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ABSTRACT 

Optimal power flow problems and market clearing 

approaches are converging: cost-optimal scheduling of 

loads and generators should be performed while taking 

the grid’s physics and operational envelopes into 

account. Within the SmartNet project, the idea is to 

consider the grid’s physical behaviour in market clearing 

approaches. Taking the physics of power flow into 

account, while managing solution times, demands 

pragmatic approaches. Convex relaxation and linear 

approximation are two such approaches to manage 

computational tractability. This work gives an overview 

of recent OPF formulations, and their relaxations and 

approximations. The hierarchy of the approaches is 

detailed, as well as the loss of properties resulting from 

the relaxation process.   

INTRODUCTION 

Optimal power flow (OPF) on the one side and unit 

commitment, economic dispatch and market clearing on 

the other side are converging: cost-optimal scheduling of 

loads and generators should be performed while taking 

the grid’s physics and operational envelopes into account. 

This convergence of OPF and economic dispatch will 

only increase since generators connected to the 

distribution system are getting more and more involved in 

the operational planning of the power system. 

Consequently, a decoupling of the grid's physics from 

economic dispatch calculations will increasingly lead to 

infeasible solutions. At the same time, both the 

mathematical modelling and the increasing capabilities of 

computational tools has made the combination of both 

OPF and market clearing possible. 

Historically, due to limited computational resources, unit 

scheduling was typically performed using copper plate or 

network flow models. To avoid problems due to the 

limited accuracy of such models, a post-clearing AC 

power flow check is performed and redispatch is 

performed in case of expected operational difficulties. 

Such actions may lead to inefficiency. Including a more 

accurate network model in the market clearing will help 

to avoid countertrading and its associated costs.  

Taking the physics of power flow into account, while 

guaranteeing limited solution times, demands pragmatic 

approaches. Convex relaxation and linear approximation 

are two such approaches to manage computational 

tractability, which will be detailed throughout this article. 

The Smartnet Project 

The SmartNet project [1] aims at providing solutions to 

clarify architectures for optimized interaction between 

TSOs and DSOs. A market architecture for ancillary 

services is envisioned in which the grid limitation 

constraints (of both DSOs and TSOs) are incorporated. 

Therefore, in the SmartNet project, a market clearing 

methodology is developed respecting the power system’s 

physical limits.  

Optimal Power Flow 

In general, optimal power flow (OPF) encompasses any 

power system optimisation problem with physical power 

flow as part of the model (i.e. as part of the constraints). 

This does not exclude much, therefore OPF in general 

can be: multiperiod, security-constrained, DC or AC, or 

based on approximation (e.g. linearized ‘DC’ OPF). 

Market clearing algorithms respecting the power flow 

equations are also OPF problems. 

Paper scope and structure 

This article will not provide a detailed discussion of OPF 

formulation properties, but aims to map the landscape of 

recent OPF formulations and their applications. Only 

balanced power flow formulations are considered.  

First, OPF is framed in the context of mathematical 

optimisation. Next, the OPF formulations are discussed 

and compared. Finally, the paper concludes. 

OPF REFERENCE MODELS 

Within optimal power flow models, the power flow 

equations are considered as equality constraints to an 

optimization problem.  

Power flow is generally considered as a complex-valued 

problem, with 𝑗 the imaginary unit, ∠ the complex angle 

and * the complex conjugate operator. The complex 

power flow from 𝑖 to 𝑗 is 𝑆𝑖𝑗; the complex voltage at node 

𝑖 is 𝑈𝑖. 

𝑆𝑖𝑗 = 𝑃𝑖𝑗 + 𝑗𝑄𝑖𝑗  

𝑈𝑖 = |𝑈𝑖|∠𝜃𝑖 = |𝑈𝑖|(𝑐𝑜𝑠𝜃𝑖 + 𝑗𝑠𝑖𝑛𝜃𝑖) = 𝑒𝑖 + 𝑗𝑓𝑖 
 

The power flow equations are commonly derived for pi-

sections with a series (𝑦𝑙,s = 𝑔𝑙,s + 𝑏𝑙,𝑠) and shunt 

admittance (𝑦𝑖𝑗,sh = 𝑔𝑖𝑗,sh + 𝑗𝑏𝑖𝑗,sh), see Figure 1. 

Two formulations of the power flow equations have been 

used widely: a quadratic one, based on the rectangular-

complex notation, and a polar-complex one, using sine  
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Figure 1: Pi-representation of a grid element. 

and cosine functions.  

