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ABSTRACT
The purpose of this paper is to explain the importance of randomness in data analysis. We point out 
the difference between random data and random selection. The scope of this paper is limited to 
randomness in discrete data. We explain the various tests used by NIST as the basis to understand 
randomness testing in discrete data. We also present an indirect test for randomness by relying on 
trend testing. Randomness is defined as lacking predictable pattern. Predictable pattern may be seen 
through trend. We argue that if there is a significant trend, the series is not random and vice versa. 
In this paper, we claim that trend test may be used an indirect test for randomness.
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1.0 INTRODUCTION
1.1 Introduction to random data and random selection
Random selection deals with the sampling method. The misunderstanding here is that many 
researchers incorrectly believe that random selection produces random data. A sampling method 
does not produce the type of data nor can it change the nature of the data. If the data is random, no 
matter what kind of sampling method is used, the data would remain random. This randomness may 
be revealed through random testing. On the other hand, if the data is non-random, no matter what 
kind of sampling method is employed, the data would also remain non-random. For that reason, the 
use of “random sampling” method does not guarantee that the data would be random. The benefit of 
random sampling is to avoid selection bias. Selection bias occurs when each element of the 
population does not have equal chance of being selected. The statement “equal chance of being 
selection” coincidentally is a common definition of random selection; thus, to avoid the accusation 
of selection bias, researcher tends to claim to have used random selection.

In order to impose equal probability selection or random selection, it is necessary that the 
population size be known. This requirement is impractical because in most circumstances in social 
science, the population size is either unknown or if it is known, it is imprecise because population is 
dynamic, i.e. drop out, death, new birth and migration. Therefore, true random is not possible. The 
most that one can do is to “assume” that the population is non-dynamic, and the selection is made as 
if the population is finite. In such a case, the so-called random sampling is a mere presumption. The

63



International Journal of Research & Methodology in Social Science
Vol. 4, No. 1, p.64 (Jan. – Mar. 2018). ISSN 2415-0371 (Online)

www.socialsciencepublication.com
sampling made is no more than convenience sampling; it is only through self-fulfilling claim that it 
is said “randomly selected.” Such a claim should not escape heighten ethical scrutiny. More 
attention should be given to randomness of the data, not how the data was selected.

Random data set means that the statistical test verifies that the data elements are random. 
The clam to randomness is substantiated through statistical test. The conclusion made is different 
from what had been said in the case of random selection. The claim by random test states that “the 
data came from a random process.” It is this random process that is the holly grail in statistics 
because common statistical test requires that the data be random. “Be random” here means that the 
data comes from a random process, and random process means that the condition from which the 
data was sampled had been random. This is a completely different language from making a claim 
that the sampling method used was random selection. The focus on the randomness of the data 
under statistical tests does not give homage to the sampling method. As for selection bias, it would 
also show in the test as non-randomness in the data if there was indeed bias. Even if there is an 
alleged or suspicion of selection bias, if the data is indeed random, as verified by one or more of 
statistical tests, then such allegation and suspicion is vitiated.

1.2 Measurement of randomness
The objective of this section is concerned with the measurement of randomness. The methods used 
in the measurement of randomness are many. They can be categorized into data types, namely: (i) 
univariate, (ii) bivariate, and (iii) times series. In univariate data, the numbers come in one sequence 
or string. The test is imposed upon the string to verify whether the string or sequence is random; if 
so, it is said that the numbers come from a random process. Generally, in bivariate analysis, the 
sequence is dichotomize into (1, 0) where 1 is defined as category of interest or “success” and 0 is 
the category of non-interest of “failure.” The dichotomy either comes from a true binary data in a 
form of (Yes | No) or it is made “dichotomous” through the application of mathematical expectation 
where the expected value or the mean is used as a separator dividing the sequence of numbers into 
two groups: below the mean and equal to and greater than the mean.

In the bivariate case, the data comes from two data array that may be categorized into array 
X and array Y. In such a case, the proof for randomness is verified through proving that iX  is 
comprised of independent elements nxxx ,..., 21 . Similarly, the same test is used to verify that the 
array iY  also contain independent elements of  nyyy ,..., 21 . Moreover, a third test in bivariate is to 
attest that iX and iY  are independent, i.e. the occurrence of iY  does not depend on iX  so as to 
make the value of iY  predictable with a given value of iX .

A third for of number sequence used is randomness analysis is time series data. Time series 
are bivariate data consisting of iX  independent variable and iY  dependent variable where the 
relationship between these two variable may be expressed by the regression model, thus: 

itn XBXtX   ...)( 110 .
In this model, it is no longer of interest as to the causality of iY , i.e. whatever explains the 

occurrence of iY  is no longer the object of analysis. Whatever the causality or relation of iX to iY  
is, it is taken for granted. Thus, whether the value of iY  is produced, treat such series of events: 

nyyy ,...,, 21  which occurs at time nttt ,...,, 21  respectively as )()()( ,...,,
2211 nn tXttXttXt yyy   

and thus the event is listed simply as: )(),...,(),( 21 ntXtXtX . This is called time series data array. 
In this scenario, the test for randomness is to look for the independents among the error term of 
each )( itX . If the series of ni  ,...,,: 21  are statistically independent, it is said that the arrays of 

)( itX  are independent and, therefore, are random. Under these circumstances, autocorrelation test 
is used as a tool for verifying randomness among the time series )( itX .
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2.0 Trend tests as indirect testing for randomness
If a common definition and characteristic of randomness is the lack of predictable trend or pattern, 
the most practical place to start the discussion of randomness is trend analysis.

