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ABSTRACT 

 
In this paper, we consider a random network such that there could be a link between any two nodes in the 

network with a certain probability (plink). Diffusion is the phenomenon of spreading information throughout 

the network, starting from one or more initial set of nodes (called the early adopters). Information spreads 

along the links with a certain probability (pdiff). Diffusion happens in rounds with the first round involving 

the early adopters. The nodes that receive the information for the first time are said to be covered and 

become candidates for diffusion in the subsequent round. Diffusion continues until all the nodes in the 

network have received the information (successful diffusion) or there are no more candidate nodes to 

spread the information but one or more nodes are yet to receive the information (diffusion failure). On the 

basis of exhaustive simulations conducted in this paper, we observe that for a given plink and pdiff values, the 

fraction of successful diffusion attempts does not appreciably change with increase in the number of early 

adopters; whereas, the average number of rounds per successful diffusion attempt decreases with increase 

in the number of early adopters. The invariant nature of the fraction of successful diffusion attempts with 

increase in the number of early adopters for a random network (for fixed plink and pdiff values) is an 

interesting and noteworthy observation (for further research) and it has not been hitherto reported in the 

literature.  
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1. INTRODUCTION 

 

We envision a random network of nodes such that information could propagate along any link 

with a certain probability. We are interested in the problem of analyzing how fast information (for 

example, the availability of funds, need for help, etc) originating from one or more nodes 

(referred to as the early adopters) in the network can diffuse (spread) to the other nodes of the 

network. Note that diffusion may not happen across all the links because there is only a certain 

chance with which a node may share the information to its neighbor node. Though probabilistic 

diffusion has been widely studied in the area of complex network analysis, most of the studies 

(e.g., [3, 6, 8]) are restricted to real-world network models and not conducted on theoretical 

models such as those that correspond to the random networks. Our conjecture is that phenomenon 

observed in random network models could be construed as those that simply happen by chance 

(due to the degree distribution of the vertices and not due to the nodes involved). If a similar 

phenomenon is observed in a real-world network whose degree distribution is similar to that of a 

random network, then we could conclude that the phenomenon observed in the real-world 

network also simply happens due to the distribution of the vertices and not due to the specific 

nature of the nodes involved. The above characteristic of random networks forms the motivation 

for our research in this paper. We are interested in analyzing the impact of increase in the number 
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of early adopters on the success of diffusion in a random network (i.e., whether all the nodes in 

the network receive the information) and the delay associated with a successful diffusion attempt. 

The rest of the paper is organized as follows: Section 2 presents the system model and explains 

the diffusion phenomenon in random network graphs with an example. Section 3 presents the 

algorithm to construct random networks and presents the results of the simulation analyzing the 

impact of the number of early adopters on diffusion in a random network. Section 4 discusses 

related work. Section 5 draws conclusions. Throughout the paper, we use the terms ‘node’ and 

‘vertex’ as well as ‘link’ and ‘edge’ interchangeably. They mean the same. 

 

2. DIFFUSION 

 

We assume a network graph G = (V, E) where V is the set of vertices and E is the set of edges. Let 

plink represent the probability of link between any two vertices u and v (suits the random graph 

model, for more details, see Section 3). The edges are undirected. The degree of a vertex is the 

number of vertices adjacent to the vertex in the graph. For random graphs, the degrees of the 

vertices are comparable to each other (see Figure 2). The graph is considered to be connected if 

we can reach from any vertex to any other vertex through one or more hops. We test for 

connectivity of a graph using the well-known Breadth First Search algorithm [5]. We consider 

only connected graphs for diffusion.  

 

Diffusion is the process of spread of information originating from one or more vertices (called the 

early adopters) to the rest of the vertices in the graph [11]. Each vertex attempts to spread the 

information received from one of its adjacent vertices to the other adjacent vertices. Let pdiff be the 

probability for a vertex u to disseminate the information to spread to its neighbor vertex v, and is 

the same for every edge. A vertex attempts to spread the information only when it receives the 

information for the first time (to avoid looping of the information). When a vertex u attempts to 

spread the information to a vertex v, we generate a random number ru->v in the range [0…1] and if 

ru->v ≤ pdiff, then the information is passed on from u to v, otherwise not. We maintain a set of 

nodes called the covered nodes that have received the information from at least one of their 

neighbors across the rounds of the diffusion process. We also maintain a candidate set of nodes, 

updated with every round of diffusion (more details below).  

