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ABSTRACT 
The purpose of this paper is to introduce researchers to correlation coefficient calculation. The 
Pearson Product Moment Correlation Coefficient is the most common type of correlation; however, 
the Pearson correlation coefficient may not be applicable in all cases. The Pearson r is used only 
when the data of the dependent and independent variables are quantitative. There are many types of 
correlation coefficient. The correct choice of correlation coefficient depends on the classification of 
the independent variable (X) and dependent variable (Y). Data are classified into one of three types: 
quantitative, nominal and ordinal. This writing explains various types of correlations on the basis of 
X-by-Y data type combination. Using the wrong type of correlation coefficient would lead to faulty 
inference; as the result, the researcher would commit Type 2 error. 
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1.0 INTRODUCTION 
Correlation coefficient is commonly used to measure the level of association between variables: 
independent (Y) and dependent (X) (Boddy and Smith, 2009). Incorrect type of correlation 
coefficient would lead to Type 2 error. Type 2 error is defined as a wrongful acceptance of the null 
hypothesis (Sherman, 2002). The objective of this paper is to provide a clear guidance on how to 
use correct type of correlation coefficient. We begin with a simple set up of linear equation in a 
form of Y a bX c    where a is the Y-intercept, b is the slope of the linear regression line, and c 
is the forecast error. In basic statistics, the linear regression line equation is obtained through the 
following three statements: 
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The argument in Y a bX c    asserts that there is a relationship between X and Y. This 

relationship is embodied in the slope b. The level of this association or relationship is measured by 
the ratio of the deviation in Y with respect to the change in X adjusted by b. This simple procedure 
may become erroneous if we use the Pearson correlation coefficient for all cases. The Pearson r is 
appropriate only when both X and Y are quantitative. However, in cases dealing with non-
quantitative data, such as demographic information or preferential ranking, the Pearson r would not 
be applicable. This paper intends to address these non-Pearson r cases. 
 
2.0 TYPES OF CORRELATION COEFFICIENT 
Reliability test uses correlation coefficient as one of the means to test the degree of association. In 
reliability context, correlation coefficient is interpreted as the ability to replicate the data of a prior 
study as the current experiment represents one array and the prior study represents the second array. 
The function of correlation coefficient is to give an index of association between two data arrays. 
The researcher must be aware of various types of correlation coefficient calculations and which one 
to use in a given situation. The situation is defined by the type of data available. The variable may 
be defined as X  and Y . The objective of correlation coefficient calculation is to determine the 
relationship between X  and Y through the measurement of association between X  and Y . The 
table below illustrates the type of data crossing according to data types. 
 
Table 1. Types of correlation coefficient classified by data types 

Variable 
(X,Y) 

Quantitative 
X 

Ordinal 
X 

Nominal 
X 

Nota 
Bene 

Quantitative Y 
 

Pearson r  Biserial br  Point 
Biserial pbr  

Ordinal Y 
 

Biserial br  Spearman rho 
Tetrachoric & 
Polychoric 

Rank 
Biserial rbr  

Nominal Y Point 
Biserial pbr  

Rank 
Biserial rbr  

Phi, L, C, 
Lambda 

Determine the type of data 
for X and Y then select the 
appropriate correlation. 

 
This section of the writing includes ten types of correlation coefficients; each type of the 

correlation coefficient is used according to the characteristic of the data arrays: quantitative, ordinal, 
or nominal for the variables X and Y . There are nine common correlation coefficient types; one 
additional type is a variance of the tetrachoric correlation ( 2 2 ) made to accommodate K L  
contingency data for ordinal-x-ordinal data. This extension of Pearson’s 2 2  contingency is called 



 International Journal of Research & Methodology in Social Science 
Vol. 1, No. 4, p.27 (Oct. – Dec. 2015). Online Publication 

 27

polychoric correlation. Before examining each type of correlation, it is important to be familiar 
with data classification. 
 
2.1 Pearson correlation coefficient 
The Pearson correlation coefficient is the most commonly used form of correlation. The Pearson r  
is used when both X  and Y are quantitative data. Quantitative data is the numerical measurement 
produced by the instrument without any intermediary interpretation, translation, or transformation. 
The raw data from the response itself may be read as a numerical data. This type of data may be 
accommodated by the Pearson correlation coefficient. The Pearson correlation coefficient is given 
by: 
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Another means to define r is to use the slope of the linear equation Y a bX c    as the 

parameter and multiply the slope by the quotient of the standard deviation of X divided by the 
standard deviation of Y, thus: 
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 where 1 2: ( , ,..., )nX x x x  and 1 2: ( , ,..., )nY y y y  (3) 

 
and the standard deviation is generally given by: 
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 The value of the correlation coefficient ranges between -1 and +1. A value of zero means 
that there is no association between the two arrays. Negative coefficient means that there is an 
obverse association. If there is an increase in X, there is a corresponding decrease in Y and vice 



 International Journal of Research & Methodology in Social Science 
Vol. 1, No. 4, p.28 (Oct. – Dec. 2015). Online Publication 

 28

versa. A positive coefficient means that there is a perfect association. If there is an increase in X, 
there is also an increase in Y. 
 
