
Realizing services and slices across multiple
operator domains

EU H2020 5GEx Consortium: Janos Czentye†, Molka Gharbaoui‡, Giovanni Giuliani§, David Haja†,
Janos Harmatos¶, David Jocha¶, Juhoon Kim‖, Barbara Martini∗∗, Javier Melián††, Paolo Monti‡‡,

Balazs Nemeth†, Wint Yi Poe∗, Aurora Ramos††, Andrea Sgambelluri‡, Balazs Sonkoly†, Laszlo Toka†,
Francesco Tusa

x
, Ishan Vaishnavi∗, Carlos J. Bernardos

xi
, Robert Szabo¶

†Budapest University of Technology and Economics (BME), ‡Scuola Superiore Snat’Anna Pisa,
§HPE Milan, ¶Ericsson Hungary, ‖Deutsche Telekom AG, ∗∗CNIT Pisa, ††ATOS Spain,

‡‡KTH Sweden, ∗Huawei Technologies Germany,
x
University College London,

xi
UC3M Spain

Abstract—Supporting end-to-end network slices and services
across operators has become an important use case of study
for 5G networks as can be seen by 5G use cases published
in 3GPP, ETSI as well as NGMN. This paper presents the
in-depth architecture, implementation and experiments on a
multi-domain orchestration framework that is able to deploy
such multi-operator service as well as monitor the service for
SLA compliance. Our implemented architecture allows operators
to abstract their sensitive details while exposing the relevant
amount of information to support inter-operator slice creation.
Our experiments shows that the implemented framework is
capable of creating services across operators while fulfilling the
requirements of the network functions that form that service.

Index Terms—Network function virtualization, Multi-operator
Orchestration, 5G slicing

I. INTRODUCTION

The next generation of telecommunication networks is
driven by a change in the business paradigm. Due to limited
incomes from end-customers, operators are now looking for
newer business models that may be of interest for newer types
of customers, such as the the vertical industries whose require-
ments may note match the existing coverage and the technical
skills of telecom operator. As an example, the requirements
of a connected-car company may extend to multiple countries
across the globe, going beyond the coverage capabilities of
a single operator. Hence, to create a uniform set of services
for the verticals’ end-customer, vertical industries would need
to create the same service supported by the same slice over
multiple operator networks. The creation of global services
for the vertical will likely be provided by a single operator
who, in turn, can leverage on existing relationships with other
operators. A single operator, in an automated way, is then
able to establish symbiotic relationships with other operators
to create a multi-operator service/slice, as shown in Figure 1.

A vertical customer (e.g. car company) requests services
across multiple operator domains. The service in 5G will be
supported over a typically virtualized and possibly isolated
infrastructure as well as network functions, currently called
a slice. Over interface 1 the car company will be able to
specify the requirements for the service, including the QoS and

Fig. 1. The scenario for multi-operator Services

the coverage area. The operator’s multi domain management
and orchestration system (MdO) is responsible to create the
slice that would support this service. To do so it may interact
with another operator’s MdO (over interface 2) or its local
technical domain orchestrators (over interface 3). Once the
slice is created, the end-customer (car owner) will be able to
use the service (connected car) over the coverage area specified
by the vertical customer via interface 1. The end-customer
can then expect similar levels of service across different
geographies. This work proposes the in-depth architecture and
implementation of the MdO and also describes the deployment
process of sample initial services.

II. RELATED WORK

The initial work on the concept and design of the MdO
began with the use cases and requirements expressed in [1].
More, in depth, details on how to place VNF in multi-
domain architectures was researched in a number of previous
studies [2], [3], [4]. An in depth analysis of multi-domain
orchestration frameworks is in our previous work [5].

There are two main works that largely contributed to the
development of the MdO framework presented in this paper:
the UNIFY [6] and the TNOVA [7] projects. The UNIFY
project [6] uncovers the advantage of SDN-enabled network
infrastructure that is built for the full network virtualization
and agile service creation. The MdO framework presented in



Fig. 2. Multi-domain Orchestration system architecture

this paper extends and details UNIFY’s concept for network
slicing over multiple service providers. The T-NOVA project
aims at designing and implementing a NFV management
and orchestration framework that enables customers selecting
VNFs directly from a platform called NFV Marketplace. This
feature is commonly referred to as a Network-Function-as-a-
Service (NFaaS). Concepts from both UNIFY and TNOVA
project are re-used in the design of our orchestration system
in the 5GEx project.