𝑆𝑖𝑗 = 𝑃𝑖𝑗 + 𝑗𝑄𝑖𝑗 = |𝑈𝑖|
2𝑦𝑖𝑗,sh

∗ + 𝑈𝑖(𝑈𝑖
∗ − 𝑈𝑗

∗)𝑦𝑙,𝑠
∗  

𝑃𝑖𝑗 = (𝑔𝑖𝑗,sh + 𝑔𝑙,s)|𝑈𝑖|
2 − 𝑔𝑙,s|𝑈𝑖||𝑈𝑗|𝑐𝑜𝑠(𝜃𝑖 − 𝜃𝑗)

− 𝑏𝑙,s|𝑈𝑖||𝑈𝑗|𝑠𝑖𝑛(𝜃𝑖 − 𝜃𝑗) 

𝑄𝑖𝑗 = −(𝑏𝑖𝑗,sh + 𝑏𝑙,s)|𝑈𝑖|2 + 𝑏𝑙,s|𝑈𝑖||𝑈𝑗|𝑐𝑜𝑠(𝜃𝑖 − 𝜃𝑗)

− 𝑔𝑙,s|𝑈𝑖||𝑈𝑗|𝑠𝑖𝑛(𝜃𝑖 − 𝜃𝑗) 

An alternative formulation was developed by Baran and 

Wu in 1989 [2], which simplified power flow modelling 

in radial grids (voltage angle variables are substituted 

out). This formulation of the power flow equations is 

commonly referred to as DistFlow. 

𝑃𝑖𝑗 + 𝑗𝑄𝑖𝑗 + 𝑃𝑗𝑖 + 𝑗𝑄𝑗𝑖  

𝑃𝑖𝑗,s
loss + 𝑃𝑖𝑗, sh

loss + 𝑃𝑗𝑖, sh
loss, + 𝑗(𝑄𝑖𝑗,s

loss + 𝑄𝑖𝑗, sh
loss + 𝑄𝑗𝑖, sh

loss, ) 

𝑃𝑖𝑗,𝑠
loss + 𝑗𝑄𝑖𝑗,𝑠

loss = 𝑧𝑙,s|𝐼𝑖𝑗,s|
2
 

𝑃𝑖𝑗,sh
loss + 𝑗𝑄𝑖𝑗,sh

loss = 𝑦𝑖𝑗,sh|𝑈𝑖|2 

|𝑈𝑗|
2

= |𝑈𝑖|
2 − 2(𝑟𝑙,s𝑃𝑖𝑗,𝑠 + 𝑥𝑙,s𝑄𝑖𝑗,𝑠) + (𝑟𝑙,𝑠

2 + 𝑥𝑙,s
2 )|𝐼𝑖𝑗,s|

2
 

Furthermore, an OPF typically includes a number of 

operational line bounds (current, voltage, power).  

Optimisation classes 

Since quite a while it is understood that the true 

distinction between easy-to-solve and hard-to-solve 

problems aligns with convex versus nonconvex 

optimisation. In theory and in practice, large convex 

problems can be solved reliably (convergence 

guaranteed), quickly (polynomial-time) and to global 

optimality. With nonconvex (smooth) optimisation, one 

largely has to choose between solving problems quickly 

but locally optimal or globally optimal but slowly.  

The optimisation class hierarchy is: 

LP ⊂ QP ⊂ SOCP ⊂ SDP ⊂ NCQCP ⊂ NLP 
1
 

Convex relaxation 

Any nonconvex quadratically constrained optimisation 

problem (NCQCP) can be reformulated as a semidefinite 

programming (SDP) problem with the addition of a single 

nonconvex rank-1 constraint. After removal of the rank 

constraint a SDP problem remains [3], which can be 

solved with SDP solvers. This step of removing 

nonconvex constraints is referred to as the ‘convex 

 
1  Linear programming (LP); quadratic programming (QP); 

second-order cone programming (SOCP); semidefinite programming 

(SDP), nonconvex quadratically constrained programming (NCQCP); 
nonlinear programming (NLP) 

relaxation’ step.  

Relaxations, by a process of only removing equations 

from the feasible set of an original problem, provide 

strong quality guarantees on the solution of both 

problems:  

 if the original problem is feasible, the relaxed 

problem is feasible; 

 if the relaxed problem is infeasible, the original 

problem is infeasible; 

 the objective of the relaxed problem will be a 

lower bound (minimisation) for the objective of 

the original problem. 

Approximations (modifications of constraints which 

cannot be shown to be relaxations), do not provide such 

guarantees. Nevertheless, the idea is that they are 

sufficiently accurate, but only under certain conditions. 

More generally, convex relaxations can be obtained for 

polynomially-constrained polynomial programs, for 

which moment relaxation strategies have been developed 

[4][5]. Moment relaxations are tighter than the 

previously-discussed SDP relaxations, as the 

conventional SDP relaxation is just the first-order 

moment relaxation. Hierarchies of moment relaxations 

converge to the global solution.  

Any SDP formulation can be relaxed further to obtain a 

second-order cone programming (SOCP) problem [6]. 