One cautious note about trend test, the acceptance or rejection under the trend test is based 
on statistical significant test, i.e. the trend may exist but it is not considered statistically significant. 
Under this standard, the definition of randomness is relaxed because for cases where the trend test 
rejects, they may still manifest some kind of patterns, but that pattern does not pass the statistical 
significant test. This means that if the confidence interval of 0.95 is used, a pattern that would pass 
at 0.90 would be rejected at 0.95 as ‘non-significant trend.’ This does not necessary mean that 
pattern recognition of a data set of 0.90 trend display does not show a pattern. In fact, a pattern 
failing to reject a null hypothesis using 0.95 confidence interval may still be a “trend” or “pattern” 
but just does not pass 0.95 confidence interval test.  For this reason, the various trend tests are not 
definitive test to define whether the data is random for failing to manifest trend pattern. 
Nevertheless, the introduction of trend test puts randomness in perspective to the extent that trend is 
defined as a recognizable pattern and that randomness is defined as the lack of recognizable pattern.

There are three trend tests commonly used in the field, namely (i) reverse Arrangement Test 
(RAT), (ii) Military Handbook Test (MHT), and (iii) La Place Trend test (LTT). The RAT method 
is given by:

( 1 0.50
4

(2 5)( 1)
72

r rR
Z

r r r

   
 

 
(1)

where R = reversal counts, and r = repair time. The decision is governed by the following tables 
depending on whether we are looking for improving trend of degrading trend. The first type of trend 
is called an improving trend. The critical value of improving trend is given by the table below.

Table 1: One-sided test for improving trend
Repair: r R(90%) R(95%) R(99%)
4 6 6 -
5 9 9 10
6 12 13 14
7 16 17 19
8 20 22 24
9 25 27 30
10 31 33 36
11 37 39 43
12 43 46 50
Source: http://www.itl.nist.gov/div898/handbook/apr/section2/apr234.htm

A second scenario of trend is a degrading trend where the pattern indicates that the process 
is deteriorating or “things are getting worse.” The deteriorating trend uses the following critical 
values for testing its significance.

Table 1: One-sided test for degrading trend
Repair: r R(90%) R(95%) R(99%)
4 0 0 -
5 1 1 0
6 3 2 1
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7 5 4 2
8 8 6 4
9 11 9 6
10 14 12 9
11 18 16 12
12 23 20 16
Source: http://www.itl.nist.gov/div898/handbook/apr/section2/apr234.htm

The MHT approach is used when the values comes from a system that is described by Power 
Law. The Military handbook method is given by:
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where 1 2: , ,...,i endT T T T  are repair time counts. It is equivalent to r in the RAT equation above.
The third type of trend test is called the Laplace Trend Test. The LTT method is used when 

the data comes from an exponential system. LTT is given by:

1
12

2

n
end

i
i

end

Tr T

Z
rT



  
 




(3)

If the data set shows that there is a significant trend under any of the three tests mentioned 
above, it is conclusive that the data is not random. The use of the trend test may be proach to verify 
if the data is random since “randomness” lacks predictable pattern. 

3.0 NIST approach to randomness testing of discrete data
The national Institute of Standards and Technology (NIST) is an agency under the U.S. Department 
of Commerce (Ministry of Commerce). The mission of NIST is to “[p]romote U.S. innovation and 
industrial competitiveness by advancing measurement science, standards, and technology in ways 
that enhance economic security and improve our quality of life.” (Perry, 1953; p. 123). In random 
testing, NIST offers 15 different tests to verify whether a sequence of number is random.

The 15 tests offered by NIST is based on binary digits or categorical data test based on (1, 0) 
discrete data. Although these 15 tests are considered sufficient for binary data, they are not adequate 
to deal with continuous data and times series data. For this reason, continuous and tome series data 
are treated outside of NIST’s 15 tests. In this paper, we explain the first three of the fifteen tests in 
the NIST battery of test for randomness. The National Institute of Standards and Technology 
(NIST) offers a battery of 15 tests to verify randomness. These 15 tests are:

1. Frequency (monobit) test;
2. Frequency test within block;
3. Runs test;
4. Tests for the longest-run-of-ones in a block;
5. Binary matrix ranked test;
6. Discrete Fourier transform (spectral) test;
7. Non-overlapping template matching test;
8. Overlapping-template matching test; 
9. Maurer’s “university statistical” test;
10. Linear complexity test;
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11. Serial test;
12. Approximate entropy test;
13. Cumulative sum test;
14. Random excursion test; and
15. Random excursion variant test.

In order to use the random verification method advocated by NIST, the data has to be 
discrete or categorical comprising of (1, 0). If the data comes from a continuous scalar form, such as 
a survey instrument answer choice of: (0, 1, 2, 3), it is still possible to make the continuous scalar 
into a discrete form by separating the zero and non-zero into two categorical that could then be 
mapped into the form (1, 0) required by NIST. For instance, (0, 1, 2, 3) could be re-categorized into 
discrete form by equating {1, 2, 3}, non-zero values, to 1 = 1, 2 = 1 and 3 = 1. The data set now 
becomes (1, 1, 1, 0).