III. ARCHITECTURE

This section discusses the system design architecture of the
Multi-domain Management and Orchestrator (MdO) of Figure
1. A MdO coordinates resource and service orchestration
across multiple domains (multi-technology or multi-operator).
Components of the MdO architecture and inter-and intra-MdO
interfaces are shown in Figure 2.

The generic slice deployment process in the MdO is sup-
posed to consist of the following four steps:

• Capability detection: This is the pre-step to service de-
ployment where the MdO from one operator (home MdO)
can detect the capabilities of other operator as exposed by
the respective MdO. Note that the other operators MdO
may expose only a limited set of abstracted capabilities
to hide internal details of the operator. This abstraction
presents the main challenge for the other steps.

• Deployment: In this step the request arrives over interface
1 from the vertical, the MdO evaluates the request and
splits it into parts that are to be deployed by each domain
orchestrator (DO) or another MdO.

• Assurance: Once the service is deployed the operator is
responsible for verifying the SLA towards the customer.
To do this it must monitor the SLA KPIs across all the
domains and the operators of the deployed service.

• Reconfiguration: In the case of failures or SLA violations,
the Service or the slice that supports it will need to be
reconfigured by the home MdO.

The components of the MdO can be classified based on
these steps into three main groups representing the core
functionalities of the MdO.

Components that gather resources and services related
information: The Catalogue Management Subsystem is re-
sponsible for maintaining the VNF Catalogue (list of available
functions a Service Provider can utilize to compose Network
Services), Network Service Catalogue (list of services that a
certain MdO provides to a Customer) and takes care of the
catalogue synchronization among MdOs via I2-C. Topology
Abstraction and Discovery Subsystem (TADS) is in charge
of maintaining a database about the networking, compute
and storage resources available for the Resource Orchestrator
(RO) and Network Service Orchestrator (NSO). Furthermore,
there is a topology information exchange between the TADS
and the Multi-Domain Path Computation Element (MD-PCE);
TADS acquires the intra-domain connectivity topology from
MD-PCE, while informs MD-PCE about the Multi-domain
topology gathered from the TADS components of other MdOs.

Components that relate to the deployment procedure:
When the MdO receives a request from the customer, the
deployment operation is carried out by the Network Service
Orchestration (NSO), Resource Orchestration (RO) and the
MD-PCE. The NSO is responsible for handling the Network
Services (NS), requested by the customers or the NSO of
another MdO. RO is in charge of embedding the resource
requests to the available domain resources offered by the
TADS. MD-PCE is responsible for managing the traditional
network connectivity services (e.g MPLS). In the case of VNF
as a Service (VNFaaS) request, the VNF Management Sub-
system is invoked to handle the Lifecycle Management (LCM)
operations for the service, such as service topology evolution,
management of the service component dependencies and the
component LCM. VNFM and RO are working in cooperation,
however, clear separation between their functionality is kept:
while VNFM is aware of service component LCM, unaware
of the embedding procedure, which is handled by the RO.

Assurance components for the deployed service: When
the service is deployed, the NSO/RO passes information on the
SLA and resource entities to be monitored to the assurance
components of the architecture, namely SLA Management
Subsystem and Intelligent Monitoring Subsystem (IMoS).
IMoS is in charge of the coordinated deployment and man-
agement of probe-based measurement methods for different
domains within a provider or across multiple providers by
interworking with IMoS component of other MdOs. The SLA
Management Subsystem is responsible for evaluating service
KPIs belonging to a certain running instance by using the
performance measurement reports provided by the IMoS.

A. Interfaces

On interface I1 customers can specify their requirements for
a service by using service specification customer-to-business
APIs. Each MdO is aware (over I2) of the service capabilities
and resources of other administrative domains in order to make
service and resource orchestration decisions. The MdO inter-
acts with other MdOs via I2 business-to-business interfaces
to exchange information as well as to request and orches-
trate resources across administrative domains. Two types of



interfaces are distinguished for I2: by using the advertisement-
based option an MdO can announce its capabilities, whereas
using bilateral type exposure the MdOs can exchange further
details such as abstracted topology, resource, service, pricing
related information. The MdO interacts with the corresponding
domain orchestrators using I3 interface APIs. Each of I1,
I2, I3 is further split in Figure 2 based on the functionality
of the component it supports. Initial requirements over the
interface I2 have already been published in standards [8] as
a direct contribution of this work. A detailed specification of
the implemented interfaces is expected to be published soon.