For SOCP, state-of-the-art solution methods are faster 

and more scalable. Furthermore, mixed-integer (MI) 

SOCP solvers are developed commercially whereas 

commercial MISDP solvers do not yet exist. Mixed-

integer convex programming (MICP) refers to the 

optimisation of problems with integer variables, for 

which the continuous relaxation is convex. This 

generalizes MILP, MISOCP and MISDP. It is noted that 

any convex quadratically-constrained programming 

(CQCP) or convex quadratic programming (QP) problem 

can be reformulated as a SOCP problem. Finally, Ben-Tal 

and Nemirovski developed a general approach to 

reformulate SOCP problems as LP, to an arbitrary 

accuracy [7]. This lifted polyhedral relaxation technique 

can be used to obtain trade-offs between accuracy and 

speed for any SOCP problem. 

To obtain rank-1 solutions where the convex relaxation 

solution is otherwise inexact, rank minimisation 

heuristics [8] were developed. The rank constraint of the 

original problem is thereby replaced with a penalty for its 

convex relaxation. In certain cases, a hidden rank-1 

solution is recovered in the original (global) optimum, in 

others, some actual increase in the costs is observed due 

to the penalisation. 

Solution methods 

For different classes of optimisation problems, different 

algorithms are used. Nonconvex formulations can be 

solved using global solvers (e.g. spatial branch-and-

bround, B&B) or local solvers (interior-point method, 

IPM). All convex problems can be solved to global 
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optimality using IPM. 

For linear problems, the simplex algorithm can be used as 

well. In the context of mixed-integer optimisation, it may 

be worth the time to formulate the Ben-Tal polyhedral 

relaxation of a SOCP model, as then a simplex algorithm 

can be used – MIP simplex algorithms may offer superior 

performance. 

OPF FORMULATION COMPARISON 

Typically, the power flow equations are considered in 

complex form due to the compact notation, but a real-

valued equivalent can be developed. This distinction is 

not further considered in the remainder of the article.  

This paragraph details the hierarchy of convex relaxations 

and approximations of OPF problems.  Each 

approximation or relaxation leads to a loss of a certain 

property of the initial problem, therefore, depending on 

the original problem, some relaxations or approximations 

are better suited. Furthermore, Figure 2 is used as a 

common thread running through the sections, and the 

reader is recommended to consult it readily during 

reading.  

Nonconvex AC OPF 

In local nonconvex solvers, typically the polar 

formulation of the OPF is used. Often the global solution 

is returned, which can be validated by global solvers, but 

only for small case studies. For larger ones, convex 

relaxation models can prove global optimality. 

Nevertheless, in certain cases these solvers converge to 

local solutions [9].  

Convex BFM & BIM formulations 

The power flow equations are easily written as a set of 

nonconvex quadratic equations, therefore the SDP 

relaxation strategy can also be followed, as set out in the 

previous section. One thereby obtains the SDP relaxation 

of OPF [10]. 

Two main formulations of SOCP convex relaxations of 

the power flow equations have been of interest in the 

scientific literature: the (admittance-based) bus injection 

model (BIM) [11] and the (impedance-based) branch 

flow model (BFM) [2] formulation. These relaxations 

have been shown to be equivalent for radial grids [12]. 

Both approaches obtain the equivalent solution set, albeit 

in different variables. The Quadratic Convex or QC 

formulation, is based on a different relaxation process 

[13]. The main relaxation steps are: 

 convex hulls of sine function and cosine 

function; 

 convex hull of quadratic terms; 

 convex hull of multiplication through 

 
Figure 2: Relationships between AC power flow formulations, relaxations and approximations. 
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McCormick’s envelopes.  

The main loss of property in the BIM or BFM SOCP 

relaxations is that Kirchoff’s Voltage Law (KVL) in 

loops is not guaranteed.  Resulting from this is that the 

BIM or BFM SOCP relaxation is exact under mild 

conditions in radial grids. It can be shown that for radial 

grids the SDP relaxation and the second-order cone 

programming (SOCP) relaxation are equivalent. When 

inexact, the obtained formulation may require a heuristic.  

In difficult situations, e.g. in overvoltage situations, 

finding a suitable heuristic may be a complex process. 

The SOCP constraints can be relaxed further to LP 

complex formulations, using the Ben-Tal polyhedral 

relaxation technique. Still, the BIM or BFM SOCP 

relaxation dominates its Ben-Tal polyhedral relaxation. 

Rank minimisation heuristics 

The application of a rank minimisation heuristic is 

illustrated by [15] for the balanced BIM SDP 

formulation. However, there is no reason that rank 

minimisation strategies cannot be applied to SOCP 

problems in radial grids (or their polyhedral relaxation 

equivalents), as any true SOCP constraint is equivalent to 

positive semidefinite condition on a 2x2 matrix. 

