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simulating core-hole spectroscopy with theory is the best 
way to link the experimental observables to the 
chemistry and physics…

…but theory is hard! – all too often, simulations are:

o inefficient; time- and resource intensive

o reliant on legacy/unmaintained codes

o the preserve of expert theoreticians

…and it’s easier to forget about it!
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deep neural nets can make simulating and interpreting core-hole 

spectra accurate, affordable, fast, and easy!
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neural net design, 
development, and 

optimisation
(Dr. Conor Rankine)

simulating chemical 
dynamics

(Clelia Middleton)

simulating
T-jump

spectroscopy
(Dr. Marwah Madkhali)

new X-ray 
spectroscopies

(Luke Watson)
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modelling 
polyoxometalates         

(Dr. Emanuele Falbo)
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theoretical K-edge X-ray spectrum
popular codes | hours | many CPUs 

deep neural net prediction
XANESNET | a second | one CPU 

average error on peak intensities (%) 2.9

average accuracy on peak positions (eV) 0.8

metrics‡

theory (FDMNES)
deep neural net (XANESNET)

‡ evaluated on 2,500 first-row transition metal (Ti–Zn) complexes

X-ray Spectroscopy | Results | Dataset | Model | Lifting The Lid | Outlook



Teaching Core-Hole Spectroscopy to a Deep Neural Network

X-ray Spectroscopy | Results | Dataset | Model | Lifting The Lid | Outlook



Teaching Core-Hole Spectroscopy to a Deep Neural Network

X-ray Spectroscopy | Results | Dataset | Model | Lifting The Lid | Outlook

o the (GFN2-xTB optimised) Cartesian coordinates 
of 30k transition metal (Ti–Zn) complexes were 
selected as a subsample of the tmQM dataset

o XTB: github.com/grimme-lab/xtb

o XAS were calculated using LSDA DFT and multiple 
scattering theory (MST) under the ‘muffin-tin’ 
approximation in FDMNES

o FDMNES: fdmnes.neel.cnrs.fr
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o the local environment around each X-ray absorption 
site is encoded as a feature vector of weighted atom-
centred symmetry functions (WACSFs)

𝑮𝑖 = 𝐺𝑖,1
2 , … , 𝐺𝑖,𝑛

2 , 𝐺𝑖,1
4 , … , 𝐺𝑖,𝑚

4

n G2 features
two-body terms

(radial information)

m G4 features
three-body terms

(angular information)

µ
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(two-body terms)
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internuclear distance information is encoded in these terms

angular information is encoded in these terms

the cutoff function
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dataset

input outputhidden layers
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the feature importance can be assessed by…

o scrambling the values of a feature

o assessing the performance penalty

o the greater the performance penalty, the greater 
the importance of the feature to the neural net

dataset
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1st coordination shell
(light elements; C, N, O, etc.)

1st coordination shell
(heavy elements; S, P, Cl, etc.)

2nd coordination shell
(light elements; C, N, O, etc.)

2nd coordination shell
(heavy elements; S, P, Cl, etc.)

histogram (upper panel) of radial distances (rij) and bar plot (lower panel) of G2 feature 
importance for G2 features placed at a distance μ; data are for the Fe K-edge

o the feature importance reflects the 
density of structural information

o the neural net focuses on the local 
structural information 

1st shell >> 2nd shell > 3rd shell
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examining the feature importance over two spectral windows reveals 
how the neural net reproduces more of the expected physics

1 2

low-energy window
−3.0 → +3.0 eV

high-energy window
+50.0 → +56.0 eV

low-energy photoelectrons
multiple scattering

high-energy photoelectrons
single scattering
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bar plot of difference (high-energy 
minus low-energy) G2 feature 
importance for G2 features placed at a 
distance μ; data are for the Fe K-edge

12

features near the X-ray 
absorption site

o higher feature importance 
in the high-energy window 
(+50.0 → +56.0 eV)

o single scattering

features far from the X-ray 
absorption site

o higher feature importance 
in the low-energy window 
(−3.0 → +3.0 eV)

o multiple scattering

−
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TODAY

o accurate, affordable, fast, and easy predictions 
of theoretical XAS (and also XES)

o quantification of uncertainty in predictions

o proven applications to ‘real-world’ problems in 
chemistry and materials science

o explicit inclusion of electronic information, e.g. 
oxidation/charge/spin state, orbital information

TOMORROW

o approaches for data augmentation and 
intelligent/guided dataset growth

o transfer learning using experimental datasets



Thanks Everyone!
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