B. Security Aspects
The security aspects in the overall architecture have been

looked into in depth. Best practices clearly suggest that the
SW that implements the MdO needs to be deployed inside a
Trusted Zone of the operator data center. Interfaces I3−∗ are
used by actors belonging to the same administrative domain,
inside trusted zones of the same security level. The security
aspects of the other interfaces follow.

1) Securing I1 − ∗ Interfaces: All the end-customers (in-
directly through some SW client application like a Dash-
board, or other SW using I1 − ∗ APIs) using any of the
I1 − ∗ interfaces need to be registered into a centralized
exchange point. Following the administrative domain policies
as registered end customers their credentials are internally
accessible to the MDO. All I1−∗ interfaces use JSON/REST
protocol secured by HTTPS with MDO server certificate
(Communication Privacy): at the beginning of each session
(login), the users be correctly identified and authenticated by
using the stored credentials and will be returned a signed time
based token (in JSON web token (JWT) format, signed by
MDO itself) to be used at the next requests. In any successive
request the JWT will always be provided to grant access to
the interface (Identification and Authentication) based on the
role of the user (Authorization)

2) Securing I2 − ∗ interfaces: The collaboration among
different MDOs requires mutual authentication, therefore, each
MDO needs to have a valid X.509 certificate issued by a
commonly accepted Certificate Authority (CA). All I2 − ∗
interfaces will need to comply to these rules: administrative
domains becoming business partners in 5GEx, need to register
in a peer-to-peer mode (including the exchange of public
certificates). TLS (SSL) protocols with both client and server
authentication (e.g. using JSON/REST protocol on HTTPS
connections with client and server verification) need to be used
to guarantee the identity of both partners of the collabora-
tion (Communication Privacy, Identification, Authentication).
Moreover, the identity of the MDO with respect to the reg-
istered partner list will be checked (Authorization). Finally,
a mechanism to support non-repudiation of request needs to
be setup, e.g. trusted audit logs and request signing, to resolve
inter administrative domains issues also from legal perspective.

C. Business and Pricing Aspects
Pricing information is assigned to a service by means of the

information model that is used to describe the items for sale

TABLE I
PRICING MODELS FOR THE SERVICE

NSD:SLA:billing
type < Billing Model (PAYG)>
period <Period>:<Number of Periods>:<Period unit

(Hours, days)>
Price < numeric amount for the period>
NSD:SLA:billing: price
currency < currency type (EUR)>
setupCost <Numerical setup cost>
pricePerPeriod <charge per period>

in the catalog. A pricing offering for a specific service will
be stored in the catalog as part of the offering. The currently
implemented pricing model for VNFaaS case is pay-as-you-go
model, following the approach of cloud services [9], [10]. The
information model used for this is a part of the SLA and is
shown in Table I Other billing models are still being studied
currently for other types of services, e.g. connectivity services,
along with pricing negotiation.

IV. IMPLEMENTATION DETAILS

The following sections present the implementation details
of the components presented in the architecture, Figure 2.

A. Information Gathering Components

1) Catalog management - Multi-domain Catalog : The
MdO operator decides which items (NSs or VNFs) are shared
and with whom, establishing sharing policies after going
through a process of testing, validation, and adaptation (in
terms of SLA and pricing). These are stored in the Multi-
domain catalog (MDC). The local MDC retrieves a list of
shared items from remote MDCs using REST API based on
the sharing policies established in the remote domain.

In communication with the TADS module via REST API,
the catalog subsystem also keeps a record of the registered do-
mains within the system to know which domains are available
at any time and take care of catalog inconsistencies among the
peers, ensuring that the list shown is only of available items.

Via the 5GEx dashboard, the Service Provider can create
NSs for the customers that are composed of VNFs and
(recursively) other NSs either local or remote that have been
added previously to the local catalog.

2) TADS: The Topology Abstraction and Discovery Sub-
system (TADS) discovers other MdOs and then retrieves
information about the type and quantity of resources available
(including both networking and IT). The retrieved information
is maintained in local database (TED) and is then provided to
the other modules of the MdO. Local information (i.e., the
URL of MdO entry point, the updated view of its abstracted
network resources, the abstracted view of its overall availabil-
ity of IT resources and MD-PCE entry-point) is kept up-to-date
in the DB and is exchanged with the other MdO TADS.