2.2 Biserial correlation coefficient 
Biserial correlation is used when the X  array is quantitative and the Y array is ordinal data. For 
example, X may represent the raw score of test performance of n  number of students and Y  
represents the ranking placement of students according to their test scores, i.e. 100 = 1st place, 90 = 
2nd, 80 = 3rd, and so on. The biserial correlation is given by: 
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Y

pq
Y Y

Y
r



   
           (5) 

 
where … 
 Y  = Y score means for data pairs with : (1,0)x : 
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 q  = 1 p ; 
 p  = proportion of data pairs with scores : (1,0)x ; and 

 Y  = population standard deviation for the y data and Y is the height of the standardized 

normal distribution at point z where ( ' )P z z q   and ( ' )P z z p  . 
 Note that the probability for p and q  may be given by the Laplace Rule of Succession 
(Laplace, 1814): 
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p
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 where s  = number of success and n = total observations.  (6) 

 
1q p            (7) 

 
The population standard deviation ( ) may not be known; however, it may be determined 
indirectly through two-steps process: (i) t-equation and (ii) Z-equation. 
 

/

x
t
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
           (8) 

 
From the t-equation, determine the population mean ( ), thus: 
 

S
t x

n
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         (9) 

 
With known  , the population standard deviation may be determined through the Z-equation. The 
Z-equation is given by: 
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Now solve for the population standard deviation ( ), thus: 
 
 

x
n

Z

    
 

         (11) 

 
 Note that p  and q  are used when discrete probability is involved. In point biserial 
correlation, discrete probability is used because Y (response variable) exists as a ranked or ordinal 

variable. The response  1 2: , ,... nY y y y  either falls with a rank placement: [1 , 2 ,..., ]st nd thi  or it 

does not. This “either or” argument dichotomizes the ordinal variable into {Yes | No} identifier 
which could be score as Yes = 1 and No = 0. Therefore, p  and q  of the discrete binomial 
probability is used. The test statistic for the binomial probability is given by: 
 

bin

X
p

nZ
pq
n


   See infra. 

 
2.3 Point biserial correlation coefficient 
There are two cases where point-biserial correlation is used: (i) X is nominal and Y is quantitative 
data, and (ii) X  is quantitative data and Y is nominal. In addition, if one variable, such as Y  in the 
series of X  and Y  is dichotomous, point-biserial correlation is also used. Dichotomous data are 
categorical data that gives a binomial distribution. This type of distribution is produced by {Yes | 
No} answer category. Although the point biserial correlation is equivalent to the Pearson 
correlation, the formula is different from the Pearson product moment  correlation. The 
mathematical equivalence is: XY pbr r . The point-biserial correlation ( pbr ) is given by: 
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where ns  is the standard deviation of the combined population or pooled standard deviation, thus: 
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In order to obtain nS , both arrays must be combined: 1 2n n n  , and the standard 

deviation of the combined string n  is calculated to obtain ns . This pooled standard deviation is 

presented as nS . 

The term 1M  is the mean value for the continuous 1 2: , ,..., nX x x x ; therefore:
1

1
1 1

1
n

i
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M X
n 
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for all data points in group 1 with size 1n  and 
2

0
2 1

1 n

i
i

M X
n 

  . The combined sample size is given 

by: 1 2n n n  . If a data comes from only one sample of the population, 1ns  is used for the 

standard deviation. Thus pbr  is written as: 
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        (14) 

 
The standard deviation for the “sample only” data set is given by: 
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The two equations using ns  and 1ns  are equivalent, thus; 
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The test statistic is the t-test which is given by: 
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The degrees of freedom is 1 0 2v n n   . If the data array of X  is normally distributed, a more 

accurate biserial coefficient is given by: 
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where u is the abscissa or Y  of the normal distribution (0,1)N . Normal distribution may be 
verified by the Anderson-Darling test (Stephen, 1974, 1986). 
 There are three types of point-biserial correlation, namely (i) the Pearson correlation 
between item scores and total test scores including the item scores, (ii) the Pearson correlation 
between item scores and total test score excluding the item scores, and (iii) correlation adjusted for 
the bias resulted from the inclusion of the items scores. The correlation adjusted for the bias 
resulted from the inclusion of the items scores is given by: 
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 Note that for point-wise or specific probability of X  value, the binomial distribution for the 
categorical data is given by: 
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where n  is the total number of observations, X  is the specified value to be predicted, p  is the 
probability of success of the observed value over the total number of events, and q  is 1 p  or the 
probability of failure. The test statistic for the binomial distribution is: 
 

bin

X
p

nZ
pq
n


           (20) 

 
Recall that the term a  in the 2 2  contingency table is the frequency of for perfect match of {Yes: 
observed} and {Yes: forecast}. The frequency a is equal to X  in ( )P X as illustrated in the table 
below. 
 
Table 2. Contingency Table 2 x 2 

 Y  
 YES NO Forecast 

YES a  b  ( )P F a b   
NO c  d  1 ( )P F  X

 

Observation ( )P O a c   1 ( )P O  a b c d    
 
 
The term a b c d    is the combined joint probability of all events in the set. 
 
2.4 Spearman rho 
The Spearman correlation coefficient is used when both the independent variable (X) and dependent 
variable (Y) are ordinal. Ordinal data is defined as a ranked order type of a well order set (Dauben, 

1990; Moore, 1982; Suppes, 1972): {first, second, third, …, thn }. However, there is a claim made 
by Lehman that the Spearman coefficient can be used for both continuous and discrete variable 
(Lehman, 2005). This section focuses on the ordinal data of both dependent and independent 
variables. 
 Assume that there are two arrays of data called independent variable: iX  and dependent 

variable: iY . The ordinal data of these variable are ix  and iy  respectively. The correlation 

coefficient of  ix  and iy  is given by: 
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i ii

i ii i
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x x y y

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
 

       (21) 

 
There is an alternative calculation of rho through the use of the difference of  two ranked arrays 
(Myers and Well, 2003; Maritz, 1981) ix  and iy , thus: 

