 of 687 nucleotides. We used MrBayes version 

3.2.1 (Ronquist et al. 2012) that employs Markov Chain Monte Carlo (MCMC) 
sampling to approximate the posterior probabilities of phylogenies (Green 1995), 
the posterior probabilities are shown above the branches (Fig. 1). MrBayes 3.2.1 
was run on the Magnus supercomputer (Pawsey Supercomputer Centre, Perth, 
Western Australia) utilising the BEAGLE library (Ayers 2012). MrBayes 3.2.1 
was run with a GTR+I+G model of molecular evolution, utilising four chains 
for 30 million generations and trees were sampled every 1000 generations. All 

Table 2. Result of blast algorithm of GenBank when comparing the most frequent Bemisia tabaci 
species from Madagascar to the worldwide diversity.

Query Closest 
match

Verified nucleotide 
identity (%) Accession no. of closest match Country

6B SubSahAf1 99.85 1251_32_SubSahAf1_JQ286457 tanzania
6C SubSahAf1 100 1251_32_SubSahAf1_JQ286457 tanzania
7B SubSahAf1 100 1251_32_SubSahAf1_JQ286457 tanzania
7C SubSahAf1 100 1251_32_SubSahAf1_JQ286457 tanzania
11a SubSahAf1 100 1251_32_SubSahAf1_JQ286457 tanzania
11B SubSahAf1 99.85 1251_32_SubSahAf1_JQ286457 tanzania
11C SubSahAf1 100 1251_32_SubSahAf1_JQ286457 tanzania
13B SubSahAf1 100 1251_32_SubSahAf1_JQ286457 tanzania
13C SubSahAf1 100 1251_32_SubSahAf1_JQ286457 tanzania
13a Indian Ocean 99.85 52_28_IndianOcean_AJ550171 Madagascar
2a Indian Ocean 100 52_28_IndianOcean_AJ550171 Madagascar
2B Indian Ocean 100 52_28_IndianOcean_AJ550171 Madagascar
10a Mediterranean 99.71 358_29_Mediterranean_FJ766391 Burkina Faso
10B Mediterranean 99.71 358_29_Mediterranean_FJ766391 Burkina Faso
10C Mediterranean 96.01 117_29_Mediterranean_AY827606 nigeria
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Fig. 1: MrBayes consensus tree for Bemisia tabaci. Madagascan samples are highlighted in red.
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runs reached a plateau in likelihood score, which was indicated by the standard 
de viation of split frequencies (0.0015), and the potential scale reduction factor 
(PSRF) close to one, showing that the MCMC chains converged. 

Statistical analysis of data 
The whitefly population, CMD symptom severity and disease incidence data 

were tested for homogeneity of variance before analyses. Adult whitefly numbers 
(n) were logarithmically transformed (log(n+10)) to stabilize the variances due to 
zero counts in some of the cassava fields. The transformed data were subjected to a 
Oneway analysis of variance (ANOVA) using Genstat statistical package version 
12.1 (PC/Windows Vista), copyright 2009, VSN International Ltd.

RESULTS

Status of cassava fields and cultivars grown
A total of thirteen smallscale cassava fields were sampled in eleven locations 

with diverse agroecologies in the Central Highlands and Tsaratanana Massif/
North western regions of Madagascar (Table 1). In all the locations visited, it was 
observed that the smallholder farmers were faced with multiple challenges con
cerning cassava production that included: (1) inferior cultivars of mainly low yiel
ding landraces, (2) pests and diseases, and (3) poor husbandry practices. The main 
cultivars grown by the farmers across the two regions included Orgaya, Madaras, 
Mahogo Pamba and Mahogo mena helika. 

Whitefly abundance, symptom severity and CMD incidence
Generally, very low numbers (mean = 0.85) of adult whiteflies occurred on cas

sava in all the surveyed locations. There were significantly lesser variations in 
adult whitefly abundance between cassava fields (P=1.000) than between sites 
(P<0.001, LSD=1.54). The whitefly abundance was highest in Analavory (3.93) 
followed by Ampitolova (3.00) in Central Highlands and was less than 1 (0–0.80) 
in the rest of the locations (Table 3). Similarly, whitefly abundance was low (<1) 
on noncassava plants sampled for B. tabaci. However, a few farmers in Antsa ni
tia, Tsaratanana Massif in the northwestern region, reportedly observed symptoms 
of sooty mold on cassava leaves in June, when populations are likely to be more 
abundant. 

