

# AiiDAlab Quantum ESPRESSO App

Streamlining Core-Level Spectroscopy Calculations

Xing Wang Postdoc, Materials Software and Data Group, Paul Scherrer Institute, Switzerland RACXS workshop, 18-06-2024

## **Outline of one-hour code tutorial**



#### Part 1: Streamlining scientific workflows with AiiDA

Target Audience: Computational Scientists

Goals:

- Understand the idea of creating workflows using AiiDA
- Learn about checkpoints, provenance tracking (database), and remote execution

#### Part 2: AiiDAlab Quantum ESPRESSO App

Target Audience:

- Experimental Scientists needing DFT calculations on material properties.
- Computational Scientists want to providing DFT services

Goals:

- Easy-to-use graphical interface
- Accessible, turn-key solution for non-specialists
- Facilitates collaboration between experimentalists and theorists

## **Code tutorial guidelines**



I will conduct live calculation during the session to showcase practical applications.

Part 1: Only a basic understanding of Python is needed.

- You are not required to perform the calculations during the session.
- Full instructions will be provided so you can independently run all demonstrated calculations at your convenience.

Interactive Sessions:

Your Role:

- Each part will have ~ 5 minutes for questions and discussions.
- Please feel free to ask questions or share your thoughts during these intervals, or anytime during the conference.

Small request: speak slowly and maybe repeat your question



### Part 1 AiiDA tutorial



AiiDA: Automated Interactive Infrastructure and Database for Computational Science

An open-source Python package to help researchers with automating, managing, persisting, sharing and reproducing the complex workflows associated with modern computational science and all associated data.

#### Key features:

- Automated workflows
- High-throughput
- Data provenance
- Database and advanced queries
- Plugin interface
- HPC interface
- Open science
- Open source



## **Challenges in high-throughput HPC**



- Workflow automation
  - Need tools to define complex workflows with advanced error handling
  - An automated, robust and scalable engine to run the workflows
- Data management
  - Data should be stored reliably and efficiently
  - Stored data should be interoperable and queryable, and easy sharing
- Reproducibility
  - All produced data should be reproducible by storing the full provenance

#### Data provenance

#### Simple recipe

- Store the 'calculations'
- Store its **inputs** and their metadata
- Store its **outputs** and their metadata
- Most crucially store the
  - inter-connections

#### Calculation: x+y





PSI

#### Xing Wang

#### Data provenance



- When data gets reused, a directed graph is created
- That quickly grow in complexity for workflows





#### Data provenance





Molecular dynamics study of Lithium in a solid electrolyte

### **Multi-steps Workflow**



**Automatic checkpointing**, which guarantees that work between steps is saved, thus can be can be restored after it had been interrupted. Important for long-running calculation, like DFT.

Checkpoint Step 1 Finished Running

- WorkChain
- WorkGraph: flexible and easy to use

#### AiiDA-WorkGraph

step 1 step 2



### Workflow example: (x + y) \* z

- 1) Create a empty workgraph
- 2) Add the tasks (the add and multiple functions)
- 3) Link the task

from aiida\_workgraph import WorkGraph

@calcfunction()
def add(x, y):
 return x + y

@calcfunction()
def multiply(x, y):
 return x\*y

wg = WorkGraph("add\_multiply") wg.tasks.new(add, name="add") wg.tasks.new(multiply, name="multiply", x=wg.tasks["add"].outputs["result"])



#### **Remote calculation**

11



- CalcJob: run code (e.g. DFT code) on remote computer.
- ShellTask: run shell command on a remote computer
- PythonTask: run Python function on a remote computer (Ongoing)



## WorkGraph examples



- Espresso calculator
  - Calculator
  - Atomization energy
  - Equation of state (EOS)
  - Elastic constants
  - Bands structure
  - Projected density of states (PDOS)
  - Bader Charge
  - X-ray photoelectron spectroscopy (XPS)



#### Summary



**AiiDA:** Automated Interactive Infrastructure and **Da**tabase for Computational Science

#### Key Features:

- **Provenance:** Track the provenance of the workflow.
- **Easy to build workflow:** Create workflows by linking the input and output socket of different tasks.
- **Flexible:** Extend (modify) the workflow by adding (editing) tasks and links, or combine multiple workflows together.
- Interactive GUI: Visualize and interact with the workflow using the GUI. (Ongoing)
- **Checkpoints:** Save the workflow state, and restore the workflow from the a interrupted state.
- **Remote execution:** Execute the task (Python function, Shell command) on a remote machine.