 

 2

1 6

1

id

n n







           (22) 

 
where i i id x y   and n  is the number of elements in the paired set: i  in d . This method is not 

used if the researcher is looking for top X . Generally, equation (21) is used. 
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 The test statistic used for the Spearman rank correlation is given by the Z-test or t-test. In 
order to use the Z-score test, it is necessary to find the Fisher’s transformation of r . The Fisher’s 
transformation for the correlation is given by: 
 

1 1
( ) ln

2 1

r
F r

r

    
         (23) 

 

where x

y

S
r b

S

 
   

 
 and ln is the natural log of base 2.718...e   The test statistic under the Z-

equation is given by: 
 

3
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1.06

n
z F r
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         (24) 

 
The null hypothesis is that 0r   which means that there is a statistical independence (Choi, 1977; 
Feiller et al., 2003) or no dependent association. In the alternative, the test statistic may also be 
determined by the t-test thus: 
 

2
2

1
r

n
t r

r





          (25) 

 
The degree of freedom (Press et al., 1992) is given by 2df n  . The argument in support of 

rt approach rests on the idea of permutation (Kendall and Stuart, 1973). The equivalence of the 

above determination is the Kendall’s tau (Kowalczyk, et al., 2004). Kendall’s tau is beyond the 
scope of the present topic. 
 
2.5 Tetrachoric correlation coefficient 
The tetrachoric correlation coefficient is used when both the independent ( X ) and dependent (Y ) 
variables are dichotomous or binary data and both are ordinal. Generally, there are two correlation 
tests used for binary data, namely phi-coefficient and tetrachoric correlation coefficient. The data is 
commonly presented in 2 2  contingency table. Below is an example of the 2 2  contingency table 
and its scoring. 
 
Table 3. Contingency table for frequency counts 

Y   
Yes  No  

 

Yes  a  b  Fp   
X  No  c  d  1 Fp  

 op  1 op   

 
 A series of definition for the terms used in tetrachoric correlation coefficient must be 
provided in order to gain a clearer understanding. The definitions are based on the 2 2  
contingency table below: 
 

op  and Fp  = marginal frequencies;  

op  = probability of the observed and  
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Fp  = probability of the forecast; 

a   = joint frequency of the contingency table 
O   = observations which is comprised of 1 2: ( ,..., )O O O OnO X x x x    

F   = forecast which is comprised of 1 2: ( ,..., )F F F FnF X x x x    

 
The three frequencies: a , op  and Fp  determine the values in the table. The bias of this 

determination is given by: 
 

F

o

P
Bias

P
  or 

a b
Bias

a c





       (26) 

 
Juras and Pasaric (2006) formally explained tetrachoric correlation coefficient as: 
 

“Let  1
O Oz P   and  1

F Fz P   be the standard normal deviates (SND) 

corresponding to marginal probabilities OP  and FP , respectively. The tetrachoric 

correlation coefficient (TCC), introduced by Pearson (1900), is the correlation 
coefficient r  that satisfies 
 

 1 2 1 2, , /
O Fz z

a x x r dx dx
 

   ,    (2) 

 
Where  1 2, ,x x r  is the bivariate normal p.d.f. 

 

     2 2
1 2 1 1 2 222

1 1
, , exp 2

2 12 1
x x r x rx x x

rr




 
        

.(3) 

 The line 1 Ox z  and 2 Fx z  divide the bivariate normal into four quadrants whose 

probabilities correspond to relative frequencies in the 2 2  table. 
Clearly, the SSDN  Oz  and Fz  are uniquely determine by OP  and FP , respectively. 

The double integral in (2) can be expressed as (National Bureau of Standards, 1959): 
 

 2 2 2
arccos

1 1
exp 2 cos cosec

2 2 O F O Fr
a z z z z d


  


        (4) 

 
Showing that the joint frequency a  is a monotone function of r is well defined by (2).” 
See Josip Juras and Zuran Pasaric (2006). “Application of tetrachoric and polychoric 
correlation coefficients to forecast verification.” GEOFIZIKA, Vol. 23, No. 1, p. 64. 

 
 Another version, the tetrachoric correlation coefficient is defined as the solution given by tcr  

to the integral equation: 
 

2 1 2 2 11(1 ) 1(1 )
( , , )

X Y
a tcp p

p x x r dx dx
 

   
        (27) 

 
where ( )x  is the standard normal distribution and 2 1 2( , , )x x   is the bivariate standard normal 

density function. The term ap  may be written as: 
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    1 11 , 1 ,a X Y tcp p p r             (28) 

 
 These formal definitions are not helpful for the actual calculation of the tetrachoric 
correlation coefficient. For practical purpose, assume that the 2 2  contingency table below as the 
basis for further discussion of the tetrachoric correlation coefficient: tcr . 