Cassava mosaic disease affected plants had typical mild green and yellow 
mosaic symptoms. There were no significant differences (P=0.43, LSD=0.78) 
in mean CMD symptom severity between locations. Disease symptom severity 
ranged be tween 2.00–3.13 and averaged only 2.62 (Table 3). Based on visual 
as ses sments of symptoms, CMD was observed in all surveyed fields. Locations 
dif fered significantly (P<0.001, LSD=5.00) in CMD occurrence. The incidence 
ranged between 30–100 %, with an average of 59.29 % (Table 3), and was highest 
in Betangirika (100 %), Tsaratanana Massif/northwestern region, and Ampitolova 
(86.6 %) in Central Highlands, and 60 % and above in Amborovy (60 %), Itasy 
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(63.3 %), Ambodahy (66.6 %) Antsanitia (73 %). Incidence was 30–50 % in other 
sampled locations. The main source of disease infection was cuttingborne, which 
means that farmers were recycling the CMDaffected planting materials from 
previous seasons’ crops. None of the diseaseaffected cassava plants had clear 
CBSD symptoms in the fields and locations sampled in our study. 

Phylogenetic analysis of adult Bemisia tabaci mtCOI sequences 
Bayesian analyses of the 15 sequences obtained from Madagascar (this study) 

and the 476 unique haplotypes in the Whiteflybase reference data for species iden
tification (www.whiteflybase.org) revealed three cryptic species present in the 
sampled areas. Nine of the 15 B. tabaci samples were SSA1, three were IO and 
four turned to be MED (Fig. 1). The SSA1 sequences grouped together with those 
from southern Africa, i.e. South Africa, Swaziland and Mozambique. On the other 
hand, the IO sequences grouped with those obtained in Madagascar, Reunion, Sey
chelles and Uganda. The MED sequences grouped with similar haplotypes from 
Ugan da, Zimbabwe and West Africa (Burkina Faso, Ghana and Ivory Coast). None 
of the mtCOI sequences grouped with the MEAM1 (Bbiotype) genetic group in 
our study. 

Geographical distribution of B. tabaci cryptic species 
three B. tabaci cryptic species were identified on the sampled plants in Ma

da gascar in our study, viz. SSA1, IO and MED. Bemisia tabaci SSA1 occurred 
mainly on cassava in all the sampled locations in the Central Highlands and Tsa
ratanana Massif/northwestern regions. It was the only cryptic species identified on 
cassava. Bemisia tabaci IO occurred on noncassava plant species in Betangirika, 

Table 3. Mean adult whitefly abundance and cassava mosaic disease incidence (%) and symptom 
severity (1–5 scale) in smallholder cassava fields in Central Highlands (CH) and Tsaratanana Massif/
northwestern (TM) regions of Madagascar, January 2017.

Location Region Mean 
abundance S.E. CMD 

incidence S.E. CMD 
severity S.E.

Amboatany CH 0.13 0.56 46.16 1.82 2.29 0.31
Ambodahy CH 0.40 0.56 66.60 1.82 2.82 0.25
Ambohitravao CH 0.40 0.40 36.65 1.28 2.91 0.25
Amborovy CH 0.80 0.56 60.00 1.82 2.38 0.29
Ambovona CH 0.00 0.56 40.00 1.82 2.67 0.33
Ampitolova CH 3.00 0.56 86.60 1.82 2.62 0.23
Analavory CH 3.93 0.56 33.30 1.82 2.00 0.36
Ankorondrano/Itasy CH 0.57 0.40 63.30 1.28 2.74 0.19
tsararano CH 0.00 0.56 46.60 1.82 2.57 0.31
Antsanitia tm 0.13 0.56 73.00 1.82 2.73 0.25
Betangirika tm 0.00 0.77 100.00 2.49 3.13 0.29
Means 0.85 59.29 2.62
LSD (5 %) 1.54 5.00 0.78
P (5 %) <0.001 <0.001 0.433
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Fig. 2: The geographical distribution of Bemisia tabaci species in Central Highlands and Tsaratanana 
Massif/northwestern regions of Madagascar, January 2017.
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Tsaratanana Massif/northwestern region and in two locations in Ambohitravao, 
west of Antananarivo in Central Highlands, while B. tabaci MED similarly oc
curred on the noncassava plants in only Ambohitravao, Central Highlands region. 
In general, however, there was no correlation between the cryptic species and their 
geographic distribution in Madagascar (Fig. 2). 