In the alternative, other methods for random testing that does not fall under the 15 methods 
proposed by NIST could accommodate continuous data set without having to go through 
discretization process described above. For instance, the adjacent test deals with non-categorical 
data set on “as is” basis with the assumption that there is an assumed cloud within which the 
randomness is defined. If the test shows that the observed score falls outside of the cloud, it is 
considered non-random. The “cloud” is defined by an interval consisting of the lower and upper 
values. It is said that, if the observed value under the adjacent test falls below the lower limit, it is 
conclusive that the data comes from a non-random process. However, if the values fall outside of 
the “upper limit,” it is not inconclusive in making the conclusion whether the data comes from a 
non-random process.

In both cases, NIST’s approach and other approaches, it is important to note that the study of 
randomness focuses on the “data”, i.e. the sample, not the method by which the data had been 
selected, i.e. “sampling method.” This distinction, and the point where the emphasis is put when 
deciding on randomization, underscores the ineffectual insistence on random selection. Even if the 
data had been produced by random selection, if the data fails the random test that uses the data as 
the testing value, random selection could produce a data set that is non-random. The only answer 
that random selection could provide is that the selection process is non-biased. This rationale for 
random selection is still weak. Assume that the data is random; no matter how the data is selected 
the sample would still show that it is random data. That is, if by its nature the data is random, even 
if a convenience sampling method is used to select the data, it would still produce a random data. 
The nature of the data does not change as the result of the sampling method.

Numerical examples will be given to illustrate each test. In cases where the original data is not 
binary (1, 0) or (Yes | Not), the data string will be transformed into (1,0) using the expected value as 
the reference point, i.e. if 0 ix X   then 0 and iX x , or simply:

( )
0      Otherwise

iX x
p X

 
 


(4)

In the second case where bivariate X and Y are involved, autocorrelation and correlation 
coefficient tests will be used.

In the study of randomness, it is important to make a distinction between sampling method 
and data from the sample. The random test is the test of the data in order to answer the question of 
whether “the data came from a random process?” This is different from random sampling. Random 
sampling is a sampling method which is classified as equal probability sampling. It is given by:
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if ( )( )

0          otherwise

N
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(5)

This is also called “simple random sampling.” The assumption here is that if the sample is 
selected by a random sampling method, where all elements in the population have equal chance, 
data bias would not taint research. However, in real life, random sampling may not always be 
appropriate or available. The circumstances under which the data was collected, for instance a crime 
scene with limited sample availability, or in a situation where data accessibility is limited, random 
sampling may not be the best choice. In addition, one requirement of simple random sampling is 

that the population size must be known hence the term 
1N

n


 
 
 

. However, if the population is 

dynamic, i.e. changing and the drop out of existing elements or addition of new elements changes 
and shifts population size, then simple random sample may not be possible. In most cases, non-
equal probability sampling is the common option in sampling method of the Midzuno 
scheme.(Sampath, 2005; pp. 73-74; see also Midzuno, 1952; pp. 99-107) For instance, the non-
equal probability sampling of the Midzuno scheme is given by:

ˆ 1 if ( )
( )

0          otherwise

X n s n
NX

P sample
n


     

 


(6)

Where X̂ = unbiased estimator of population total: 



si

iX
n
NX̂ ; X = population total of the size 

variable x  in random sampling (Sampath, pp. 73-74).
It may be argued that even if the population size is unknown (non-finite), it may be capable of being 
estimated. In Sampath, the estimation of the population, under the Horvitz-Thompson estimator 
method, is explained thus:

“Theorem 1.6 The Horvitz-Thompson estimator 
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Squaring both the sides and taking expectation we get
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Hence proof. ” (Samplath, pp. 14-19).

where the inclusion indicator was defined as (Sampath, p. 4):



 


otherwise

NiisifI
sI i 0

1,......
)( (7)

The inclusion probability is defined as:





is

i sP )( and 
 jis

ij sP
,

)( (8)

The “approach”, i.e. Horvitz-Thompson method (Hovitz, 1952; pp. 663-6) as discussed in 
Sampath, is not helpful in obtaining the total population N . Although it provides series of steps in 
mathematical proof, it presents little practical value. Therefore, it is necessary to look for other 
practical methods to estimate the population size. Without the complicated approach displayed by 
Sampath, the Horvitz-Thompson method could be explained simply as a method to estimate the 
mean and total of a superpopulation in a stratified sample. This point (stratified sampling) was not 
properly explained by Sampath when the Horvits-thompson was introduced. The Horvits-
Thompson was introduced as “the most popular … estimator for population total …” when in fact it 
should have been qualified as an estimator for population total in stratified sampling (see Sampath, 
pp. 4-8). In so doing, the inverse weighting is used to account for the different proportion found in 
each strata of the population. Let nYi ,...,2,1  be an independent sample from n  taken from the 
sample space of nN   where each in  is a distinct stratum with the common mean of  . Under this 
method, it is further assumed that there is a probability that each random item in in  will be included 
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in each stratum is called inclusion probability defined as i . Under this set up, the Horvits-
Thompson estimator is given by:





n

i
iiHT YY

1

1ˆ  (9)

where Ŷ = estimated superpopulation; the subscript HT = Horvitz-Thompson;  = inclusion 
probability; and iY = independent sample, i.e. strata, nYi ,...,2,1  taken from the sample space of 

nN  : .
From (3.6), the estimated mean is given by:

HTHT YN ˆˆ 1 (10)

Which means that HTŶ  is a portion of the total population or 
N

YHT
HT

ˆ
ˆ  . By substituting (3.6), 

statement (3.7) becomes:

i

i
HT N

Y


 ˆ (11)

The process by which the estimated mean HT  may be thought of as an estimate obtained 
through series of bootstrap or Jackknife resampling technique (viz. Roderick and Rubin, 2002).