 
Table 4. Contingency table for joint probabilities 

Y   
.Pos  .Neg  

 

.Pos  ap  bp  Xp   
X  .Neg  cp  dp  1 Xp  

 Yp  1 Yp   

 
 Juras and Pasaric gave an extensive treatment of the tetrachoric correlation coefficient when 
they provided the Peirce measure ( Ps ), Heidke measure ( Hs ) and the Doolitlle measure ( Ds ) as 

the estimate of tcr . All these measures are comparable calculation for the tetrachoric correlation 

coefficient. These measures are provided as: 
 

(1 )
O F

P
O O

a P P
s

P P





         (29) 
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H
O F O F

a P P
s

P P P P




 
        (30) 

 

   1 1
O F

D
O O F F

a P P
s

P P P P




 
       (31) 

 
In addition, the Yule’s odd ratio skill score is said to also give the approximation of the tetrachoric 
correlation coefficient: 
 

 1 2 2
O F

Y
O F O F

a P P
S

a P P a P P




     
      (32) 

 
Finally, the actually tetrachoric correlation coefficient is given by  
(Juras, 1998; Johnson and Kots, 1972): 
 

sin (4 1)
2rS a
   
 

         (33) 

 
Note that S  with subscripts is equivalent to tcr . One alternative to calculating tetrachoric 

correlation coefficient is given by the alpha ratio: 
 

1
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




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          (34) 
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where 
/ 4AD
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
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 and the equivalence of ABCD are 

a
A P ; 

b
B P ; 

c
C P and 

d
D P . This 

short-hand version is less complicated than the Pearson’s original version (Pearson, 1904). Yet 
another shorthand formula for tetrachoric correlation coefficient is given by: 
 

 
180

cos
1 /

tcr
BC AD

 
 
  

        (35) 

 
where the contingency table is given by: 
 

Y   
0  1 

 

1 A  B  A B   
X  0  C  D  C D  

 A C  B D   
 
Assume that Table 8.4.0 has the following data set: 
 

Y   
0  1 

 

1 10A   5B   15A B    
X  0  5C   10D   15C D   

 15A C   15B D   30  
 
 The calculation for tcr  follows: 

 
180

cos
1 /

180 180
cos cos

1 (5)(5) /(10)(10) 1 25 /100

180 180 180
cos cos cos

1 0.501 25 /100 1 0.25

180
cos cos(120) 0.81

1.50

tc

tc

tc

tc

r
BC AD

r

r

r

 
 
  
           
                   
    
 

 

 
Using equation (34), the calculation for alpha follows: 
 

3.14 / 4/ 4 3.14 / 4
3.14 / 4

0.79

10(10) 100
4

5(5) 25

4 2.97

AD

BC






           
    

 

, then … 

 
 

1 2.97 1 1.97
0.50

1 2.97 1 3.97tcr


 

   
 
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Another means of determining the tetrachoric correlation coefficient is given by: 
 

sin
2tc

ad bc
r

ad bc

  
       

        (36) 

 
According to this method, the calculation follows: 
 

 

10(10) 5(5)
sin sin

2 2 10(10) 5(5)

100 25 10 5
sin sin

2 2 10 5100 25

5
sin sin 1.57(0.33) sin(0.52)

2 15

0.50

tc

tc

tc

tc

ad bc
r

ad bc

r

r

r

 

 



      
                    

                    
        



 

 
The result of the calculation shows that equations (10.34) and (10.36): 
 

1

1tcr







  and  sin
2tc

ad bc
r

ad bc

  
       

 produce the same result and equation 

 
180

cos
1 /

tcr
BC AD

 
 
  

 produces a higher coefficient. In comparison, equation (8.33) yields the 

following computation: 
 

 

sin (4 1)
2

sin (4(10) 1) sin (40 1) sin (39)
2 2 2

3.14
sin (39) sin 1.57(39) sin(61.23)

2

1

r

r

r

r

S a

S

S

S



  

   
 
              
     
    
 

 

 

 
The results of the computation are from various claims of method are not in agreement. 

Below are the computation of the Peirce’s measure, Heike, Doolittle and Yule. For convenience the 
following definition and value are given: 
 

10 5 15OP a c      

10 5 15FP a b      

 
The calculation for the Peirce measure follows: 
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10 (15)(15) 10 225 215

(1 ) 15(1 15) 15( 14) 210

1.02

O F
P

O O

P

a P P
s

P P

s

   
   

   


 

 
The result does not seem to be accurate because the range of a correlation coefficient is between -1 
and +1. The calculation under the Heidke measure follows: 
 

     

 

2 2 10 15(15) 2 10 225

2 15 15 2(15(15)) 15 15 2(225)

2 10 225 2( 215) 430

30 450 420 420
1.02

O F
H

O F O F

H

H

a P P
s

P P P P

s

s

  
  

     

  
  

  


 

 
Again a different number is obtained. The calculation under the Doolittle measure follows: 
 

   
10 15(15) 215

15(1 15)15(1 15) 15(14)15(14)1 1

215 215 215 215 215

21015(14)15(14) 15(14)210 210(210) 4410

1.02

O F
D

O O F F

D

D

a P P
s

P P P P

s

s

 
  

  

    



 

 
This result coincides with the Peirce measure. Lastly, under the Yule’s method the calculation 
follows: 
 

 

   

   

1 2 2

10 (15)(15) 10 225

10 1 2(15 15) 2(10) 15(15) 10 1 2(30) 20 225

215 215 215 215

10 1 60 20 225 10 39 225 390 225 165

1.30

O F
Y

O F O F

Y

Y

Y

a P P
S

a P P a P P

S

S

S




     
 

 
      

   
   

       



 

 
The result under the Yule’s measure also exceeds 1.00. Bias in each case is determined 
by: / 15 /15 1.00F OBias P P   . The results of the various measures may be summarized thus: 

 
1.02

1.02

1.02

1.30

1.00

P

H

D

Y

r

s

s

s

s

S





 
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The values appear to be consistent, except the sign for rS . With the exception of the 

negative sign of rS , the interpretation of the correlation coefficient would otherwise be consistent. 

However, with the negative rS , the rS  value would point to an opposite meaning in interpretation. 