The internal architecture of TADS is shown in Figure 3. The
Topology Module (TM) provides the NFVO, the Catalogue
subsystem and MD-PCE with the information related to the
abstracted view of all the resources available at each (discov-
ered) MdO. The communication with the NFVO (intra-MdO)



Fig. 3. TADS architecture

is done by using the REST Plugin that presents a dedicated
API. The NFVO provides an up-to-date abstracted view of
local IT resources to the TADS, while the TADS provides
to the NFVO the retrieved abstracted information collected
from other MdOs. In order to support the catalogue exchange,
the REST Plugin provides also a unidirectional API to the
Catalogue subsystem, where the list of the registered Operators
and their related entry-point is provided. The Local Plugin has
been introduced to enable the dynamic exchange of topology
information between TADS and MD-PCE. In particular, the
TADS receives the description of local connectivity topology
from the MD-PCE, while it exports to MD-PCE the full Multi-
domain topology received by the TADS of other MdOs.

The BGP-LS Plugin is at the heart of the TADS discovery
process. The BGP-LS Speakers of different MdOs are able to
communicate through the Interface 2-Resources and Topology
advertised (I2-RTadvertised interface) for exchanging the net-
work topology, overall IT resources information and MD-PCE
entry-point. In particular, the BGP-LS Plugin is responsible
for exporting the abstracted view of local resources, and for
importing the abstracted views of the other connected MdOs.
The solution adopted for the I2-RTadvertised interface is an
extended version of the BGP-LS protocol [11] that supports
the advertisement of TE metrics [12] and of IT resources
represented using the UNIFY data model [13], [14].

B. Orchestration Components

1) VNF Manager: The VNF Manager (VNFM) subsystem
handles the component resolution and the Lifecycle manage-
ment (LCM) belonging to a particular service. A given service
description is stored in the Service Catalogue in the CMS
(Section IV-A1) and may contain multiple embedding states
(represented by one or multiple blueprints), inputs and triggers
that may cause transitions among states. When a service
deployment request is received by the RO, the VNFM will be
invoked and the Deployment Logic will check the requested
service creation in the Catalogue verifying its initial state
and the called workflow (e.g. start, stop, delete, etc). Then
a Deployment state is created and sent to the RO by using
REST API. The RO handles the current service configuration
offered by the VNFM and performs its orchestration steps that
might result in success or embedding error. In the latter case,
the VNFM will be invoked again and will start the iteration
among the stored embedding states.

2) NSO: The high-level software architecture of the 5GEx
NFVO encompassing the NSO and RO is shown in Fig. 4.
The entire functionality of the Network Service Orchestrator

Fig. 4. Software architecture of 5GEx NFVO

(NSO) is implemented by three different co-operating compo-
nents including the Catalog Management Subsystem (CMS).
First, the Dashboard is used by the Service Providers (SPs)
to create Network Services (NSs). An SP i) chooses the
constituent VNFs from the list of available ones, ii) gives
SLA requirements, ii) defines the VNFFG containing virtual
links between VNFs, and iv) defines additional parameters,
such as assurance parameters and billing information. Second,
the Service Selection module (part of the CMS) is responsible
for managing a service instantiation request. During this
process, it interacts with both the NS and VNF repositories.
VNFDs of constituent VNFs are retrieved from the VNF store
while the created/purchased NS is stored/retrieved in/from
the NS store (NSDs). Third, a Translator module converts
the customer’s service instantiation request (service selection)
to a deployment request inter-operating with the RO. This
component enables basic network service management, such
as starting and terminating NS instances. This module is in
charge of storing and providing assignment of VNFs to NS
instances. By these means, e.g., IMoS can request a list of
VNFs encompassed by an NS instance.

The current version of the NSO also provides a versatile
traffic steering control over virtual links; VNFFG deployment
including supports delay and bandwidth requirements on vir-
tual links of the VNFFG; and VNF on boarding as well.

3) RO: Resource Orchestrator (RO) of our 5GEx NFVO is
in charge of two key tasks. On the one hand, RO is responsible
for joint virtualization and control of compute/storage and
network resources. On the other hand, it calculates (a close to
optimal) embedding of the NS request and adapts to different
technological domains. The software architecture of the RO is
depicted by the lower part of Fig. 4.

