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ABSTRACT 

In this work we introduce an approach to decrease dimensions of a field-effect heterotransistors. The ap-

proach based on manufacturing field-effect transistors in heterostructures and optimization of technologi-

cal processes. At the same time we consider possibility to simplify their constructions. 
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1. INTRODUCTION 

One of the actual questions of the solid state electronics is increasing of integration rate of ele-

ments of integrated circuits [1-14]. At the same time with decreasing of integration rate of ele-

ments of integrated circuits one can find decreasing of dimensions of the elements. In the present 

time it is known several approaches to decrease dimensions of elements of integrated circuits and 

their discrete analogs. Two of them are laser and microwave types of annealing of dopants and 

radiation defects [15-17]. Using this approaches leads to generation inhomogenous distribution of 

temperature in annealed materials. Just this inhomogeneity leads to decreasing dimensions of 

elements of integrated circuits and their discrete analogs. Another approach to decrease the above 

dimensions is doping required areas of epitaxial layers of heterostructures by dopant diffusion or 

ion implantation. However optimization of annealing of dopant and/or radiation defects is re-

quired in this case [18,19]. It is also attracted an interest radiation processing of doped materials. 

The processing leads to changing distribution of concentration of dopants [20]. The changing 

could also leads to decrease dimensions of elements of integrated circuits and their discrete ana-

logs [21-23]. 
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Fig. 1. Heterostructure, which consist of a substrate and epitaxial layer with several sections. Structure in 

deep of heterostructure 

In this paper we analysed redistribution of concentration of dopant with account redistribution of 

radiation defects in the considered heterostructure, which is presented in Fig. 1. Some sections 

have been manufactured in epitaxial layer so, as it is shown in the Fig. 1. Dopants have been in-

fused or implanted in the sections to produce required types of conductivity (n or p). Farther an-

nealing of dopant and/or radiation defects should be annealed. Main aim of our paper is analysis 

of dynamic of redistribution of dopant and radiation defects in considered heterostructure during 

annealing. 

2. METHOD OF SOLUTION 

To solve our aims we determine spatio-temporal distribution of concentration of dopant. To de-

termine the distribution one shall solve the following equation [1,3-5] 
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Boundary and initial conditions for the equation are 
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The function C(x,y,z,t) describes the spatio-temporal distribution of concentration of dopant; T is 

the temperature of annealing; DС is the dopant diffusion coefficient. Dopant diffusion coeffi-

cient is different in different materials. The diffusion coefficient is also depends on tem-

perature of annealing with account Arrhenius law. Dependences of dopant diffusion coef-

ficients could be approximated by the following function [3,24-26] 
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The multiplier DL (x,y,z,T) depends on coordinate and temperature (due to Arrhenius law); P 

(x,y,z,T) is the limit of solubility of dopant; the parameter γ  is different in different materials and 

should be integer in the following interval γ ∈[1,3] [3]; the function V (x,y,z,t) describes the spa-
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tio-temporal distribution of concentration of radiation vacancies; parameter V* describes the equi-

librium concentration of vacancies. Dependence of dopant diffusion coefficient on concentration 

has been described in details in [3]. It should be noted, that diffusive type of doping did not leads 

to radiation damage of materials and ζ1=ζ2=0. We determine spatio-temporal distributions of con-

centrations point radiation defects by solving the following system of equations [25,26] 
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with boundary and boundary conditions 
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Here ρ =I,V; the function I (x,y,z,t) describes the spatio-temporal distribution of concentration of 

interstitials; Dρ(x,y,z,T) are the diffusion coefficients of vacancies and interstitials; terms 

V
2
(x,y,z,t) and I

2
(x,y,z,t) corresponds to generation of divacancies and diinterstitials, respectively; 

kI,V(x,y,z,T), kI,I(x,y,z, T) and kV,V(x,y,z,T) are the parameters of recombination of point radiation 

defects and generation their complexes, respectively. 