 
Table 5. Estimating level of significance using standard score: Z 

iX  X   iX X  S    /i iZ X X S  ˆ
iZ  

1.02 0.672 0.348 0.9425 0.369 1.65 
1.02 0.672 0.348 0.9425 0.369 1.65 
1.02 0.672 0.348 0.9425 0.369 1.65 
1.30 0.672 0.628 0.9425 0.666 1.65 
-1.00 0.672 -1.672 0.9425 -1.774 1.65 

 
Table 5 shows the determining of the level of significance of the for the variance estimates 

for the tetrachoric correlation. All estimates are consistent except rS showing significant difference: 

1.774 1.65  . The above analysis deals with correlation coefficient called tetrachoric for 2 2  

contingency table. There is also a case where the categories of the contingency table is expanded to 
K L . The corresponding correlation coefficient of multiple categorical data is polychoric 
correlation coefficient. 
 
2.6 Polychoric correlation coefficient 
When both X and Y are ordinal data, i.e. X = 1st, 2nd, …, nth and Y = 1st, 2nd, …, nth , and the 
categories of the data exceeds two, the use of  polychoric correlation is suggested (Holgado-Tello et 
al., 2010). Polychoric correlation is an estimate of the correlation between two unobserved variables 
X  and Y  where both X  and Y  are continuous by using the observed variables *X  and *Y  as the 
basis. The variables *X  and *Y  are ordinal variables that are assumed to follow bivariate normal 
distribution. 
 First, collect the observations of *X  and *Y . These are ordinal data. The values of *X  
and *Y  are known as the underlying or latent variables. These variables cannot be measured by 
direct observations. For instance, IQ test is a score obtained from a test battery intended to measure 
the level of intelligence. IQ test scores are the observed data *X  and *Y ; intelligence is the 
unobservable X  and Y . In this case, IQ is the score from an indirect test used to determine 
intelligence; however, the purpose of the illustration here is to give an example of a latent variable. 
These observations may be given as: 
 

*
1
*
2

*

*

n

x

x
X

x

 
 
 

  
 
 
 


 and  

*
1
*
2

*

*

n

y

y
Y

y

 
 
 

  
 
 
 


 

 

Thus, * * *
1 2* { , ,..., }nX x x x  and * * *

1 2* { , ,..., }nY y y y . These are observed data. Assume that there are 

discrete and random variables X  and Y  (note that there is no asterisk marking this “unobserved” 
set) which relates to *X  and *Y  where 
 

i kx   if *
1k i kx     and      (37) 
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i ly   if *
1l i ly            (38) 

 
For ix  the threshold k  comes from 1 2, ,..., k    and 0    and k   . Similarly, the 

threshold for iy  is given by l  which comes from 1 2 ... l      and  0    and l   . The 

corresponding values of the observed *X  and *Y  and the unobserved X  and Y  may be 
represented as: 
 

*
1 1
*
2 2

*

*

n k

x x

x x
X X

x x

 
 
    
 
 

 


 and  

*
1 1
*
2 2

*

*

l

y y

y y
Y Y

y y

 
 
 

   
 
 

  


 

 
The joint distribution of the unobserved X  and Y  is given by: 
 

  kP x k p    for X  and       (39) 

 

  lP y l q    for Y         (40) 

 

The cloud of the unobserved variables *X  and *Y  as defined by *
ix  and *

iy  may be 

projected onto a space, thus: 
 

11 12 1

12 22 2

1 2

L

L

K K KL

  
  

  

 
 
 
 
 
 
  





  



        (41) 

 
The term KL  is called the discrete cell proportion. The objective of polychoric correlation is to 

find the value for KL . Recall that   is the joint probability of X  and Y pair that is not observed. 

 With the above set up, polychoric correlation can now be discussed. Polychoric correlation 
is developed as the result of the inadequacy of the tetrachoric correlation to handle a K L  

contingency table;
1
 recall that the tetrachoric correlation is confined to a 2 2  contingency table. In 

                                                 
1

 Ritchie-Scott used the notation as r s in labeling the contingency matrix. Zoran Pasoric and Josip Juras uses 

K L . Common statistics designated the multivariable contingency table as K K . In general, the K K  or 

K L  contingency table is provided as: 

  OBSERVATIONS  

  
1C  2C  ...  

KC   
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1900, Pearson (Pearson, 1900) introduced tetrachoric correlation calculation as an attempt to obtain 
a quantitative measurement of a continuous variable. However, Pearson’s earlier attempt was 
confined to 2 2  scenario. The work was further expanded by Ritchie-Scott (Ritchie, 1918) to 
cover a K L  scenario which became known as polychoric correlation today. Where as Pearson’s 
2 2  tetrachoric handles dichotomous data, Ritchie-Scott’s K L  handles polytomous tests. 
  The observed array *X  and *Y  are assumed to be bivariate normal, and the correlation 

between *X  and *Y  is given by   (rho) given series of unobserved data set of *
ix  and *

iy . The 

objective of polychoric correlation is to obtained the correlation of the unobserved arrays X  and Y  

from the product-moment or correlation of the observed arrays *X  and *Y  where *
ix  and *

iy  is 

jointly normally distributed. The polychoric correlation is estimated from the discrete cell 
proportion KL ; thus, this estimated value is designated as ˆKL  from the K L  contingency table 

(8.5.0). 
 The probability density function (PDF) of the bivariate normal *X  and *Y  is given by: 
 

   
2

22

1 * 2 * * *
*, *; exp

2 12 1

x x y y
x y

 
 

 
       

    (42) 

 
The cumulative distribution function (CDF) for the bivariate normal *X  and *Y  is given by: 
 

   
1 1

2 , ; *, *; * *i i x y dy dx
 

     
 

        (43) 

 
for 1ix   and 1iy  , the probability is: 

 

                                                                                                                                                                  

1C  11P  12P  ...  
2KP  1FP  

2C  21P  22P  ...  
2KP  2FP  

...  ...  ...  ...  
KKP  ...  