There are several tools used in population estimates; these methods can be classified into 
two types: (i) direct and (ii) indirect methods for estimating population size. The direct method is 
exemplified by the Release-Recapture method (RR). The RR method is practical for non-human 
population, i.e. capture, release, and recapture animals in the while. For human population, this 
method may be impractical because it is not easy to “tag” humans. The RR method is defined as:

(Total captured)(Number marked)ˆ
Total caputred with mark

N  (12)

This method is known as direct method because it involves the use of actual counting of the 
population. The estimate of the population size is based on these trials of capture, release, and 
recapture. In social science, this capture-release-recapture method may not be feasible because it is 
not easy to “mark” or “tag” human beings. However, in specific cases, such as in marketing 
research or tracking customers, the method may be a useful tool for determining customer base or 
market size. For instance, tracking customers in a department store by telephone numbers or 
membership card is an equivalent of what zoologist does in the wild by capture-release-recapture 
subjects.

The second direct method of estimating population is to work with known population size 
from the prior period and adjust it for the number of new births, deaths and net migration. This 
second method is given as:

, , ,t n t t t n t t n t t nP P B D M       (13)

where
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t nP  = change of population from one period to the next; tP = population size of the last period;

,t t nB   = live birth that occurs during time between t  and t n ; ,t t nD  = death during the 
interval; and ,t t nM   = net migration, i.e. , , ,t t n t t n t t nM I O    

For an indirect method of population estimation is the census method, the formula for the 
census method is given as:

 1 2 1est
nP P P P
N

   (14)

where estP = population estimate; n = number of months from 1P  census date of the estimate; 
N = number of months between census period; 2P = population size in the last census; and 1P = 
population in the second to last census.

From the two methods shown above, population size is not easily determined. Under the 
first method, capture-tag-release-recapture may not be feasible in human population study unless 
the population is in a controlled environment, such as club card scheme used in supermarket to 
track customers. The second method relies on prior population estimate. This method is feasible 
only if prior population size is known. In random sampling, it is necessary that the population size 
be known because random sampling is an equal probability sampling method. This sapling method 
requires that the population size be known in order to determine the probability of each element in 
the population. When the population size is not known or is uncertain, then equal probability 
sampling may not be feasible. Therefore, random sampling is equally not feasible in most 
circumstances. Moreover, random sampling serves one purposes: preventing selection biased. As 
for randomness testing, it is the data not the sampling method that matters.

The objective of the tests for randomness in this writing are not concerned with sampling 
methodology, but are concerned on the data itself. The query is “whether the data comes from a 
random process?” these two issues: random sample and random sampling in relations to data 
classification is summarized in the table below.

The difficulty presented in this second method is the use of the prior population size. When 
the population is dynamic, this number can only be an estimate. If time is allowed to lapse and the 
counting be affected, it is possible to count the population or determine the population size. 
However, without the benefit of a prior count, the population size may be difficult to determine. In 
some cases, researchers are faced with unknown population size (non-finite population).

Table 3: Data Produced by Random and non-Random Sampling Methods
DATA SAMPLE Nota Bene

SAMPLING Random Non-Random
Random RR RN
Non-Random NR NN

Random sampling does not 
guarantee a random data.

The ideal result of using random sampling method to obtained random data (RR) may not be 
achievable. Even if the sampling method is random, if the data itself comes from a population that 
is not random, then RN will be produced. For example, if the survey asks about a sensitive issue 
where members of the public hold different opinions on the issue, i.e. “Do you believe in capital 
punishment? In this case, the dispersion of the opinion may be wildly and is unpredictable; thus, the 
data is random (RR). Does it mean that the research is good? No, it means that the question solicits 
divisive responses.

Under the same sampling method: simple random sampling, the data may show non-
randomness. For example, in public opinion survey, the selection method may be a simple random 
selection. However, if the population holds the same or similar opinion on a particular issue, i.e. 
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“Should there is a free and fair election?” The answer would most likely be {Yes}. In this case, the 
data is not random. Random by a common definition is lacking predictability. In this case, there is 
predictability. Does it mean that the research is bad? No, it just means that the data is not a random 
number set.

Other two scenarios: NR and NN may also occur. These different types of data results are 
not indicative of the quality of the research. Therefore, the use of sampling method as the lead 
indicator for testing randomness is not advisable. The focal point of the examination should be the 
data itself. Answer the query” “did the data come from a random process?” is more interesting than 
asking: “was simple random sampling method used?” The focus of this test is on the testing for 
“randomness in data” not in the sampling method.

4.0 UNIVARIATE DATA
4.1 Randomness in univariate case
In univariate case, the data would have to be codified into binary data form, i.e. 1 and 0 in a (1, 0) 
string. Univariate case draws on the battery of random tests offered by NIST. NIST battery of tests 
uses (1, 0) data string is the starting point to verify randomization. In cases where the data is in a 
form of categorical data, i.e. (Yes | No), the conversion into (1, 0) is a straight forward matter, i.e. 
(Yes = 1, No = 0). This type of binary data follows binomial distribution. The point of analysis may 
begin with the Laplace rule of Success to determine pointwise probability. The success is equated to 
Yes and Yes is equated to 1; the category No = 0. The probability of success is given by:

1( )
2

sP s
N





(15)

where s = number of success or the counts of score of 1, and N = total number of observations. The 
probability of non-success or failure is given by:

( ) 1P f p  (16)

