

Utilizing digitalization through heuristic risk-based blade maintenance for leading edge erosion

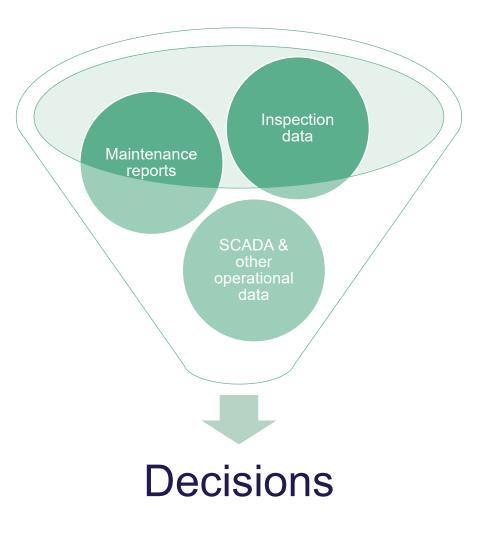
Jannie Sønderkær Nielsen, AAU Nikolay Dimitrov, DTU Ryan Clarke, Joshua Paquette, Sandia Alex Byrne, DNV GL

WESC 2023 Glasgow 25/5-2023 5.2a Mini Symposia: Structural integrity assessment and life cycle management of wind farms

INIVERSIT

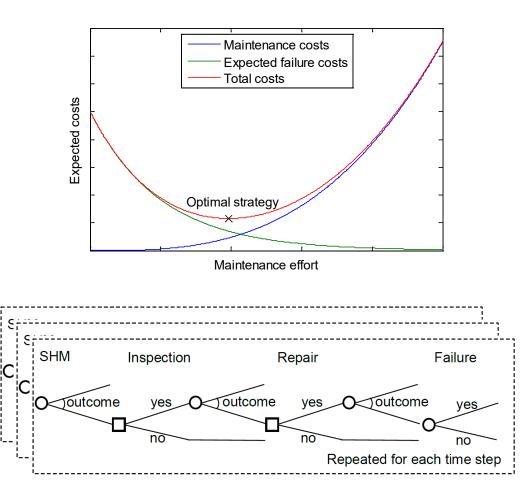
IEA Wind T43 WP5 – O&M

Provide guidance on digitalization practices and implementations with the potential to deliver wind O&M advancements and new opportunities

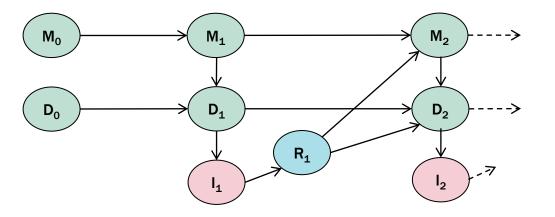

• Team:

- Alex Byrne DNV GL
- Joshua Paquette Sandia National Laboratories
- Ryan Clarke Sandia National Laboratories
- Jannie Sønderkær Nielsen Aalborg University
- Nikolay Krasimirov Dimitrov DTU
- Pablo G. Morato DTU
- Des Farren Servusnet

- Nathan Hoerning Wisconsin Public Utility
- Liliana Haus EPRI
- Noah Myrent EPRI
- Evan Sproul Sandia National Laboratories
- Murray Fisher Gulf Wind Technology


Risk-based blade maintenance

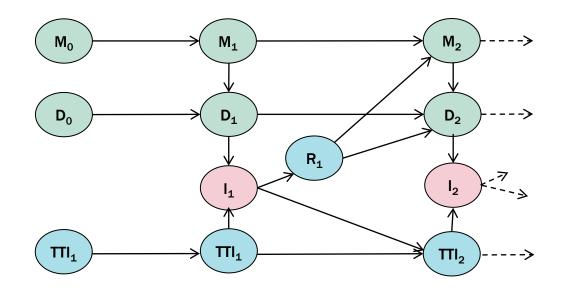
How can digitalization can be utilized to optimize inspection and maintenance decisions for leading edge erosion (LEE) of wind turbine blades?


Risk-based blade maintenance

- Balance between doing too much and too little
- Minimize expected costs
 - Considering present value of direct and indirect costs
- How to find the optimal strategy?
- Bayesian decision theory
 - Heuristic decision rules
 - POMDP, ML approaches
 - Optimality vs. simplicity

Risk-based decision model

- Input
 - Deterioration and repair model
 - Inspection model
 - Ocst model
- Output
 - Optimal decision strategy for inspections and repairs
 - Expected lifetime costs



Nodes / variables Damage size: D_i Model parameter: M_i Inspection outcome: I_i Preventive repair decision: R_i

Risk-based decision model

- Inspection: time steps to next inspection depends on inspection outcome
- TTI is a "count down node" between inspections: 6 5 4 3 2 1