F
O

R
E

C
A

S
T

 

KC  1KP  2KP  ...  
KKP  FKP  

  
,1obsP  ,2obsP  ...  

,obs KP  Polychoric 

Joint 

Probability 

 

Bias =  ,1 1 , 1 0, 1/ ,..., /F F K KP P P P �  and  ,1 , 1,...,obs obs obs kP P P  . The notation above uses: 

,row columnP . Note that there is switching of observation and forecast above. This alternation does not change the 

number of interpretation of the result. 
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 11 1 1, ;              (44) 

 
The probability of 1ix   and 1iy   is a function of  . Recall that   is the correlation of the 

observed *X  and *Y  where the threshold is  1 1,  . From the cumulative distribution function 

2 , the following generalization may be made: 

 

       2 2 1 2 1 2 1 1( ) , , , ,kl k l k l k l k lh                   (45) 

 
The term klh  stands for the likelihood of event k and l occurring and this likelihood is a function of 

theta   and   is given by: 
 

   1 1 1 1 1, , ,..., , ,..., 'K L                (46) 

 
The likelihood for the discrete cell proportion is written as: 
 

( )kl klh            (47) 

 
A general statement may now be made about  ; now let  11,..., 'KL    and the likelihood of   

may be generally stated as  11[ ] ( ),..., ( ) 'KLh h h   . Now, the polychoric equation may be written 

as: 
 

( )h            (48) 
 
 Olsson (Olsson, 1979) provides a close estimate of   as the maximum log likelihood which 

is equivalent to the estimated theta ̂ . Olsson’s maximum log likelihood is given by: 
 

 
1 1

ln log
K L

kl kl
k l

L h  
 

         (49) 

 
 Recall that theta   is the likelihood function. There are three kinds of maximum likelihood 
functions used according to the type of data distribution: (i) Bernoulli distribution, (ii) normal 
distribution, and (iii) Poisson distribution. Polychoric correlation deals with ordinal data. Ordinal 
data is ranked data set. The appropriate form of maximum likelihood function type is one that is 
used for normal distribution. The maximum likelihood function for normal distribution is provided 
thus: 
 

   2
1 2 2

1
, ,..., | , exp

2 2

i
n

x
f x x x


 

  


 
  
  

     (50) 

 
which may be make into a general statement as: 
 

     2/ 2

1 2 2

2
, ,..., | , exp

2

i
n n

x
f x x x

 
 

 


 

  
  

    (51) 
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The maximum likelihood is express as the natural log of the function; therefore, 
 

 2
2

1
ln ln(2 ) ln

2 2

ix
f n n


 



 
          (52) 

 
To find the expected mean of the function, the derivative of the maximum likelihood function is 
taken by: 
 

 
2

(ln )
0ixf 

 

 
 


 which gives the expected mean as:   (53) 

 

ˆ ix

n
 
           (54) 

 
Using the same rationale, the expected standard deviation follows: 
 

   2
3

ln
0ixf n 

  

 
   


       (55) 

 

 2ˆ
ˆ ix

n




 
          (56) 

 
The above steps obtained the maximum likelihood of mean and standard deviation as the 

mean and standard deviation of the sample. This may be a biased estimate; nevertheless, for 
purposes of demonstrating how the maximum likelihood is calculated in the context of the 
maximum likelihood of ˆKL , it is an adequate explanation. 

 
2.7 Rank biserial correlation coefficient 
In a case where Y  is dichotomous and X  is rank data, rank biserial correlation coefficient is used. 
The formula for the rank biserial correlation is given by (Glass and Hopkins, 1995): 
 

1 0

1 0
2rb

M M
r

n n

 
   

         (57) 

 
where the subscripts 1 and 0 refers to the score of 1 and 0 in the 2 2  contingency table; M  is the 
mean of the frequency of the scores, and n  is the sample size. The null hypothesis is that 0rbr  , 

meaning there is no correlation. If the null hypothesis is true, the data is distributed as Mann-
Whitney U. 

The objective of the Mann-Whitney U Test is to verify the claim that the standard deviation 
of population A is the same as the standard deviation of population B; if so, then the two 
populations are identical, except for their locations, i.e. the populations in two cities have the same 
income. The case involves two population located at a different place; this is a case that could be 
termed parallel group. The claim by the alternative hypothesis ( AH ) is that the two populations are 

the same and have the same population standard deviation. The logic follows that “if the two 
standard deviations are the same, there difference, i.e. 1 2 0   , must equal to zero.” The null 
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hypothesis ( 0H ) states the obverse: “the two populations are different; their means are different. 

Therefore, 1 2 0   .” 

 The procedure for conducting the Mann-Whitney U test involves five steps. Each step is 
explained below thus: 

1. Collect a sample from each population. The sample size of the two samples may be equal or 
unequal. Mark one sample as 1n and the second sample 2n . It does not mater which one is 

designated as the first or the second sample. However, conventional practice dictates that 
treat the largest sample as 1n  and the smaller sample as 2n . 

2. Combine the two samples into one array, i.e. one set as shown below: 
 

1 2n n n           (58) 

 
3. Rank the combined sample ( n ) in an ascending order, i.e. from low to high so that the 

elements of the set is arranged as: 1 2,...n n nN  . 
 