By convention, the probability of success is denoted as p and the probability of failure (non-
success) is denoted as q . The pointwise probability forecast is given by:

!( )
( )! !

n n XnP X p q
n X X




(17)

The test statistics follows the Z-equation, thus:

bin

X p
nZ

pq
n


 (18)

Assume that the data set is comprised of an answer choice in a scalar form: (0, 1, 2, 3). 
Generally, this form of answer score card is treated as a continuous data and, thus, continuous 
probability applies. However, in this case, the scale will be treated as dichotomous data (discrete) 
by dividing the score into zero and non-zero. The zero (0) will be counted as zero and the non-zero 
scores will be counted as 1. Thus, the scale is converted thus: (0,1, 2,3) (0,[1,1,1, ]) . For example, 
if there are five questions where the answer were: (2, 3, 2, 0,0). The score of non-zeroes were 
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(2,3,2). These non-zeroes are converted to (1,1,1). Now the new data is in the form of (1,0) where 
there are through counts of 1 and two counts of 0 or (1,1,1,0,0). With this data form, the value p 
may be determined, thus:

1 3 1 4( ) 0.57
2 5 2 7

sP s
N

 
   

 
and ( ) 1 1 0.57 43P f p      or 

0.57p   and 0.43q  .

With known p and q, the test statistics for any give number of X may be determined. Assume that 
one wants to predict the probability of 3X  , the probability be determined, thus:

5 5 3 5 2

5 2

! 3! 6(3) 0.57 0.43 0.57 0.43
( )! ! (5 3)!3! 2(6)

6 0.57 0.43 0.50(0.06)(0.18)
12
0.50(0.011)
0.0055

n n XnP p q
n X X

   
 

 




The test for statistical significance follows:

3 0.57 0.60 0.57 0.03 0.035 0.1355
0.22140.57(0.43) 0.2451 0.4902

5 5

bin

X p
nZ

pq
n

  
     

where (0.1355)Z  is equal to 0.556 or 55.60% chance of happening. The question then remains: Is 
this data string (1,1,1,0,0)  random number or does the data set (1,1,1,0,0) come from a random 
process? Or does the number come from a random selection?

The question deals with two completely different things. “A number or data coming from a 
random process” focuses on the data itself. That the data comes from a random process is an 
inference made after having completed a random test, i.e. NIST or other forms of tests to verify 
whether the data are random numbers. The null hypothesis is generally stated that the number 
comes from a random process, if there is a statistical significance finding, it is said that the number 
did not come from a random process. The rationale for this posture of the null hypothesis is that the 
term “randomness” has a functional equivalence of equal probability of elements distributed within 
the sampling space. Thus, if all elements of the population in the sampling space have equal 
probability of being selected, then it is normally distributed within that space. Within such a space, 
if the confidence interval is set at, say 0.95 or 0.99, any elements of the data found outside of this 
predetermined C.I., it may then be concluded that they are non-random because if they are random, 
they would have been fallen within the C.I. region under the distribution curve.

The second part of the question asks whether the data “comes from a random selection.” 
This second part of the question may not have a definite answer because a selection method or 
sampling method does not determine the type of data being selected. For instance, if the process 
under which the sample has been draw was random, i.e. the data was randomly distributed a 
sampling method will not change this nature of the data. That is to say if the data is randomly 
distributed, a non-random sampling method would still produce a random data and a random 
sampling method would also produce random data. The sampling method is not a determining 
factor. It is the nature of the data res ipsa that defines whether the data is random.
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4.2 Monost bit test
Monobit test is the first of the 15 binary test for randomness offered by NISt. It is based on 
frequency count. In this test, there is one sequence or one block where 1M  consisting of data 
string of 1 and 0. The objective is to compare the string of 1 to the string of 0 and determine 
whether there is a sensible pattern. If there is a pattern, it means that the sequence is not random. 
Since the sequence is comprised of 1 and 0, it can be model by a one-dimension random walk. 
Assume that p is the probability of 1 and pq  1 . The total probability is given by 1 qp . 
Asume further that the taking of steps walking to the right is 1n  and the steps taken to the left is 2n . 
Thus, the total steps taken would be Nnn  21 . Therefore, the probability of taking 1n  steps to 
the right is given by:

The monobit test is a test based on binomial distribution because it deals with binary data: 
(1, 0) which falls within the category of Bernoulli random variables. The notation used for even 
occurrence is iX ; the string of these event which is called data string may be written as: iX   
where 2 1X   . The sequence is given as 1 2 1 2, ,..., 2( , ,..., )n n nS X X X n     . In binary data 
analysis, it is necessary to designate the event of interest or category of interest. In the monobit test, 
the category is interest is 1. The probability of 1 in any time sequence is ½. If the number of 
observations is sufficient large, according to De Moivre-Laplace theorem, (Feller, 1968; vol. 1, sect. 
VII.3) the distribution of the binomial sum will approximate normal distribution. Recall that the 
Moivre-Laplace theorem is given by:

1 / 21lim
(1 ) 2

b
xn

n
n a

S npP a b e dx
np p 





 
   

  
 (19)

where , { }a b R    and a b  because a  is the beginning point and b is he ending point in the 
integration. The convergence in a and b is uniform.