RO gathers resource information from local and remote
domains via TADS and maintains a global abstract resource
view. On this view, it can construct different resource slices



(virtual views) exposed towards different consumers or other
operators. The creation and configuration of resource slices
is triggered from the (local or remote) NSO level. We have
implemented a novel interface to enable slice configuration
for remote providers. The new SlaaS interface, which is
implemented at MdO and DO level as well, is based on
the Virtualizer data model [13], [14] (also used at interfaces
I2-RC, I2-RTbilateral, I3-RC, and I3-RT) and it supports
the management of multiple Virtualizer objects corresponding
to different resource slices. A special purpose infrastructure
slice has been introduced which can expose the low-level
details of the given domain providing privileged control over
the resources. Physical resources can therefore be bound to
virtual resources, rendering an VNF running in a given slice
controllable from another slice.

NSO sends an NS request to RO described for a given
resource slice. The request includes VNFs, a VNFFG and
requirements. We support different types of requirements such
as, delay and bandwidth on virtual links of the VNFFG,
end-to-end delay, affinity and anti-affinity constraints. The
embedding engine of the RO calculates the best placement
of the VNFs and optimizes the forwarding overlay based on
a fast and efficient greedy heuristic. At this operation level,
the resource slice is handled in an abstract way and the RO
does not differentiate between local and remote domains. The
result, which is a resource slice configuration describing the
deployment, is split according to the involved domains. As a
final step, the corresponding parts of the deployment result
are sent i) to the local domains via interface I3-RC which is
responsible for technology adaptation, and ii) to remote MdOs
via interface I2-RC. In the latter case, the remote RO performs
similar steps and further orchestrate the received request but
this operation is hidden from the local MdO.

C. Assurance Framework

1) IMOS: Intelligent Monitoring Subsystem (IMoS) imple-
ments the intelligent and coordinated end-to-end monitoring
required for the management and orchestration of services
and resources in multi-technology, multi-domain 5G networks.
IMoS has been implemented following the RO hierarchical
structure that enables measuring the performance of a service
instance either belonging to a single provider, or spanning
multiple administrative domains. The IMoS instance running
on the MdO that receives the service request, is responsible
for triggering the collection of monitoring information from all
the (technological and administrative) domains implementing
that service instance. Therefore, IMoS supports mechanisms
that enable the orchestrated deployment and configuration of
probes both on heterogeneous resource domains by interacting
with the respective Local Monitoring Systems (LMSs), and
on external administrative domains by cooperating with the
remote IMoS instances running on there.

In order to optimize the resource utilization related to
the deployment of probes for KPI monitoring as well as
reducing possible communication overheads, an ILP model
is implemented in IMoS using the Gurobi solver library to

determine the best probe embedding strategy. The interfaces
I3-Mon and I2-Mon are designed and implemented to support
the monitoring functions across multi-technology and multi-
administrative domains respectively. The former is fully sup-
ported by Lattice through the REST API implemented by the
Lattice Controller, which allows the on-demand instantiation
and configuration of Lattice monitoring entities. Those entities
natively provide monitoring mechanisms for physical hosts
and KVM VMs and are also able to work as proxy probes
that collect monitoring information from already available
LMS (e.g., Docker monitoring and Openstack Ceilometer).
The monitoring data collected by the aforementioned probes
will be stored in a central database in time series format, and
will be processed/aggregated across different administrative
domains in order to support the SLA Manager in verifying
the global SLA fulfillment of a service.

2) SLA Manager: The SLA Manager is in charge of
evaluating the selected KPIs for each of the running in-
stances (slices, Network Services, VNFs, etc.) according to
an agreement that is established and signed upon the service
instantiation. The SLA Manager subsystem is composed of
two main modules:

• SLA Evaluator: This module is in charge of receiving the
contract agreements from the user interfaces that relates
vertical customer (over interface 1) as well as the another
operator (over interface 2). Each one of these agreements
includes a set of KPIs and thresholds that need to be
meet in order to fulfil a Service Level Objective. The
way of evaluating these metrics (KPIs) is by means of its
monitoring information that tells about the behaviour of
the instance we want to monitor and evaluate.

• SLA Aggregator/Proxy: This module receives the request
from the SLA Evaluator and looks for the appropriate
monitoring information in the local monitoring database.
To be aware of the location of the metric, this module is
informed about it on provisioning time. Metrics can be
either simple, that do not require extra effort to gather the
monitoring information or complex, which are calculated
based on a formula containing simple metrics and/or
recursively, other complex metrics.