4. calculate the test statistic for the Mann-Whitney U test according to the formula below: 

 

 1 1 2

1

1

2

w

n n n

Z W C
S

  
 

   
  
 

      (59) 

 
where … 

  1

1
1

n

lk
k

W Rank X


        (60) 

 
This ( 1W ) is called the rank sum. The standard deviation of the ranked set is given by: 

 

 
  

3
1 2

11 2 1 2

1 2 1 2

1

12 12 1

i i
i

w

n n t t
n n n n
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n n n n




         
   
 
 

   (61) 

where 1t = number of observations tied at value one; 

 2t = number of observations tied at value two, and so on. 

 C = correction factor. This number is fixed at 0.50 if the numerator if Z is 
negative and -0.50 if the numerator of Z is positive. 

 
5. Use the following decision rule to determine whether to accept or reject the null hypothesis: 
 

: 0AH   , the decision rule is governed by / 2Z Z  or 
/ 21Z Z

 . 

: 0AH   , the decision rule is governed by 
/ 21Z Z

 ; and 

: 0AH   , the decision rule is governed by Z Z . 

 
 The Mann-Whitney U test is used in the following cases: (i) the test involves the comparison 
of two populations; (ii) the values of the data is non-parametric; therefore, it is an alternative test to 
the conventional t-test; (iii) the data is classified as ordinal and NOT interval scale. “Ordinal” 
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means that the data score, i.e. answer choice, has the spacing between each score unit is unequal or 
non-constant. For example, a scale of 1 (lowest) to 5 (highest) would not be able to use the Mann-
Whitney U test. Whereas, 1st place, 2nd place, and 3rd place type of answer choice, where the 
distance between the first, second, and third are not equal, may be appropriate for this test; and (iv) 
it is said that the Mann-Whitney test is more robust and efficient than the conventional t-test. 
 “Robustness” (Portnoy and He, 2000) means that the final result is not unduly affected by 
the outliers. Outliers are extreme value. If the system is robust, it will not be affected by extreme 
value. Generally, extreme value tends to create bias estimate by the estimator because outliers or 
extreme values creates greater variance and thus larger standard deviation. This problem is 
eliminated through the use of ranking the data by arranging the combined sets of 1 2n n n   into 

one set ranking from lowest value to highest value. 
 “Efficiency” is the measure of the desirability of the estimator. The estimator is desirable if 
it yields an optimal result. It yields the optimal result it the observed data meets or comes closest to 
the expected value  
(Everitt, 2002). 
 Recall that the conventional t-test is given by: 
 

/

x
t

S n


           (62) 

 
The Mann-Whitney U Test requires the comparison of the population standard deviations 

1 2 0   . Recall further that in order to determine the population standard deviation one must 

use the Z-equation. The Z equation is given by: 
 

/

x
Z

n





           (63) 

 
From equation (43), the population standard deviation may be written as: 
 

x
n

Z

    
 

         (64) 

 
Note that the population standard deviation in equation (64) may not be determined unless 

the conventional t-equation (62) is used to determine the population mean ( ). The value of   is 
derived from equation (62) as: 
 

S
t x

n
    

 
         (65) 

 
Therefore, even the Mann-Whitney U test statistic, equation (59), shows no use of the t-

equation and Z-equation, the researcher must understand the underlying functions and steps to 
illustrate the logic of the Mann-Whitney U Test. 
 
2.8 Phi correlation coefficient 
In case where the data of X and Y  are both nominal, the phi correlation coefficient is used. The phi 
equation is given by: 
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   1 1

a X Y
phi

X Y X Y

p p p
r

p p p p



 

 
      (66) 

 
There is an equivalence of equation (66) by contingency coding method of blocks ABCD in the 
table: 
 

 
    phi

BC AD
r

A B C D A C B D




   
      (67) 

 
The calculation according to equation (10.67) follows: 
 

 
    
 25 100 75 75

225(15)(15)(15)(15) 50,625

0.33

phi

phi

phi

BC AD
r

A B C D A C B D

r

r




   

  
  

 

 

 
Note that equations (66) and (67) is equivalent to: 

 
2

n

            (68) 

 

where 
2

2
2

( 1)n S



  or 
 22 i i

i

O E

E



 . 

 
 
2.9 Pearson contingency C 
Another case where both X  and Y are nominal data, the Pearson contingency coefficient is used. 
This is known as Pearson’s C which is given by: 
 

2

2
C

N







          (69) 

 

where 2  is chi square and N  is the grand total of observations. Generally, the range for 
correlation coefficient is -1 and +1; however, C  does not reach this range 9Pearson, 1904; p. 16). 
For a 2 2  table, it can reach 0.707 and 0.870 for 4 4  table. In order to reach the interval 
maximum, more categories has to be added (Smith and Albaum, 2004). 
 
2.10 Goodman and Kruskal lambda 
The Goodman and Kruskal’s lambda is a measurement of reduction in error ratio. This type of 
correlation measurement is used for the measurement of association. To the extent that it is 
applicable to “reliability,” GK’s lambda is usable only if reliability is defined in terms of 
association of polytomies, i.e. the answer to the survey question contains more than 2 choices. The 
lambda equation is given by: 
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1 2

1

 



           (70) 

where 1  is the overall non-modal frequency; and 2  is the sum of the non-modal frequencies for 

each value of independent variable. The range of lambda is 0 1  . Zero means there is no 
association between the independent and dependent variables, and one means there is a perfect 
association between the two variables. 
 Goodman and Kruskal deals with optimal prediction of two polytomies (multiples) which 
are asymmetrical where there is no underlying continua and no ordering of interest (Goodman and 
Kruskal, 1954). The Goodman and Kruskal (GK) polytomy is described by A B  crossing in the 
table below: 
 
Table 6. Measure of association under Goodman-Kruskal method 

B   
A  1B  2B    B  Total 

1A  11  12    1  1   

2A  21  22    2  2   

 
  
 

 
  

 
  

 
  

 
  

 
  
 

A  1  2         

Total 1  2      1 

 
In Table 6, A  divides the population into alpha ( ) classes where 1 2: ( , ,..., )A A A . 