 

To start with, the set of early adopters are assumed to be the set of covered nodes as well as the 

set of candidate nodes. Diffusion proceeds in rounds. In each round, each vertex in the candidate 

set of nodes attempt to spread the information they have received (in the previous round or the 

initialization stage, in the case of the early adopters) to each of their neighbors. The neighbor 

nodes that receive the information for the first time are added to the set of covered nodes and are 

also added to the set of candidate nodes for diffusion in the subsequent round. The set of 

candidate nodes is refreshed during each round. A node could get into the candidate set of nodes 

for diffusion in the next round only if the node has been covered for the first time and has not 

attempted to spread the information until then. We consider the diffusion process to be successful 

for the entire network if the candidate set of nodes for the next round of diffusion becomes empty 

and all the nodes in the network are covered by then (i.e., all the nodes have received the 

information at least once). A diffusion process is considered to be unsuccessful if one or more 

nodes in the network are yet to receive the information and the set of candidate nodes for the next 

round of diffusion gets empty. 

 

We now explain the diffusion process using an example shown in Figures 1 and 2. The input 

graph used in both the figures is the same: the number inside the circle is the node ID; though the 

input graph is an undirected graph of edges – we generate two different random numbers for each 

edge, one for each direction. The probability for diffusion (pdiff) along any edge is assumed to be 

0.50. There could be diffusion from node u to node v only if the random number assigned for the 
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edge (u, v) in the direction   u->v is less than or equal to pdiff. Accordingly, we generate an initial 

graph for the input graph as shown in Figures 1 and 2. The two figures differ in the choice of the 

early adopter node used to initiate diffusion and the resulting sequence of rounds. Diffusion 

proceeds in rounds – for each round, the candidate set of nodes are colored in blue and the nodes 

covered across all the rounds are colored in yellow. Figure 1 illustrates a successful diffusion 

starting from node 0 (the early adopter node) and it takes a total of 4 rounds for diffusion to 

successfully complete, with the following nodes forming the candidate set for each round: round 

1 (node 0), round 2 (nodes 1 and 3), round 3 (node 4) and round 4 (node 5). Figure 2 illustrates an 

unsuccessful diffusion starting from node 4 (the early adopter node) and proceeding up to 3 

rounds (the candidate set of nodes are - round 1: node 4; round 2: node 1 and node 5; round 3: 

node 2) after which there is no scope for further diffusion (as the candidate set of nodes for round 

4 is empty), but nodes 0 and 3 are yet to be covered.  

 

 

              
               Input Graph                               Initial Graph                                  Round 1 
  

              
                 Round 2                                      Round 3                       Round 4 (all nodes covered) 

 

 

Figure 1: Example for a successful diffusion (probability of diffusion per edge, pdiff = 0.50) 

 

              
               Input Graph                               Initial Graph                                  Round 1 
  

              
                 Round 2                                      Round 3                      Nodes 0 and 3 are uncovered 

 

 

Figure 2: Example for an unsuccessful diffusion (probability of diffusion per edge, pdiff = 0.50) 
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3. RANDOM GRAPHS AND SIMULATIONS 
 

We use the well-known Erdos-Renyi model [2] to generate the random graphs for the simulations. 