### Part 2 AiiDAlab Quantum ESPRESSO App

### **Power of first-principles calculations**



• Remarkable predictions in the wide range of properties and spectroscopies



Marzari, N., Ferretti, A. & Wolverton, C. Nat. Mater. 20, 736–749 (2021).

## Bring the first-principle tools to other communities





## Bring the first-principle tools to big communities





### AiiDAlab-QuantumESPRESSO app



- Quantum ESPRESSO (QE) app is an AiiDAlab web-based graphical user interface allowing users to conduct first-principle calculations on the web browser directly without writing any code.
  - Automated
  - Reliable

- Intuitive user interface
- Easy to share and maintain



## Quantum ESPRESSO app



- Quantum ESPRESSO app uses the Wizards UI, which divides one calculation job into four steps.
- Each step contains several panels.



#### **Step 1 Select a structure**



 Structures can be uploaded as a file in any standard format (XYZ, CIF, etc.) or be downloaded from online databases (e.g., Materials Cloud, Materials Project) using the <u>OPTIMADE API</u>.

| 🧧 .start | s1-J | upyter Notebor 🗙 🖉 AliDAl    | ab QE app             | 🗙 🧧 AliDAlab QE ap           | p . × +                   | •                    |             | · · · ·                |          |        | · · -           | e ×    |
|----------|------|------------------------------|-----------------------|------------------------------|---------------------------|----------------------|-------------|------------------------|----------|--------|-----------------|--------|
|          | c    | localhost:8899/apps/apps/aii |                       |                              |                           |                      | < ☆ (       | o. 🔺 🔹 🗎 🚋             | ; o u 🖬  | * 🛛 (  | Relaunch to upo | late : |
|          |      | 💭 jupyter                    |                       |                              |                           |                      |             |                        | Ed       | it App | Logout          |        |
|          |      | Happy computing! 🎉           |                       |                              |                           |                      |             |                        |          |        |                 | -      |
|          |      | Select computed workflow     | or start a new one:   | New workflow                 | ( workflow 🗸 🔾 New        |                      |             |                        |          |        |                 |        |
|          |      | H Previ                      | ous step              |                              | "D Reset                  |                      | Next step   |                        |          |        |                 |        |
|          |      | ▼ • Step 1: Select strue     | cture                 |                              |                           |                      |             |                        |          | 1      |                 |        |
|          |      | Select a structure from one  | of the following sou  | rces and then click "Confirr | n" to go to the next step | L.                   |             |                        |          |        |                 |        |
|          |      | Currently only three-dim     | ensional structures a | re supported.                |                           |                      |             |                        |          |        |                 |        |
|          |      | Upload file                  | OPTIMADE              | AiiDA database               | From Examples             | Upload mcif          |             | Surface importer       |          |        |                 |        |
|          |      |                              |                       | 1                            | Upload Structure (0)      |                      |             |                        |          |        |                 |        |
|          |      | Supported structure for      | nats                  |                              |                           |                      |             |                        |          |        |                 |        |
|          |      |                              |                       |                              |                           | Cell                 | Selection   | Appearance             | Download |        |                 |        |
|          |      |                              |                       | Length unit: angstrom (Å)    |                           |                      |             |                        |          |        |                 |        |
|          |      |                              |                       |                              |                           | Cell vectors         |             | Cell vectors           | length:  |        |                 |        |
|          |      |                              | TT                    | N                            |                           | <b>a</b> : 3.8120 0. | 0000 0.0000 | )   <b>a</b>  : 3.8120 |          |        |                 |        |
|          |      |                              | 40                    | ~                            |                           | <b>b</b> : 1.9060 3. | 3013 0.000  | 0   <b>b</b>  : 3.8120 |          |        |                 |        |
|          |      |                              |                       |                              |                           | <b>c</b> : 1.9060 1. | 1004 3.1125 | 5  c : 3.8120          |          |        |                 |        |
|          |      |                              |                       |                              |                           | Angles:              | Syn         | nmetry information:    |          |        |                 |        |
|          |      |                              |                       |                              |                           | α: 60.0000           | Spa         | icegroup: Fd-3m (No.2  | 227)     |        |                 |        |
|          |      |                              |                       |                              |                           | β: 60.0000           | Hall        | : F 4d 2 3 -1d (No.525 | 5)       |        |                 | -      |