Similarly, B  divides the population into beta ( ) classes where 1 2: ( , ,..., )B B B . The proportion 

that classified as both A  and B  is  . The marginal proportion    is the proportion of the 

population classified as A  and   is the proportion of the population classified as B . See 

Goodman & Kruskal (1954), p. 734. 
 
 
Goodman and Kruskall originally proposed the measure of association as: 
 

1 2

1

( ) ( )

( )b
P e P e

P e
 

          (71) 

which can be written as: 
 

1

am m
a

b
m

 














         (72) 

 
The expression above is the relative decrease in probability of error from bB  as between 

aA unknown and aA  known. The value b gives the error proportion which can be eliminated when 

A  is known. Goodman and Kruskal defined   as: 
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1

mb m
b

a
m

 














         (73) 

 
where:  m a

a
Max    and  mb ab

a
Max    

 
The interpretation of the meaning of a  is opposite of b . The meaning of a  is “the relative 

decrease in probability of error in guessing aA  as between bB  unknown and known” (Goodman 

and Kruskal, p. 742). Goodman and Kruskal stated that the value of a  and b  were given by 

Guttman (Guttman, 1941) from which they derived the following lambda: 
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1 0.5
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 

 
   

  
 

 
      (74) 

 
The lambda proposed by Goodman and Kruskal lies between a and b described by Guttman. The 

range of GK’s lambda is 0 1  . Goodman and Kruskal alternatively the terms in lambda by 
“[l]et v  be the total number of individuals in the population, , ,ab ab am am mb mbv v v v v v     , 

and so on” 9Goodman and Kruskal, p. 743). Under this general definition, the Guttment a and b  

becomes: 
 

am m
a

b
m

v v

v v



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


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
  and       (75) 

 
 

mb m
b

a
m

v v

v v












         (76) 

 
The general GK’s lambda then is given by: 
 

 2

am mb m m
a b

m m

v v v v

v v v


 

 

  


 

 
       (77) 

 
The following table demonstrates GK’s new definition of the population and its components. 
 
Table 7. Example of Goodman-Kruskal measure of association 

B   
A  1B  2B  3B  4B  av � 

1A  1768 807 189 47 2811 

2A  946 1387 746 53 3132 

3A  115 438 288 16 857 

bv�  2829 2632 1223 116 6800v   
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The numerical examples in Table 7 are taken from Kendall’s work and also was reproduced 

in Goodman and Kruskal’s article (p. 744). See Kendall, Maurice G. (1948). The Advanced Theory 
of Statistics, London, Charles Griffin and Co., Ltd. 1948; p. 300. 
 
 Goodman and Kruskal provided the calculation as: 
 

1

2

3
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1387
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2829
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m

m

m

v

v

v

v
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1

2

3
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m

m

m

m

m

v

v

v
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




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The calculation for Guttman’s a  and b  follows: 

 
3954 3132 822

0.2241
6800 3132 3668

3593 2829 764
0.1924

6800 2829 3971

a

b






  




  



 

 
The calculation for GK’s lambda follows: 
 

822 764 1586
0.2076

3668 3971 7639
 
  


 

 
 It is tempted to treat GK’s lambda   as the average of Guttman’s a  and b ; however, the 

following calculation shows: 
 

0.2241 0.1924 0.4165
0.2083

2 2 2
a b 


 

     

There is a minor difference of 0.2083 0.2076 0.0006   or 0.065%. It is a good approximation. For 
that reason, GK’s lambda may be preferential to Guttman’s a  and b  which requires a two-step 

process. 
 In reliability test, the GK’s lambda is a tool to measure the degree of reliability through the 
interpretation of the reduction of the error ratio. If the error ratio is reduced, it is said that the study 
is reliable. Is this reliability test relevant to the instrument itself or the entire score set produced by 
the survey? It is worth noting that the issue of reliability, when it relates to the survey, fulfills the 
requirement of replication. For instrument assessment, the issue of reliability attests to the efficacy 
of the instrument, i.e. does it give predictable result or scores? GK’s lambda, as well as Guttman’s 

a  and b , measures association between two polytomies: aA  and bB . On the issue of 

instrumentation, GK’s lambda is not a tool for instrument calibration. On the issue of survey 
reliability, GK’s is not a tool for testing the reliability of the survey. GK’s lambda is a tool to 
measure association of two random variables. Only if reliability is measured as the degree of 
association would GK’s lambda be a usable tool for reliability analysis. 
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3.0 CONCLUSION 
This paper underscores the importance of the use of correct type of correlation coefficient. 
Correlation coefficient measures the level of association between variables. If the type of 
correlation is not correct, the inference made from it would also be faulty: a case of Type 2 error. 
The correct type of correlation coefficient depends on the type of data of the variables. Assume that 
the relationship is captured by the dependent (Y) and independent (X) variables, the correct 
correlation coefficient to use depends on two questions: what type of data is Y? and what type of 
data is X? Data are classified into three types: quantitative, ordinal and nominal. The crossing of X-
by-Y determines the type of correlation coefficient. Although this is not a new knowledge, this 
paper has put all three possible pairs of QON into context and explained how each type of 
correlation coefficient is calculated. This attempt helps facilitate correct calculation of association 
among variables. 
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