Nodes / variables Damage size: D_i Model parameter: M_i Inspection outcome: I_i Preventive repair decision: R_i Time to inspection: TTI_i

Risk-based decision model

- Which inspection outcome should result in repair now?
- For less severe inspection outcomes, when should the next inspection be scheduled?
- Example:

State of node I	Inspection outcome	Repair	Next inspection
1	No inspection	No	
2	No detection	No	2
3	Category 1	No	2
4	Category 2	No	1
5	Category 3	No	1
6	Category 4	Yes	2
7	Category 5	Yes	2

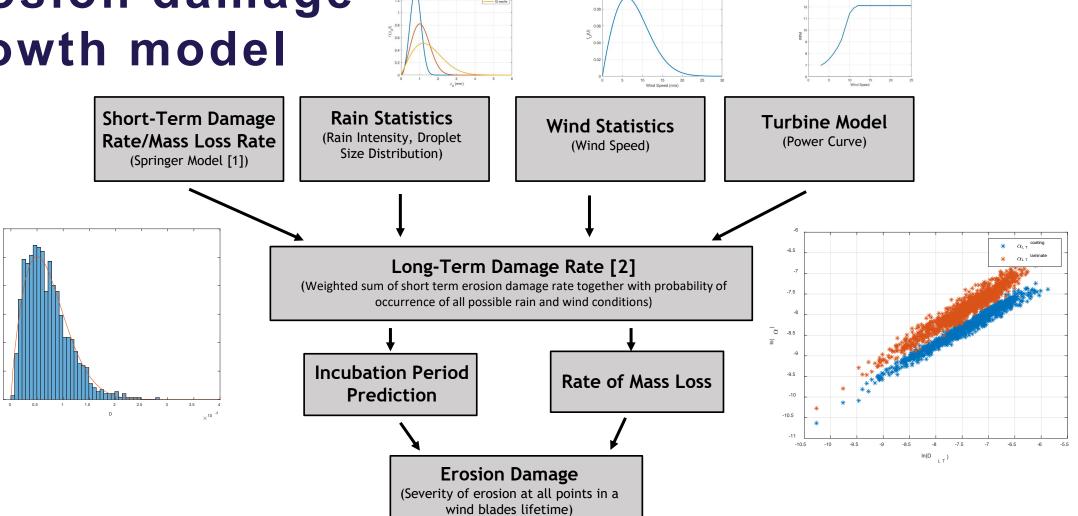
Case study – Leading edge erosion

- The repeated impact of raindrops and other particles on the leading edge of wind turbine blades leads to initiation of erosion and progressive damage development.
- LEE negatively impacts aerodynamic performance, thereby decreasing the power production.
- When to do drone inspections and when to repair?

Leading edge erosion classification

Erosion CAT	Description	Coating Mass Loss	Laminate Mass Loss	Turbine Power Loss
1	Light pitting of coating	<10%	0%	-
2	Small patches of missing coating	10% - 50%	0%	1%
3	Large patches of missing coating	50% - 100%	<10%	2%
4	Erosion of laminate	100%	10% - 100%	3%
5	Complete loss of laminate	100%	100%	5%

Assessment based on: "A White Paper on Blade Defect and Damage Categorization: Current State of the Industry." EPRI, Palo Alto, CA: 2020. 3002019669.