Each local SLA Evaluator requests monitoring information
for all of the KPIs to be evaluated to the local SLA Ag-
gregator. The later collects all the simple metrics monitoring
information from the remote locations, compress the sample to
reduce traffic overload across domains, and finally aggregating
the information and transfer the results to the original SLA
Evaluator. The detailed monitoring values if required by one
MdO from another MdO are requested through the IMoS, the
SLA aggregator provides the service level metrics.

D. Integration with SDN domain manager

This section describes an implementation of interface 3
between the MdO and an SDN Domain Orchestrator. The SDN
DO allows the programmable provisioning of data delivery
paths through a sequence of virtual functions, i.e., forwarding
graphs (FGs) [15]. The application layers (i.e., the MdO),



Fig. 5. The virtual CDN (vCDN) Service Graph

through a REST API, can require the set-up and tear-down of
service delivery paths by just specifying the Service Access
Points (SAPs) to connect and, in case, a set of VNF instances
to traverse, thus, using an application-oriented semantic rather
than dealing with technology-specific low-level details. The
DO performs mapping operations to decide the path of each
segment connecting the source SAP or a VNF to the next VNF
or the destination SAP. Then it enforces a set of forwarding
rules to establish every path segment.

Finally, the DO offers interface for adaptation capabilities
for the established paths to recover from congestion events
(e.g., service outages or degradation events) that are possible
when a concurrent resource usage takes place according to
IETF SFC guidelines. The adaptation capabilities involve
the continuous monitoring of the paths status (via interfaces
exposed to IMoS over I3-Mon) and the collection of statistics
that are then made available to the MdO to enhance its
resource orchestration capabilities. In this way, the MdO
dynamically controls the status of the deployed entities.

V. THE VCDN EXPERIMENT

This experiment demonstrates the end-to-end MdO life-
cycle for a virtual content delivery network service (vCDN)
service composed by 2 non-collocated virtual Content Servers
(vCS1 and vCS2).

1) Scenario: The scenario includes the following roles:
• vCDN-ProviderDomain1: creates vCDN service offerings

stored in the service catalog for advertisement, and out-
source a resource slice in domain 2 to deploy vCS 2.

• NFVI-ProviderDomain2: provides a resource slice in a
second MdO domain that is used for vCS 2 deployment.

• Customer-vCDN consumer (e.g. content provider): re-
quests the partially configured vCDN NS.

• End User-content consumer: requests the content to the
already deployed vCDN service entry point.

2) vCDN service specification and implementation: The
vCDN Service in this experiment is formed by 2 virtual con-
tent server and 1 content request application that is composed
by 2 VNFs: a player and a VNF that enablers to select the vCS
that will imply the minimum delay on the content delivery to
the end user, see Figure 5.

• vCSs are implemented using Wowza Streaming Engine,
which is containerized to act as another VNF and in-
cluded within the VNF descriptor (VNFD) meta-model
which is ETSI NFV compliant.

• The content request app is formed by: 1) a player that
reproduces the media content and 2) a VNF that selects
the vCS minimizing mean delay.

Some of the most relevant fields in the VNFD for these
VNFs are: hardware requirements, for an optimal creation
of the resource slice; container image, which the Docker or-
chestrator would download, provision and deploy; appropriate
environment for the streaming software;list of ports that each
VNF uses and have to be opened and mapped to host ports;
virtual links that will be exposed and visible to create a
VNFFG to compose a complex NS; SLA parameters or list
of metrics that can be monitored and evaluated; and starting
scripts to be executed to start services inside the container for
an optimum performance of the Wowza server, e.g. adding the
media cache source, etc.

3) Experiment steps, architectural components involved and
results: The steps of the experiment follow the steps men-
tioned in Section III-C.

• Pre-requisites:

– VNFs specification: VNFDs are created and up-
loaded to the MdO CMS together with VNF images

– Neighbor domains are discovered by TADS.

• Creation of the NSD including the VNFFG among the
vCSs: the provider creates an NS including business
offering.

– Syntax validation of the descriptor
– The new NS is stored in the CMS

• NS instantiation request takes place by the selection of
the service in the CMS and it is sent to the NFVO
(NSO+RO). The NSO in multiple administrative domains
includes the NSs on-boarding (referenced VNF images
loading), NS instantiation including placement informa-
tion, NS monitoring and NS termination. As part of the
RO a slice request is performed to a remote domain so
the multi-domain resource orchestration of compute and
networking resources takes place.