The model takes as inputs - the number of nodes (N) in the network and the probability of a link 

(plink) between any two nodes in the network. For any two pair of nodes u and v (where u < v), we 

generate a random number ru-v and if ru-v ≤ plink, we set up an undirected link between u and v in 

the network. The larger the value of plink and/or the larger the total number of nodes in the 

network, the more dense is the network as well as the more closer are the degrees of the vertices 

to the average node degree (observed based on the reduction in the standard deviation of the node 

degrees with increase in the plink values and/or with increase in the total number of nodes; see 

Figure 3). We conduct simulations with 100 nodes and 200 nodes; the plink values used are 0.05, 

0.10, 0.15, 0.20 and 0.30; the pdiff values used are 0.05 to 1.0, in increments of 0.05; the values for 

the number of early adopters are 1, 10 and 20. We run 200 instants of the simulations for each 

combination of values for the above parameters (total # nodes, plink, pdiff and # early adopters) and 

average the results to measure the following two metrics (95% confidence interval): (i) 

Probability of successful diffusion and (ii) Average number of rounds per successful diffusion 

attempt. For each combination of values for the above parameters, the probability of successful 

diffusion is the number of simulation runs leading to a successful diffusion divided by the total 

number of simulation runs (which is 200 runs); for each such successful diffusion attempt, we 

count the number of rounds it takes for the information originating from one or more early 

adopters to reach all the nodes in the network and average the values for the number of rounds 

across all the successful diffusion attempts.  

 

   
            plink = 0.05                     plink = 0.10                    plink = 0.15                    plink = 0.20                     plink = 0.30 

Number of Nodes in the Network: 100 

 
 

   
            plink = 0.05                     plink = 0.10                    plink = 0.15                    plink = 0.20                     plink = 0.30 

Number of Nodes in the Network: 200 
 

Figure 3: Degree distribution for a random network graph and the variation in node degrees 

 

      
               # early adopters: 1                                 # early adopters: 10                                 # early adopters: 20 

Number of Nodes in the Network: 100 

 

      
               # early adopters: 1                                 # early adopters: 10                                 # early adopters: 20 

Number of Nodes in the Network: 200 

 

Figure 4: Probability of successful diffusion for a random network graph vs. # Early adopters 
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The most interesting and significant observation from the simulation results is with regards to the 

probability of successful diffusion for the three different values for the number of early adopters 

for a given number of nodes in the random network graph. Though for a given plink value and 

number of nodes, the probability of successful diffusion increases with increase in the pdiff value, 

the nature of increase remains the same, irrespective of the values for the number of early 

adopters. For a given plink, pdiff and number of early adopters, we observe the probability for a 

successful diffusion to increase with increase in the total number of nodes in the network. Except 

for the plink value of 0.05 for 100 nodes random network, the nature of increase in the probability 

of successful diffusion for a given plink and number of nodes in the random network increases in a 

“concave down increasing pattern” with increase in the pdiff value. For a given pdiff, we also 

observe the probability of successful diffusion to significantly increase (more than an exponential 

increase) as we increase the plink values in increments of 0.05, especially for plink values of 0.15 

and above. After a while (plink values of 0.30 or above), we observe the increase in the probability 

for successful diffusion to saturate and hence we do not present the simulation results for plink 

values above 0.30.  

 

      
               # early adopters: 1                                 # early adopters: 10                                 # early adopters: 20 

Number of Nodes in the Network: 100 

 

      
               # early adopters: 1                                 # early adopters: 10                                 # early adopters: 20 

Number of Nodes in the Network: 200 

 

Figure 5: # Successful rounds per diffusion for a random network graph vs. # Early adopters 

 
With regards to the average number of rounds per successful diffusion attempt, for a given 

number of nodes in the random network, # of early adopters and plink, we observe the metric to 

exhibit a “concave up, decreasing” pattern of decrease with increase in the pdiff values. Though as 

expected, for a given pdiff, plink and the total number of nodes in the network, the average number 

of rounds per successful diffusion attempt decreases with increase in the number of early 

adopters, the nature and magnitude of decrease is not as high as the decrease with increase in pdiff 

(for a given plink, initial # responders and the total number of nodes). Even for a lower number of 

early adopters, we observe the average number of rounds per successful diffusion to saturate (to 

the lowest value incurred for a particular value for the total number of nodes) for pdiff values 

around 0.30, indicating that it may not be necessary to operate with a significantly larger number 

of early adopters to decrease the average number of rounds per diffusion in a random network. 