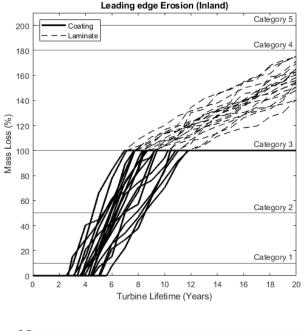

Erosion damage growth model

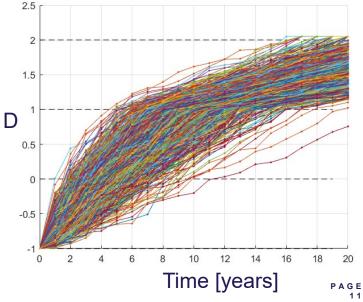
800

600

400

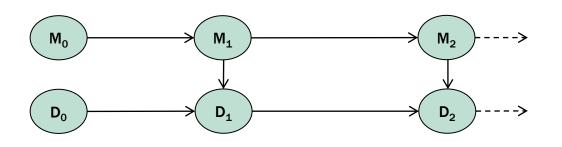
200

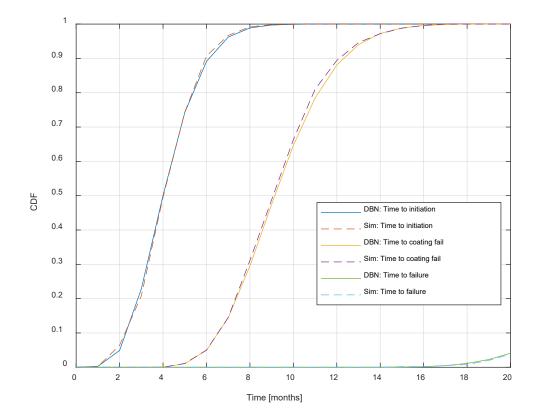

Wind Speed distributi


[1] GS Springer, CL Yang; PS Larsen, "Analysis of Rain Erosion of Coated Materials," Journal of Composite Materials, vol. 8, pp. 229-252, 1974. AALBORG UNIVERSITY [2] A. Shankar Verma et al., "A probabilistic long-term framework for site-specific erosion analysis of wind turbine blades: A case study of 31 Dutch sites," Wind Energy, vol. 24, no. 11, pp. 1315-1336, 2021, doi: 10.1002/we.2634.

Probabilistic damage growth model

- Physics based modelling of LEE
 - Initiation phase (damage rate)
 - Coating mass loss phase (mass loss rate)
 - Laminate mass loss phase (mass loss rate)
- Year to year variations in distribution parameters for rain intensity, wind distribution, droplet size
- Additional uncertainty added on damage rate D_{LT} (which also affects mass loss rates)


 - X_{short} : additional short term variation (lognormal)
 - X_{long} : time-invariant uncertainty (lognormal)



Bayesian network model

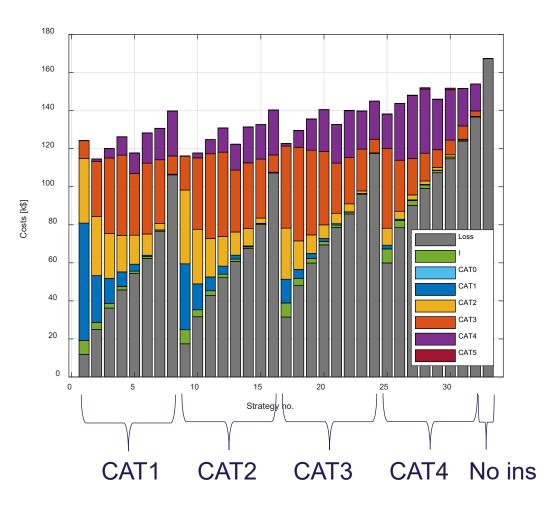
- D: damage size, 151 states
- M: model parameter X_{long}, 10 states
- Distribution $P(D_i|D_{i-1}, M_i)$ found using 50 subintervals for D_{i-1} and M_i , and 100 simulated values of X_{short}, D_{LT}, etc.

Inspection model

	Likelihood of reported erosion CAT					
Actual Erosion CAT	No detection	CAT 1	CAT 2	CAT 3	CAT 4	CAT 5
CAT 1	75%	10%	9%	5%	1%	0%
CAT 2	30%	11%	28%	21%	7%	4%
CAT 3	20%	4%	16%	36%	20%	4%
CAT 4	5%	0%	14%	24%	43%	14%
CAT 5	0%	0%	5%	10%	40%	45%

Cost model

• Onshore US site


- Inspection cost: \$300
- Mobilization costs: \$1000
- Repair costs per day: \$5000
- Electricity price: 25 \$/MWh
- Power rating: 3.66 MW
- Capacity factor: 0.4 (0.19 for inspections/repairs)

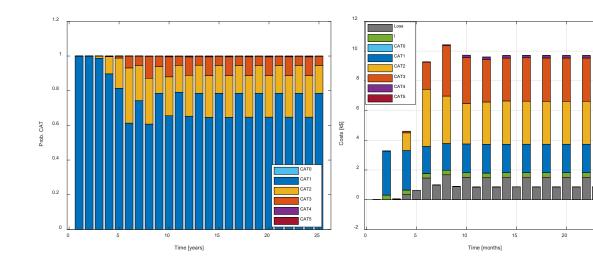
00		Duration	Direct costs \$	Revenue loss \$	Power loss	Annual AEP loss \$
5000	Inspection	0.5 hour	300	8	-	-
	CAT 1	2 days	11000	824	0%	-
lWh	CAT 2	3 days	16000	1236	1%	1603
	CAT 3	6 days	31000	51668	2%	6412
	CAT 4	7 days	36000	77502	3%	9618
19 for	CAT 5	14 days	71000	129171	5%	16031

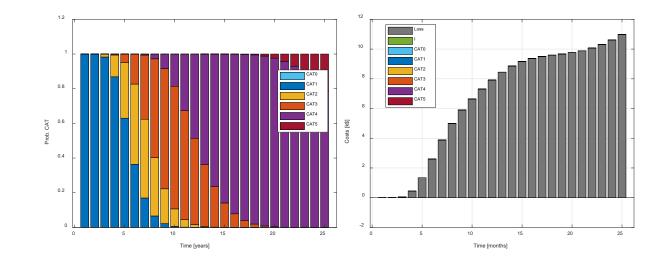
Strategies

• Strategies:

- Repair threshold CAT1 to CAT4
- Inspection interval 1, 2, 3, 4, 5, 7, 9, 13 year

Costs and number of inspections/repairs

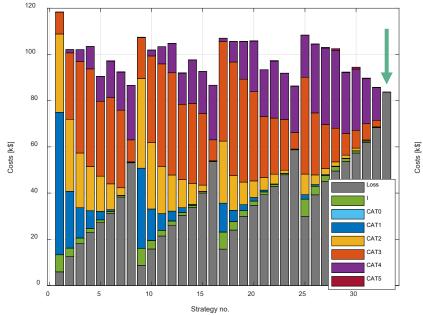


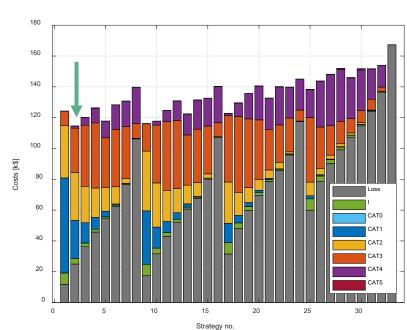

Comparison of strategies

- Optimal strategy
 - Inspection every second year
 - Repair CAT 1

- Worst strategy
 - No inspections
 - No repairs

25

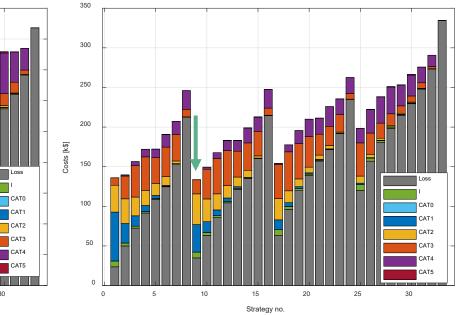




Influence of production loss

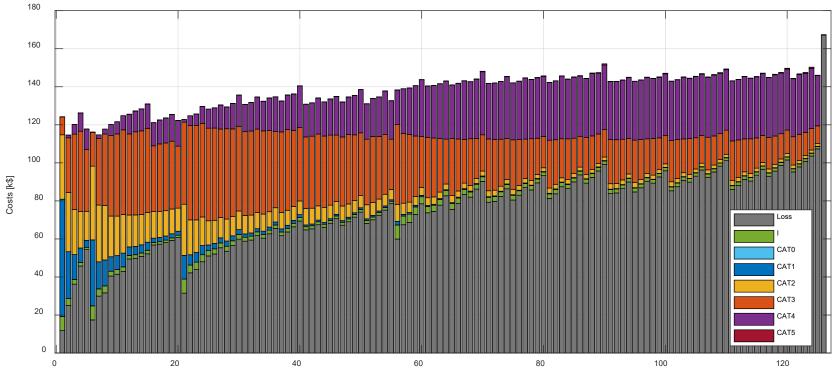
• Max 2.5%

• No inspections

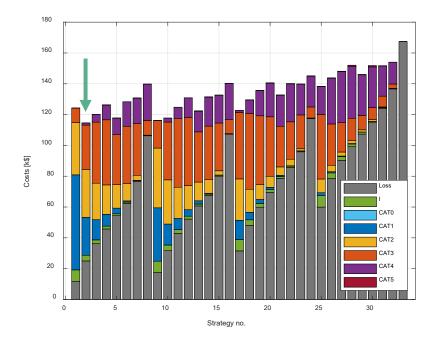

Max 5% (base case)

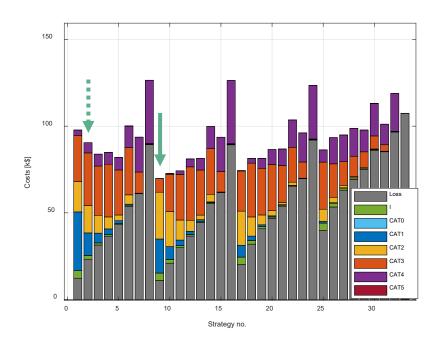
2 year, CAT1

 \mathbf{O}


D

Variable inspection interval 1-5 yr




Strategy no.

Adaptive strategy - example

- Following the initially optimal strategy the first 10 years (2 year, CAT1)
 - Nothing detected in any years -> change to 1 year inspections, CAT 2 repairs

Conclusions

Demonstrates a framework for optimal O&M strategies for leading edge erosion

• Heuristic adaptive strategies as an alternative to ML approaches

- To be further developed to include additional data
- Important for the results that models are realistic (repair, loss, ...)

Thank you for your attention

Jannie Sønderkær Nielsen jsn@build.aau.dk

AALBORG UNIVERSITY