– For each of the vCS, a resource slice is created: one
in domain 1 and the other in domain 2.

– Each of the containers are downloaded and deployed
in each of the resource slices.

– The vCSs external links are linked based on VNFFG.
– Service Provisioning and deployment takes place.

• The monitoring info is received in dashboard via IMoS.
• The vCDN is working properly when the content request

is forwarded to the vCS that with the minimum delay and
the end-user is able to see the video content.

VI. CONCLUSIONS

This document provides a description of the MdO prototype
that enables the deployment of services across operators using
the concept of resource slicing. We presented the in-depth
architecture of each of the components that compose the
MdO and their functionalities and implementation aspects. We
presented just one of the many services that can be deployed
over testbeds across the EU that emulate multiple operators.
Pilot test with real end-users of the said services are underway.



VII. ACKNOWLEDGMENT

This work has been supported by the European Community
through the 5GEx project (grant no. 671636) within the H2020
program.

REFERENCES

[1] D. Perez-Caparros, I. Vaishnavi, S. Schmid, and A. Khan, “An archi-
tecture for creating and managing virtual networks,” in 2013 IEEE 24th
Annual International Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC), Sept 2013, pp. 2984–2988.

[2] I. Houidi, W. Louati, W. B. Ameur, and D. Zeghlache, “Virtual
network provisioning across multiple substrate networks,” Computer
Networks, vol. 55, no. 4, pp. 1011 – 1023, 2011, special Issue on
Architectures and Protocols for the Future Internet. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128610003786

[3] I. Vaishnavi, R. Guerzoni, and R. Trivisonno, “Recursive, hierarchical
embedding of virtual infrastructure in multi-domain substrates,” in
Proceedings of the 2015 1st IEEE Conference on Network Softwarization
(NetSoft), April 2015, pp. 1–9.

[4] N. M. M. K. Chowdhury, M. R. Rahman, and R. Boutaba, “Virtual
network embedding with coordinated node and link mapping,” in IEEE
INFOCOM 2009, April 2009, pp. 783–791.

[5] R. Guerzoni, I. Vaishnavi, D. Perez Caparros, A. Galis, F. Tusa, P. Monti,
A. Sganbelluri, G. Biczók, B. Sonkoly, L. Toka et al., “Analysis of
end-to-end multi-domain management and orchestration frameworks for
software defined infrastructures: an architectural survey,” Transactions
on Emerging Telecommunications Technologies, vol. 28, no. 4, 2017.

[6] R. Szabo et. al., “D2. 2: Final architecture,” UNIFY Project, Deliverable
2.2, 2014.

[7] G. Xilouris, M.-A. Kourtis, M. J. McGrath, V. Riccobene, G. Petralia,
E. Markakis, E. Palis, A. Georgios, G. Gardikis, J. F. Riera et al., “T-
nova: Network functions as-a-service over virtualised infrastructures,” in
Network Function Virtualization and Software Defined Network (NFV-
SDN), 2015 IEEE Conference on. IEEE, 2015, pp. 13–14.

[8] “3gpp tr 28.801: Telecommunication management; study on manage-
ment and orchestration of network slicing for next generation network.”
”www.3gpp.org/DynaReport/28801.htm”.

[9] 5GEx Consortium, “5gex initial system requirements and architecture.”
[Online]. Available: http://www.5gex.eu/

[10] TNOVA Consortium, “Slas and billing.” [Online]. Available:
http://www.t-nova.eu/

[11] S. Previdi et.al., BGP-LS Traffic Engineering (TE) Metric Extensions.
[12] H. Gredler, J. Medved, S. Previdi, A. Farrel, and S. Ray, “North-bound

distribution of link-state and traffic engineering (te) information using
bgp,” Tech. Rep., 2016.

[13] EU Project, UNIFY Deliverable D3.2a, Network Function Forwarding
Graph specification.

[14] R. Szabo, Z. Qiang, and M. Kind, Towards recursive virtualization and
programming for network and cloud resources.

[15] B. Martini, F. Paganelli, A. Mohammed, M. Gharbaoui, A. Sgambelluri,
and P. Castoldi, “Sdn controller for context-aware data delivery in
dynamic service chaining,” in 2015 IEEE Conference on Network
Softwarization (NetSoft), April 2015, pp. 1–5.