 
Spatio-temporal distributions of concentrations of simplest complexes of radiation defects (diva-

cancies ΦV (x,y,z,t) and diinterstitials ΦI (x,y,z,t)) have been determine by solving  by solving the 

following system of equations [25,26] 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )



















−+






 Φ
+

+






 Φ
+






 Φ
=

Φ

−+






 Φ
+

+






 Φ
+






 Φ
=

Φ

Φ

ΦΦ

Φ

ΦΦ

tzyxVTzyxktzyxVTzyxk
z

tzyx
TzyxD

z

y

tzyx
TzyxD

yx

tzyx
TzyxD

xt

tzyx

tzyxITzyxktzyxITzyxk
z

tzyx
TzyxD

z

y

tzyx
TzyxD

yx

tzyx
TzyxD

xt

tzyx

VVV
V

V

V
V

V
V

V

III
I

I

I
I

I
I

I

,,,,,,,,,,,,
,,,

,,,

,,,
,,,

,,,
,,,

,,,

,,,,,,,,,,,,
,,,

,,,

,,,
,,,

,,,
,,,

,,,

2
,

2
,

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

        (6) 



International Journal of Recent advances in Physics (IJRAP) Vol.4, No.1, February 2015 

46 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )



















−+






 Φ
+

+






 Φ
+






 Φ
=

Φ

−+






 Φ
+

+






 Φ
+






 Φ
=

Φ

Φ

ΦΦ

Φ

ΦΦ

tzyxVTzyxktzyxVTzyxk
z

tzyx
TzyxD

z

y

tzyx
TzyxD

yx

tzyx
TzyxD

xt

tzyx

tzyxITzyxktzyxITzyxk
z

tzyx
TzyxD

z

y

tzyx
TzyxD

yx

tzyx
TzyxD

xt

tzyx

VVV
V

V

V
V

V
V

V

III
I

I

I
I

I
I

I

,,,,,,,,,,,,
,,,

,,,

,,,
,,,

,,,
,,,

,,,

,,,,,,,,,,,,
,,,

,,,

,,,
,,,

,,,
,,,

,,,

2
,

2
,

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

 

 

with boundary and initial conditions 
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Here DΦI(x,y,z,T) and DΦV(x,y,z,T) are diffusion coefficients of diinterstitials and divacancies; kI 

(x,y,z,T) and kV (x,y,z,T) are parameters of decay of complexes. 

 
It should be noted, that nonlinear equations with space and time varying coefficients are usually 

used to describe physical processes. Although the equations are usually solved in different limit-

ing cases [27-30]. Spatio-temporal distribution of concentration of dopant have been calculated 

by using method of averaging of function corrections [21,31] with decreased quantity of iteration 
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The second-order approximations and approximations with higher orders of concentration of do-

pant, concentrations of radiation defects and temperature have been calculated framework stan-

dard iteration procedure of method of averaging of function corrections [21,31,32]. Framework 

the approach to calculate n-th-order approximations of the above concentrations and temperature 
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we replace the required functions C (x,y,z,t), I (x,y,z,t), V (x,y,z,t), ΦI (x,y,z,t) and ΦV (x,y,z,t) in the 

right sides of Eqs. (1), (4), (6) on the following sums αnρ+ρ n-1(x,y,z,t). The replacement gives us 

possibility to obtain the following equations for the second-order approximation of above concen-

trations 
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Farther we obtain the second-order approximations of concentrations of dopant and radiation de-

fects by integration of the left and right sides of the Eqs. (8)-(10) 
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We determine average values of the second-order approximations of the required functions by 

using the following standard relations [21,31,32] 
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Relations for the average values α2ρ could be obtain by substitution of the second-order approxi-

mations of the considered concentrations (8a)-(10a) and their the first-order approximations into 

the relation (11) 
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Value of the parameter α2C and final form of the appropriate equation depend on value of the pa-

rameter γ. 
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Farther we analyzed spatio-temporal distributions of concentrations of dopant and radiation de-

fects by using their the second-order approximations. Usually the second-order approximations of 

calculated values gives us possibility to obtain main physical results. 

 

3. DISCUSSION 

 

In this section we analyzed dynamics of redistribution of dopant and radiation defects during an-

nealing. The Figs. 2 and 3 show distributions of concentrations of infused and implanted dopants 

in heterostructure, which consist of two layers, respectively. In this case we consider doping of 

sections of epitaxial layer in situation, when dopant diffusion coefficient in doped materials is 

larger, than in nearest areas. The Figs. 2 and 3 show, that presents of interface between materials 

of heterostructure gives us possibility to manufacture more compact field-effect transistor in 

comparison with field-effect transistor in homogenous materials. 