We do not report the average number of successful rounds per diffusion for plink and pdiff values 

that do not incur any successful diffusion in the simulation runs. 

 

4. RELATED WORK 

 

The contagion model [9] has been the most commonly used model for diffusion in complex 

networks. According to this model, given two choices of behaviors (say A or B), the early 

adopters are considered to choose one of the two behaviors (say A), while the rest of the nodes 

choose the other behavior (say B). Diffusion spreads in rounds, wherein each round, a node 
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decides to change its behavior if a majority of its neighbors (a typical value for the degree-based 

diffusion threshold) have a behavior different from itself. The contagion model is more relevant 

for networks with scale-free form of degree distribution and the early adopters are typically nodes 

with larger degree [10]. The diffusion model considered in this paper is different from the 

contagion model and is more applicable for networks in which the degree distribution is normal 

(see Figure 3). We consider diffusion to happen with a certain probability on any link; this way, 

nodes that are not well-known to each other may still have some form of association between 

them and be willing to spread the information with a certain probability. While the contagion 

model required the initial responders to be a non-negligible fraction of the total number of nodes 

in the network for a successful network-wide diffusion, we observe the probabilistic diffusion 

model for random networks to be independent of the number of initial responders for successful 

diffusion.  

 

The probabilistic diffusion model considered in this paper is also different from that of the SIS 

(susceptible-infected-susceptible) and SIR (susceptible-infected-removed) models for diffusion. 

Even though both the SIS and SIR models [1] are probabilistic models for diffusion, the infected 

nodes could again change their state (to either susceptible, as in the SIS model or removed, as in 

the SIR model); our probabilistic model of diffusion uses the infected nodes to become the 

candidate nodes for diffusion in the subsequent round and these nodes continue to stay infected 

throughout the network lifetime. The SIS and SIR models have been also observed to be 

dependent on the number of early adopters on the network they are applied on [4].  

 

In [6], the authors propose a probabilistic approach of social influence diffusion model with 

incentives (as uniform diffusion has been observed to be no longer valid in social networks and 

high degree nodes need not be the most influential in all contexts [12]); the authors propose an 

influence diffusion probability for each node, instead of uniform probability, and categorize 

nodes into two classes: active and inactive; the active nodes have chances of influencing the 

inactive nodes, but not vice-versa; diffusion still happens based on a system-wide threshold. Our 

probabilistic diffusion model is link-based (could be even run with different diffusion probability 

for each link) and does not use any node-based system-wide threshold to regulate the diffusion.  

To the best of our knowledge, ours is the first such probabilistic model of diffusion proposed for 

random networks for which there exists a link between any two nodes with a certain probability; 

diffusion happens across each link with a certain probability and without the use of a diffusion 

threshold (that depends directly or indirectly on the degree of the nodes, as in most of the 

previous works). The observation that under the above probabilistic diffusion model, “the 

probability for a successful diffusion in a random network does not depend on the number of 

initial responders,” has been hitherto not reported in the literature. 

 

5. CONCLUSIONS 

 

The high-level contribution of this paper is the application of probabilistic diffusion on random 

network graphs and the observation from the simulation results that for a given random network 

and probability of diffusion on a link, the probability for successful diffusion does not depend on 

the number of early adopters. We also observe that for moderate-larger values of probability of 

diffusion on a link in a random network, it may not be necessary to operate with a larger number 

of early adopters to decrease the average number of successful rounds per diffusion attempt. The 

results observed in this paper are different from the results observed for the contagion as well as 

the SIS and SIR diffusion models – all of which report that there exists a threshold number of 

early adopters needed for a successful diffusion for complex networks. The results presented in 

this paper indicate that at least for random networks, a probabilistic diffusion model – like the one 

described in this paper – could lead to successful diffusion that is independent of the number of 

early adopters. We opine that the research presented through this paper could pave way for 
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further studies on probabilistic diffusion in random network graphs and other forms of complex 

network graphs as well as for real-world network graphs. 
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