#### Step 2: Set the parameters for DFT calculation



Xing Wang

• Easy parameter selection for non-experts by choosing the protocols, which are developed and tested for a large database of structures.

| 🧧 .start-1 - | Jupyter Notebo 🗙 🖉 AiiDAla                                                                                      | ab QE app 🛛 🗙 🍊                                                                                         |                                                                                                      |                                               |                               |           |            |                | @ ×    |
|--------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------|-----------|------------|----------------|--------|
| - > C        | localhost:8899/apps/apps/aii                                                                                    |                                                                                                         |                                                                                                      | ବ -                                           | < 🛪 🧿 🕸 🕤                     | n 📇 🗢 🛛 🖼 | * 🛛 🚳 (    | Relaunch to up | date 🔅 |
|              | 💭 jupyter                                                                                                       |                                                                                                         |                                                                                                      |                                               |                               |           | Edit App 💑 | Logout         |        |
|              | Structure                                                                                                       |                                                                                                         |                                                                                                      |                                               |                               |           |            |                |        |
|              | You have three options:<br>(1) Structure as is: perfo<br>(2) Atomic positions: per<br>(3) Full geometry: perfor | orm a self consistent calculati<br>rform a full relaxation of the i<br>rm a full relaxation for both th | on using the structure provided<br>nternal atomic coordinates.<br>le internal atomic coordinates and | as input.<br>nd the cell vectors.             |                               |           |            |                |        |
|              | Structure as is                                                                                                 | Atomic positions                                                                                        | Full geometry                                                                                        |                                               |                               |           |            |                |        |
|              | Below you can indicate t<br>magnetization/spin polar                                                            | both if the material should be<br>rization, switch magnetism C                                          | treated as an insulator or a me<br>n or Off (On is at least twice mo                                 | tal (if in doubt, choose "Meta<br>re costly). | l"), and if it should be stud | lied with |            |                |        |
|              | Electronic Type:                                                                                                | Metal                                                                                                   | Insulator                                                                                            |                                               |                               |           |            |                |        |
|              | Magnetism:                                                                                                      | Off                                                                                                     | On                                                                                                   |                                               |                               |           |            |                |        |
|              | Properties                                                                                                      |                                                                                                         |                                                                                                      |                                               |                               |           |            |                |        |
|              | Select which properties                                                                                         | to calculate:                                                                                           |                                                                                                      |                                               |                               |           |            |                |        |
|              | Electronic band struct                                                                                          | cture                                                                                                   |                                                                                                      |                                               |                               |           |            |                |        |
|              | Projected density of                                                                                            | states                                                                                                  |                                                                                                      |                                               |                               |           |            |                |        |
|              | C X-ray absorption spe                                                                                          | ectroscopy (XAS)                                                                                        |                                                                                                      |                                               |                               |           |            |                |        |
|              | X-ray photoelectron                                                                                             | spectroscopy (XPS)                                                                                      |                                                                                                      |                                               |                               |           |            |                |        |
|              | Muon spectroscopy                                                                                               |                                                                                                         |                                                                                                      |                                               |                               |           |            |                |        |
|              | Vibrational properties                                                                                          | s                                                                                                       |                                                                                                      |                                               |                               |           |            |                |        |
|              | Equation of State (E)                                                                                           | OS)                                                                                                     |                                                                                                      |                                               |                               |           |            |                |        |

#### **Step 3: Set up the computational resources**



• Set up the code on the local machine or on the remote HPC.