DISCUSSION

Our study established SSA1 to be the dominant cryptic species of B. tabaci on 
cassava in Central Highlands and Tsaratanana Massif/northwestern regions of Ma
dagascar, occurring in 100 % of the sampled cassava fields. We report for the first 
time the occurrence of the B. tabaci MED cryptic species in Madagascar, which, 
together with the IO, occurred on noncassava plants in the sampled areas. Previous 
studies reported the IO and MEAM 1 as the main B. tabaci cryptic species on cas
sava and several other hosts in Madagascar and the SWIO Islands of Anjouan, 
Mayotte, Grande Comore, Mauritius, Reunion and Seychelles (Delatte et al. 2005, 
2006, 2012). However, in the current study none of the cassava fields hosted IO 
or MEAM1. The occurrence of SSA1 in Madagascar is important, because it is 
as sociated with the transmission and spread of CMBs (Dubern 1994) and cassava 
brown streak viruses (CBSVs) (Maruthi et al. 2005, 2017; mware et al. 2009) 
in SubSaharan Africa. In addition, SSA1 is the most widely distributed cryptic 
spe cies currently associated with the upsurge in whitefly populations on cassava 
in East and Central Africa (Legg et al. 2011, 2014, 2015; mugerwa et al. 2012, 
2013; Tajebe et al. 2014) and rapid spread of a severe CMD outburst (Legg et al. 
2002, 2014; Tajebe et al. 2014) that threatens food supply for millions of rural 
households dependent on cassava. 

We confirm and expand (by using a larger number of samples) on the findings 
by Wosula et al. (2017), who studied a few samples using NextRAD sequencing 
of whitefly genomic DNA and identification of SNPs, as well as comparisons of 
mtCOI sequences from the same whiteflies, to demonstrate that SSA1 is the pri
mary cryptic species occurring on cassava in Madagascar. The low abundance 
of adult whitefly (<1 specimen per plant) on cassava in the sampled fields and 
lo cations in our study may be attributed to a characteristic feature of the SSA1 
B. tabaci populations in southern Africa that were reported to have low density 
on cassava (Legg et al. 2002; Berry et al. 2004). The SSA1 haplotypes from Ma
dagascar (our study) grouped with the southern Africa clade including South 
Af rica, Swaziland and Mozambique. However, the low whitefly populations re
corded in our study may also reflect sampling in the ‘low season’ of the year, 
when whiteflies are least abundant as reported by some farmers in Antsanitia, Tsa
ratanana Massif in northwestern region, who observed symptoms of sooty mold 
on cassava plants in June. The development of sooty mold fungi that darkens fo
liage and fruit is due to excretion of honeydew usually by a large population of 
B. tabaci colonizing crops (Byrne & Bellows 1991). Cassava disease surveys in 
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Ma dagascar (Ranomenjanahary et al. 2005) and elsewhere in SubSaharan Africa 
(sse ruwagi et al. 2004; Jeremiah et al. 2007, 2015; Ndunguru & Tairo 2009, 2010; 
ndunguru et al. 2011) have been carried when whitefly populations are lowest 
(July–September). Furthermore, since surveys are based on onetime assessments, 
they tend to underestimate the populations that occur on the cassava crops in an 
area in the cropping season (P. Sseruwagi, unpubl. data). Therefore, January may 
not have been an optimum period to sample for whitefly in Madagascar. Other 
factors including temperature, altitude, cultivar, have also been reported to in
fluence whitefly abundance (Macfadyen et al. 2018). More studies should be con
ducted to understand the factors for the differences in abundance of the SSA1 
populations in east and southern Africa. 

The level of CMD was moderate to high (30–100 %), with typical cutting
borne symptoms, i.e., damage occurring on the lowermost firstformed leaves of 
the affected plants (Sseruwagi et al. 2004), thus confirming that the disease was 
caused by propagation of virus infected cuttings. This is consistent with earlier 
findings, that reported 86.3 % of total infection due to the same reason in 1998 
(Ranomenjanahary et al. 2005). After these two decades since the last major sur
vey in Madagascar, CMD remains a major problem in smallholder cassava fields. 
The situation is worsened by the evident lack of improved disease and whitefly
resistant cassava cultivars in Madagascar, a testimony to the fact that more research 
is still needed to develop cassava germplasm for control of B. tabaci and WTVs, 
which was featured as a priority area and focus of the National Center for Applied 
Research and Rural Development (FOFIFA), the official agricultural research 
agency in Madagascar (Tairo et al. 2017). 

CONCLUSIONS

This work highlights current knowledge of the B. tabaci cryptic species of eco
nomic importance to cassava and other plant species in Madagascar. It is through 
understanding their biology and implications for disease epidemiology that the 
development of sustainable management strategies for the vector and cassava viral 
diseases can be achieved. We have provided a novel bioinformatics routine for 
identifying B. tabaci cryptic species using the newly developed species identifica
tion tool – the Whiteflybase (www.whiteflybase.org). In the past, members of the 
B. tabaci cryptic species complex were identified using a large mtCOI dataset with 
all of the haplotypes, which required a supercomputer to analyze the data. We 
have shown that utilising the species tool in Whiteflybase allows the researcher to 
narrow down the reference data for the phylogenetic analyses therefore making 
spe cies identification easier and faster.
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