 

To increase compactness the considered field-effect transistor it is attracted an interest optimiza-

tion of annealing of dopant and/or radiation defects. Reason of this optimization is rather ho-

mogenous distribution of dopant and unnecessary doping of materials of heterostructure outside 

the considered sections. During short-time annealing dopant can not achieves interface between 

materials of heterostructure. We optimize annealing time framework recently introduced criterion 

[18,19,21-23]. Framework the criterion we approximate real distributions of concentrations of 

dopants by step-wise functions. We minimize the following mean-squared error to estimate opti-

mal values of annealing time 

 
 

 
Fig.2. Typical distributions of concentration of dopant.  

 

The dopant has been infused in the heterostructure from Fig. 1. The direction of the infusion is 

perpendicular to interface between epitaxial layer substrate. The distributions have been calcu-

lated under condition, when value of dopant diffusion coefficient in epitaxial layer is larger, than 

value of dopant diffusion coefficient in substrate. Increasing of number of curves corresponds to 

increasing of difference between values of dopant diffusion coefficient in layers of heterostruc-

ture 
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Fig.3. Typical distributions of concentration of dopant.  

 

The dopant has been implanted in the heterostructure from Fig. 1. The direction of the implanted 

is perpendicular to interface between epitaxial layer substrate. The distributions have been calcu-

lated under condition, when value of dopant diffusion coefficient in epitaxial layer is larger, than 

value of dopant diffusion coefficient in substrate. Increasing of number of curves corresponds to 

increasing of difference between values of dopant diffusion coefficient in layers of heterostruc-

ture. Curves 1 and 3 corresponds to annealing time Θ = 0.0048(Lx
2
+Ly

2
+Lz

2
)/D0. Curves 2 and 4 

corresponds to annealing time Θ = 0.0057(Lx
2
+ Ly

2
+Lz

2
)/D0. 
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Fig.4. Optimized annealing time of infused dopant as functions of parameters.  

 

Curve 1 describes dependence of annealing time on the relation a/L for ξ = γ = 0 for equal to each 

other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 describes de-

pendence of annealing time on the parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 describes de-

pendence of annealing time on the parameter ξ for a/L=1/2 and ξ = γ = 0. Curve 4 describes de-

pendence of annealing time on the parameter γ for a/L=1/2 and ε  = ξ = 0 
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Fig.5. Optimized annealing time of implanted dopant as functions of parameters.  

 

Curve 1 describes dependence of annealing time on the relation a/L for ξ = γ = 0 for equal to each 

other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 describes de-

pendence of annealing time on the parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 describes de-

pendence of annealing time on the parameter ξ for a/L=1/2 and ξ = γ = 0. Curve 4 describes de-

pendence of annealing time on the parameter γ for a/L=1/2 and ε  = ξ = 0 
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Here ψ (x,y,z) is the idealised step-wise distribution of concentration of dopant, which would like 

to obtain for maximal decreasing of dimensions of transistors. Dependences of optimal values of 

annealing time are presented on Figs. 4 and 5 for diffusion and ion types of doping, respectively. 

It should be noted, that after finishing implantation of ions of dopant it is necessary to anneal of 

radiation of defects. It could be find spreading of distribution of dopant during the annealing. In 

the ideal case distribution of dopant achieves interface between materials of heterostructure dur-

ing annealing of radiation defects. It is necessary to anneal dopant after finishing of annealing of 

radiation defects in the case, when the dopant did not achieves the interface between layers of 

heterostructure during annealing of radiation defects. In this situation optimal value of continu-

ance of additional annealing is smaller, than continuance of annealing of infused dopant. It should 

be noted, that introduced approach to increase integration rate of field-effect transistors gives us 

possibility to simplify their common construction. 

 

4. CONCLUSIONS 

In this paper we introduce an approach to increase integration rate of field-effect heterotransis-

tors. Framework the approach one should manufacture a heterostructure with special construction. 

After that appropriate areas of the heterostructure with account construction should be doped by 

diffusion or ion implantation. After the doping dopant and/or radiation defects should be an-

nealed. It has been formulated a recommendation to optimize annealing to  

 

The approach based on manufacture heterostructure with special construction, doping of required 

areas of heterostructure by dopant diffusion or ion implantation and optimization of annealing of 

dopant and/or radiation defects. The optimization of annealing gives us possibility to decrease 

dimensions of transistors with increasing their integration rate. At the same time one can obtain 

simplification of construction of integrated circuits. 
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