| i tocatilost             | e oos syapps/apps/andatap-de/de.ibyno                                                   | 9<br>                                      |                      | ~                         | <u> н                                   </u> | Epm ·               | ••• ••• •• •• • |        |
|--------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------|----------------------|---------------------------|----------------------------------------------|---------------------|-----------------|--------|
| C Jupy                   | ter                                                                                     |                                            |                      |                           |                                              |                     | Edit App        | Logout |
| ••S                      | tep 3: Choose computational reso                                                        | ources                                     |                      |                           |                                              |                     |                 |        |
| Code<br>Select<br>more p | 25<br>the code to use for running the calcula<br>powerful machines by clicking on "Setu | tions. The codes on the lo<br>p new code". | cal machine (localho | ost) are installed by def | ault, but you can confi                      | gure new ones on po | otentially      |        |
| pw.x:                    | pw-7.2@localhost                                                                        | ✓ Setup new co                             | ode                  |                           |                                              |                     |                 |        |
| dos.x                    | dos-7.2@localhost                                                                       | ✓ Setup new co                             | ode                  |                           |                                              |                     |                 |        |
| projwfo                  | c.x projwfc-7.2@localhost                                                               | ✓ Setup new co                             | ode                  |                           |                                              |                     |                 |        |
| xspect                   | tra.x xspectra-7.2@localhost                                                            | ✓ Setup new co                             | ode                  |                           |                                              |                     |                 |        |
| pp.x                     | pp-7.2@localhost                                                                        | ✓ Setup new co                             | ode                  |                           |                                              |                     |                 |        |
| Reso                     | ources                                                                                  |                                            |                      |                           |                                              |                     |                 |        |
| Specify                  | y the resources to use for the pw.x calc                                                | culation.                                  | Nodes 1              |                           | CP                                           | Js 1                |                 |        |
| Paral                    | llelization                                                                             |                                            |                      |                           |                                              |                     |                 |        |
| Specify                  | y the number of k-points pools for the c                                                | calculations.                              |                      |                           | Number of k-poo                              | bls 1               |                 |        |
|                          |                                                                                         |                                            | Submit               |                           |                                              |                     |                 |        |
| ▶ ○ S                    | itep 4: Status & Results                                                                |                                            |                      |                           |                                              |                     |                 |        |

### **Step 4: Visualize the results**



• Visualize the result interactively.

| 🥔 .start-1 - Jupyter Notebo 🛪 🛛 🦉 AliDAlab QE app 👘 🗙 🖉 AliDAlab | QE app × + · | وبالمتها والمتها والمتع |           | _ @ ×                      |
|------------------------------------------------------------------|--------------|-------------------------|-----------|----------------------------|
| ← → C O localhost:8899/apps/apps/aiidalab-qe/qe.ipynb            |              | Q < ☆ 🥥 세 🕯             | 🖿 🛲 🗢 🖬 🖼 | * 🔲 🎒 Relaunch to update 🔅 |
| 💭 Jupyter                                                        |              |                         | E         | dit App Logout             |
| ✓ ✓ Step 4: Status & Results                                     |              |                         |           | •                          |
| Kill workchain                                                   |              |                         |           |                            |
| - % QeAppWorkChain<681> Finished [0] [3:inspect_plugin]          |              |                         |           |                            |
| - 🖿 outputs                                                      |              |                         |           |                            |
| + 🖿 bands                                                        |              |                         |           |                            |
| + 🖿 muonic                                                       |              |                         |           |                            |
| + 🖿 pdos                                                         |              |                         |           |                            |
| + 🖿 xas                                                          |              |                         |           |                            |
| — 🖿 xps                                                          |              |                         |           |                            |
| - 🖿 binding_energies                                             |              |                         |           |                            |
| Si_be<857>                                                       |              |                         |           |                            |
| - 🖿 chemical_shifts                                              |              |                         |           |                            |
| Si_cls<856>                                                      |              |                         |           |                            |
| - 🖿 final_spectra_be                                             |              |                         |           |                            |
| Si_be_spectra<859>                                               |              |                         |           |                            |
| - 🖿 final_spectra_cls                                            |              |                         |           |                            |
| Si_cls_spectra<858>                                              |              |                         |           |                            |
| - 🖿 output_parameters_ch_scf                                     |              |                         |           |                            |
| lisite_0<852>                                                    |              |                         |           |                            |
| standardized_structure<706>                                      |              |                         |           |                            |
| supercell_structure<707>                                         |              |                         |           |                            |
| symmetry_analysis_data<709>                                      |              |                         |           |                            |
| + % PwBandsWorkChain<683> Finished [0] [7:results]               |              |                         |           |                            |
| + % PdosWorkChain<685> Finished [0] [5:results]                  |              |                         |           | *                          |

### **Architecture: Plugin**

• Running multiple calculations (bands, pdos, XPS, etc) in one app using the same interface.