If ,y n A A  and the probability of the event lies between 0 and 1: 0 1p  ; this 
condition defines:

( ) (1 )k y np y np p     (20)

Therefore,

( )

0

1lim (1 )
2

bk y
j n j c

x j a

n
p p e dx

j 
 

 

 
  

 
  (21)

where …
a = 
b = (1 )np y np p 

2( )
2 (1 )

z npc
np p






The monobit test is based on the Central Limit Theorem for a random walk: 
1 2, ,...,n nS X X X . The CLT is given by:
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2 / 21lim ( )
2

z
un

n

SP z z e du
n 



 

     
 

 (22)

If (z) is positive, the probability of the random walk is given by:

2 ( ) 1nS
P z z

n
 

    
 

(23)

4.3 Frequency (Monobit) test
The frequency test attempts to verify whether the data string is random or came from a random 
process by looking at the ratio of 1 and 0 to the entire data string.

1

n
n i

i
S X


  (24)

where ( )iX a b   and that 1ia   , 1ib    and 1 0  . In the example, the string consists of 
(1,1,1,0,0); thus, 1 1 1 1 3ia       and 1 0 1, 1      because there are two counts of zero. 
Therefore, 1 2ib     . Now, the value for nS  may be easily determined thus: 3 ( 2) 1nS     . 
With known nS , the observed ratio of 1 may now be determined: obsS  which given by:

n
obs

SS
n

 (25)

The value for obsS  is 1/ 5 1/ 2.24 0.4464obsS    .

The test statistic of the frequency or monobit test is given by:

2
obsSZ  (26)

From known obsS  the calculation for monobitZ follows: 0.4464 0.3157
1.41422

obsSZ    . Looking at 

the Z-table, find the corresponding p-value for (0.3157)Z , the value is 0.626. Under 0.95 
confidence interval, this number is within the 0.95 confidence interval; there is no statistical 
significance. Recall that the hypothesis formulation under the frequency or monobit test is:

0 : (1 ) 1.65H Random  

: (1 ) 1.65AH Non Random   

The null hypothesis is based on: /ns S n . This is compared to the observed value: 

1 2( ) , , ... .ns obs X X X n    . The p-value or the area under the curve, bounded by the lower 
and upper bounds of the confidence interval (CI), is given by:
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   2[1 | ( ) | ] ( ) /pValue s obs erfc s ob n   (27)

The notation erfc stands for the complementary error function which is given by:

22( ) u

z
erfc z e du




  (28)

In this case, 1 0.626   which is less than 1.65. Therefore, 0H  (null hypothesis or the 
assumption of randomness) cannot be rejected or the number string (1,1,1,0,0) came from a random 
process. Note that the position of the null hypothesis is assuming that the data comes from a random 
process. The alternative hypothesis is to prove otherwise. This is counter intuitive if one wants to 
prove randomness and the assumption of the alternative hypothesis is “non-randomness.” NIST 
recommends that the sample size for this test is 100n  . In the example above, only five 
observations were used.

4.4 Frequency test within block
In the first case of frequency test, the entire string of data is treated as one block (M); thus, Mn  . 
In the second case of frequency test: frequency test within block, the data string is segmented into 
M blocks; each M has peculiar patterns which is illustrated by the Aperiodic Templates below for a 
small value of pattern m where 52  m .

2m 3m 4m 5m

10
01

110
100
011
001

1110
1100
1000
0111
0011
0001

11110
11000
10100
11010
11100
01111
00111
01011
00101
00011
00001

Source: Barbour, and Holst, L., and Janson, S. (1992). Poisson Approximation. Oxford: Clarendon 
Press. Sects. 8.4 and 10.4. Cited in Rukhin A., Soto J., Nechvata J., Smid M., Barker E., Leigh S., 
Levenson M., Vangel M., Banks D., Heckert A., Drat J. and Vo S. (2010). A Statistical Test Suite 
for Random and Pseudo-Randomg Number Generators for Cryptographic Applications. National 
Institute of Standards and Technology (NIST); technology Administration, U.S. Department of 
Commerce.  Special Publication 800-22, rev. 1a by Lawrence E. Bassham III, (April 2010). p.3-10.

The “frequency test within block” is still dealing with binary digit (bit). A bit is defined as a 
block of data that conveys information. Generally, the block is comprised of values of 1 and 0. A 
block of (1, 0) combination is known as a bit. Eight bits equals one byte. Hence, kilobyte (1,000 x 8 
= 8,000 bits), Megabytes (1,000,000 8 = 8,000,000 bits), and gigabytes (100,000,000 x 8 = 
8,000,000,000 bits) are referring to the information in binary form of a unit length of eight bits.
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The first frequency test under NIST scheme is called monobit test because it involves only 

one block of bit. Each block is called M-bit block. In the frequency test, the block is a single block 
or the block size is 1M . In “frequency test within block,” the M-bit block is more than 1, i.e. 

1M . The purpose of the frequency test within block is to verify whether the frequency of ones 
within the M-bit block is approximately 2/M  because the assumption of randomness assumes that 
the frequency of ones is approximately 2/M . The following definitions are provided:

 = bit sequence generated by the random number generator (RNG) or pseudo-random 
number generator (PRNG);
M = bit block; and
n = length of the bit string.

The test statistic used for verification is the chi-square test. The chi-square measures the 
ratio of the frequency of ones observed and comparing it to the expected ratio---which is 
approximately 2/M  or half of the bit block. The chi-square test statistic is given by:

 





K

i i

ii
N

Nv

0

2
2


 (29)

Alternatively, equation (2.1) is simplified to:










 

N

i
M

1

2
2

2
14  (30)

where the term i  is defined as:

M

M

j
jMi

i






 1
)1(

 (31)

The p-value for the test is determined by:

















 

  

2
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2)2/(
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(32)

This is known as incomplete gamma function.
Assume that the following string is given: 0110011010 . The length of the string is 10; 

therefore, 10n . The first step is to divide the string into non-overlapping block is called N . The 

non-overlapping block is defined as 





M
nN . Therefore, the string 0110011010  can be 

divided into blocks thus:
011 = first N
001 = second N
101 = third N
0 = discarded.

77



International Journal of Research & Methodology in Social Science
Vol. 4, No. 1, p.78 (Jan. – Mar. 2018). ISSN 2415-0371 (Online)

www.socialsciencepublication.com

The objective is to divide the data string into blocks. Each block (M) must contain at least 
one 1 in relations to relative strong of zeroes. How many ones should be in a block? Notice that in 
the string 0110011010 , the separating point for the block is the ending of 1 that would make 
the shortest block pattern in the string; as for the first data of the next block, it may be 1 o 0.
Therefore, 3N . Note that each block is 3 or 3M ; thus, the number of block is 

  333.3
3

10










M
nN . The 0.33 is disregarded as excess incomplete block. This first step is 

called partition input sequence.

Second step is to determine the proportion of ones in each M-bit block. This proportion is 
denotes as i  which is given by equation (5.3):

M

M

j
jMi

i






 1
)1(

  for Ni 1 which reads 
blockbit 

1
)1(

Ones
M

M

j
jMi

i 





 , from the blocks:

011 = first N has 2 ones
001 = second N has 1 one
101 = third N has 2 ones
0 = discarded.

Therefore, i includes: 

3/2
3/1
3/2

3

2

1









Third step, using equation (5.2.), the value of 2
obs  my be determined, thus:

     

9612.0)0801.0(12
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i
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Fourth step, find the critical value for chi-square in the chi-square table at a given degree of 
freedom and percentage confidence level. The degrees of freedom in the chi-square equation is 

3 Ndf . 
For 0.99 confidence interval, the chi-square critical value is 11.30 and for 0.95 confidence 

interval, the critical value is 7.80. The value for the observation is 9621.02 obs  which is less than 
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both 7.80 for CI of 95% and less than 11.30 for CI of 99%. Recall that the hypothesis formulation 
for the random test is:

randomH obs  2
95.0

2
0 : 

randomnonH obsA  2
95.0

2: 

In this case, it is not possible to reject the null hypothesis. Therefore, it is concluded that the data 
string 0110011010  comes from a random process.

Equation (30) and equation (31) use K and M degrees of freedom respectively. The 
following Tables provides the corresponding classes of data string with possible combination of 
probabilities.

Table 4: K = 3; M = 8
Classes Probabilities

4
3
2
1






v
v
v
v

1875.0
2305.0
3672.0
2148.0

3

2

1

0











Table 5: K = 5; M = 128
Classes Probabilities

9
8
7
6
5
4








v
v
v
v
v
v

1124.0
1027.0
1752.0
2493.0
2430.0
1174.0

5

4

3

2

1

0















Table 6: K = 5; M = 512
Classes Probabilities

11
10
9
8
7
6








v
v
v
v
v
v

1124.0
1027.0
1755.0
2523.0

2460.0.0
1170.0

5

4

3

2

1

0
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Table 7: K = 5; M = 100
Classes Probabilities

12
11
10
9
8
7








v
v
v
v
v
v

1088.0
1002.0
1714.0
2452.0
2437.0
1307.0

5

4

3

2

1

0















Table 8: K = 6; M = 10,000
Classes Probabilities

Les 1 - 

16
15
14
13
12
11
10









v
v
v
v
v
v
v

0727.0
0675.0
1208.0
1933.0
2483.0
2092.0
0882.0

6

5

4

3

2

1

0

















Source: Tables 1 – 5 see Pal Revesz (1990). Random Walk in Random and Non-Random 
Environments, Singapore: World Scientifc. Pp. 55; cited in Rukhin et al. p. 3-5.

4.5 Run test for randomness
The Runs Test is considered non-parametric because it does not depend on any parameter as in a 
polynomial equation. The test examines the substrings of consecutive 1’s and 0’s. These strings are 
considered homogeneous. The objective is to look at the oscillation of the substring and verify 
whether the oscillation is too fast or too slow. The following terms are defined:

nV = number of runs;
 = fixed proportion, i.e. /j

j
n  

The reference point is 0.50; the objective of the test is to determine whether the substring is 

close to 0.50 or 1 2
2 n

    which is defined by the probability of the runs as:

 
2 (1 )lim

2 (1 )
n

x

V nP
n

 
 

  
   

(33)

In order to evaluate the run ( nV ), define that 1,2,..., 1k n   and ( ) 0r k   if the present string is 
equal to the next string, i.e. 1k k    and ( ) 1r k   if 1k k   . Then the number of runs is given 
by:
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1

1
( 1)

n
n

k
V r k




  (34)

The pValue or the area under the curve within which is considered non-significance region 
or the region bounded by the lower and upper boundaries of confidence interval is given by:

 
( ) 2 (1 )
2 2 (1 )

nV obs n
pValue erfc

 
 

  
    

(35)

The value of the runs nV  explains the characteristic of the oscillation. If nV  is too large, it 
means that the oscillation is fast and if the value of nV  is small, it means that the oscillation us 
slow. The significance tests centers around the observation and test of this oscillation.