PSI

#### **Power of Quantum ESPRESSO app**





Contributors: E. Bainglass (PSI), M. Bercx (PSI), M. Bonacci (PSI), D. Dou (EPFL), P. Gillespie (CNR-NANO Modena), M. A. Hernández-Bertrán (CNR-NANO Modena), D. Hollas (Bristol), N. Marzari (EPFL, PSI), A. Ortega-Guerrero (Empa), C. Pignedoli (Empa), D. Prezzi (CNR-NANO Modena), G. Pizzi (PSI), I. Timrov (EPFL, PSI), J. Yu (PSI), A. Yakutovich (Empa)

## XPS inside the AiiDAlab-Quantum ESPRESSO app



0.30

C\_site\_0

C site 2

C\_site\_3

O\_site\_7

O total

C total





Collaborate with Dr. Prezzi's group (CNR-NANO Modena), Dr. Iurii Timrov (PSI)

#### **XPS demo**



#### Example: Phenylacetylene (PA) molecule

#### ✓ Step 1: Select structure

Step 2: Configure workflow

| Upload file    | OPTIMADE    | AiiDA database | Structu                                                                            |
|----------------|-------------|----------------|------------------------------------------------------------------------------------|
| Phenylacetylen | ne molecule | ~              | Below yo                                                                           |
|                |             |                | Core-H<br>Please s<br>download<br>Group: [<br>Select<br>The list o<br>0_1s<br>C_1s |
|                |             |                | H, no                                                                              |

Structure
Below you can indicate if the material should be treated as a molecule or a
Molecule Crystal
Core-Hole pseudopotential group
Please select a pseudopotential group, which provide the ground-state an
downloaded from this repository.
Group: pseudo\_demo\_pbe
Select core-level

Advanced settings

XPS Settings

he list of core-levels to be considered for analysis.

C\_1s

H, not supported by the selected pseudo group

#### Step 4 Result



#### ✓ Step 3: Choose computational resources

#### Codes

Select the code to use for running the calculations. The codes on the local machine (localhost) are installed by default, but you can configure new ones on potentially more powerful machines by clicking on "Setup new code".

| pw.x:          | pw-7.0@merlin-cpu                      | ~   | Setup new co | de                |    |         |    |
|----------------|----------------------------------------|-----|--------------|-------------------|----|---------|----|
| Reso           | urces                                  |     |              |                   |    |         |    |
| Specificalcula | the resources to use for the pw. tion. | х   | Nodes        | 1                 | CP | Us/node | 44 |
| Para           | lelization                             |     |              |                   |    |         |    |
| Specify        | / the number of k-points pools for     | IS. |              | Number of k-pools | 4  |         |    |
|                |                                        |     | Submit       |                   |    |         |    |

#### https://aiidalab-ge.readthedocs.io/howto/xps.html

#### Xing Wang

We also maintain a few official cloud-backed deployments <u>https://www.aiidalab.net/deployments/</u> http://aiidalab.psi.ch/



• Docker image: <u>aiidalab/qe:latest</u>, with pre-built environments, e.g., pseudopotentials, code setup.





٠

How to access?

### Code tutorial (Part 1)



Run the docker image

docker run -p 8888:8888 superstar54/qeapp-tutorial

Click File Manager icon

Go to /home/jovyan/tutorial/

Open the tutorial notebook, and follow the guides there.

### Code tutorial (Part 2)



Run the docker image

docker run -p 8888:8888 superstar54/qeapp-tutorial

Then follow this tutorial:

https://aiidalab-ge.readthedocs.io/howto/xps.html

#### Conclusions



- AiiDAlab Quantum ESPRESSO app allows researchers to arrange DFT calculations on the web browser directly without writing any code.
- QEApp is modularized and pluggable, by using plugin to extend its functionality. Developers can maintain and share their plugin easily.
- QEApp serves as an optimal platform for seamlessly incorporating the theoretical advancements while concurrently facilitating accessibility for both experimentalists and theorists within the scientific community.

### Acknowledgements - AiiDA, AiiDAlab, Materials Cloud









Roberto

Bendinelli

(EPFL)



Giovanni Pizzi (PSI)



Marnik

Bercx

(EPFL)

Louis Ponet (EPFL)



Bonacci

(PSI)



Dou Du (EPFL)

Francisco F.

Ramirez

(EPFL)

Guillaume Kristjan Eimre Fraux

Chris

Sewell

(EPFL)

(EPFL)

Thomas

Schulthess

(ETHZ,CSCS)



(EPFL)

Leopold

Talirz

(Microsoft)

Valeria Granata (EPFL)

Sebastiaan Daniel Hollas P. Huber (Microsoft) (U. Bristol)

François Liot (EPFL)



Nicola



Jusong

Xing Wang (EPFL) Aliaksandr Yakutovich (Empa)

Yu (EPFL)

XPS and XAS app: Collaborate with Dr. Prezzi's group (CNR-NANO Modena), Dr. Jurii Timrov (PSI)





And all former team members, who actively contributed with ideas and code to make these platforms what they are today.

loost

VandeVondele

(ETHZ.CSCS)

32