The run test (also known as Wald-Wolferwitz test) (Wald and Wolfowitz, 1940; pp. 147-
162; Mendenhall et al., 1986) can be used to verify if the data comes from a random process 
(Bradley, 1068; chap. 12). A “run’ is series of increasing values or series of decreasing values; a run 
is a ranked data set. A ranked data set is a data set arranged in ascending values or descending 
values. The number of data values in the set is called the “length” of the run. In random data test, 
the probability that ( 1)l   is larger or smaller than thl  follows binomial distribution---the basis of 
the runs test. For example, the following is a data set that has been categorized into positive (+) and 
negative (-) signs:

+ + + + + - - - - - - - + + + - - - - + + + + - - - - - - -
1 2  3 4 5 6

There are 6 runs or 6R   and the length of the data string is 30 counts. The run is counted 
by counting the times that the sign change from positive (+) to negative (-). In this case, there are 6 
alternations. The purpose of the test is to verify that each data point is mutually independent of the 
others in the set. This mutual independence is an evidence of randomness. If the data in the set are 
not mutually independent, it means that one event depends on the other or that one event may be 
used to predict the occurrence of the other, such a condition is said not mutually independent and, 
therefore, is not random. The argument of the null hypothesis is that the data set is random; the 
alternative hypothesis is that the data is not random.

0 :H  the sequence was produced in random manner

1 :H  the sequence was NOT produced in a random manner

The test statistic for the runs test is given by:

R

R RZ
S


 (36)

where R  = number of observed number of runs; R  = expected number of runs:

1 2

1 2

2 1n nR
n n

 


(37)
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RS = standard deviation of the runs where …
2 1 2 1 2 1 2

2
1 2 1 2

2 (2 )
( ) ( 1)

R
n n n n n nS
n n n n

 


  
(38)

In the alternative, the variance may be written as:

2 ( 1)( 2)
1N

   



(39)

Recall that R   and 2 2
RS   and 1n = number of + and 2n = number of – event.

The significance level is alpha:  . The runs test rejects the null hypothesis if:

1 /2Z Z  (40)

For large sample is defined as 1 10n   and 2 10n  . For a large sample, use 0.95 1.65Z  . The runs 
test can answer the following question: Were the sample data generated from a random process?

For a numerical illustration, the following data set is provided in a pre-classified (=) and (-) 
form:

+ + + + + - - - - - - - + + + - - - - + + + + - - - - - - -
1 2  3 4 5 6

The objective is to use the Runs Test to verify whether the data string comes from a random 
process. In this string, there are 6 runs and the size of the data set or the length of the data string is 
30 counts or 30n  . The counts are divided into two categories: (-) and (-). The next step is to 
determine the correct value for 1 2 30n n  . Assume that 1n    counts and 1n    counts. 
Segments 1, 3 and 5 carry (+) signs. There are a total of 12 counts (+) and 18 counts of (-). 
Therefore, 1 12n   and 2 18n  .

The second step is to determine the value for R , thus:
1 2

1 2

2 2(12)(18) 2161 1 1 7.2 1
12 18 30

8.20

n nR
n n

R

       
 


The third step is to calculate the standard deviation, by using the variance formula of the 

Runs test, thus:
2 1 2 1 2 1 2

2 2
1 2 1 2

2 (2 ) 2(12(18)((2(12)(18)) 12 18) 432(432 12 18)
900(31)( ) ( 1) (12 18) (12 18 1)

432(402)
27900

173,664
27900

6.2245

R
n n n n n nS
n n n n

     
  

     







Recall that standard deviation is the square root of the variance; therefore, the standard 

deviation for this Runs test is: 2 2.50R RS S  . The test statistic may now be calculated, thus:
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6 8.20 2.20 0.88
2.50 2.50R

R R
Z

S
 

   

With the critical value of 0.88, the percentage probability may be looked up in the Z-table. 
For (0.88)Z , the p-value is 1 0.811   which is less than 0.95. Recall that the hypothesis 
statements were:

0 : (0.95)
: (0.95)

obs

A obs

H Z Z Random
H Z Z Non Random

 

  
The  critical value for (0.95)Z  is 1.65. In this case, the critical value for (0.88)Z  is 0.811. 

Since (0.88) (0.95)Z Z  or 0.811 1.65 . The null hypothesis cannot be rejected. Therefore, it is 
concluded that the data came from a random process.

Run-sequence plots are easy way to graphically summarize a univariate data set. Common 
assumptions of univariate data set is that they behave like: (i) random drawing; (ii) come from a 
fixed distribution; (iii) with common location; and (iv)with common scale. The run-sequence allows 
us to see the shift in location and scale. It also allows us to detect the outliers. The run-sequence is 
formed by the vertical axis (response variable iY ) and the horizontal axis ( (1, 2,...)iX ). The 
questions answered by the run-sequence are: (1) Are there any shifts in location? (2) Are there any 
shifts in variation? And (3) Are there any outliers?

IV. CONCLUSION
The concept of randomness is the foundation of statistics since statistical test deals with distribution 
and percentage probability of event occurrence within the distribution. In both types of probability: 
discrete and continuous, each event in the distribution space is considered random event, hence, 
equal probability distribution in normal distribution cases. Therefore, since randomness plays an 
indispensable role in the discussion of statistical tests, it is necessary for researcher to know how to 
test for randomness in the data. This paper presents three direct tests for randomness in discrete 
data. In addition, we also present three indirect tests fort randomness through trend analysis. The 
three direct tests were under NIST approach. The proposed three indirect tests were a mixed of (i) 
reverse Arrangement Test (RAT), (ii) Military Handbook Test (MHT), and (iii) La Place Trend test 
(LTT).
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