Strangely, rank-minimisation strategies in radial grids 

(SOCP BIM/BFM) have not been a topic of research to 

the authors’ knowledge, even though they could extend 

the scope of such approaches where they would otherwise 

be inexact (e.g. overvoltage).  

Other compatible approaches 

If the focus is to deal with meshed grids, tighter 

relaxations can be considered. For instance, by combining 

QC and BIM SDP. 

In addition to the discussed relaxations, valid (convex) 

inequalities can be added to the formulations, to obtain an 

overall tighter relaxation. Such constraints are not always 

an immediate result of the relaxation steps. Examples are 

the inclusion of convex arctangent envelopes in the 

voltage angle equations [14]. 

Other approaches are detailed in the literature. Examples 

are chordal extensions, and cuts to separate the SOCP 

relaxation from SDP [14].  

Approximation strategies 

In addition to relaxation strategies, an approximation 

strategy can be followed to improve computational 

tractability of the original OPF problem.  Depending on 

the characteristics of the original problem, some 

approximations are more accurate than others.   

Approximations can be derived from different OPF 

formulations: 

LPAC: derived from polar / QC 

Although the QC formulation was proposed after the 

LPAC formulation, LPAC can be seen as an 

approximation of QC. The LPAC [16] formulation is 

based on four approximation steps: 

 voltage magnitude values are initialized using a 

power flow solver; 

 the relationship between reactive power flows 

and voltage magnitudes is linearized with 

respect to these initial values; 

 sine function is linearized (sin(θ) = θ); 

 cosine function, as in the QC formulation, is 

modelled through a convex hull.  

DC: derived from polar / QC 

Furthermore, the linearized ‘DC’ formulation can be seen 

as a next-step approximation of LPAC, adding the 

following approximations: 

 active power series losses are negligible; 

 cos(θ)  is approximately 1; 

 voltages are approximately 1 pu. 

Typically, the reactive power flows in a DC OPF can be 

dealt with as follows: 

 neglect reactive power flow; 

 include reactive power flow as NF formulation; 

 include the ‘decoupled’ reactive power flow 

formulation (linearization of reactive vs. 

voltage magnitude). 

Simplified DistFlow: derived from BFM 

The simplified DistFlow formulation is based on the 

following (equivalent) approximation steps with respect 

to BFM: 

 the line series losses are negligible and set to 

zero (neglecting series current magnitude); 

 the voltage drop is linearized with respect to 

active and reactive power flow. 

In a more general case, the line losses could be 

approximated based on an initial power flow solution.  

Network flow and copper plate  

Generally, network flow (NF) and copper plate (CP) 

formulations have historically been considered as 

approximations or strong simplifications of ACOPF, 

however, they can be derived as relaxations as well [17]. 

Relative to the relaxation formulations, the classic NF or 

CP approximations take the following step: 

 power flow is lossless. 

Similar to the ‘DC’ OPF, the NF and CP approximations 

can opt to fully neglect reactive power flow. 

Shunt elements 

As noted by [18], it is important to include shunt 

contributions to the power flow approximations, as such 

error is generally cumulative. For instance, even for the 

classic lossless ‘DC’ formulation, as ‘lossless’ generally 

only refers to the series flow through the pi-section. 

Combining formulations 

In different parts of a power system, different 

formulations can be used. E.g., in meshed grids, the 

linearised ‘DC’ can be used; in a radial zone, the SOCP 

BFM. To combine them, a nodal power balance is used. 

Furthermore, lossless network flow can be used to bypass 

the numerical issues related to very low impedance 

values for short lines or circuit breakers. 
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CONCLUSION 

This paper provides an overview of different OPF 

formulations for inclusion in market clearing algorithms. 

Due to the fact that integer variables are generally 

required in market clearing constraints, the approach to 

model the power flow physics for such problems needs to 

be tractable in combination with integer variables. In that 

sense, mixed-integer nonconvex optimisation is not a 

suitable approach. The relaxation and approximations 

discussed in the work allow to develop an overall model 

which is mixed-integer convex, which has superior 

tractability.  

The SOCP BFM offers both high accuracy and 

computational tractability, but may require a heuristic 

when inexact. In realistic cases, optimality and feasibility 

of this formulation is equal to the original nonconvex 

problem. Furthermore, in some cases, the SOCP solution 

(global optimum) is actually superior to those obtained by 

local nonconvex solvers. Nevertheless, the heuristic can 

be cumbersome in difficult situations such as cases with 

overvoltage. 

The simplified DistFlow formulation offers a high-quality 

approximation in terms of feasibility and optimality for 

distribution grids. The major advantages are that no 

heuristic fine tuning is required in this method and that 

the problem formulation is immediately linear. It is noted 

that simplified DistFlow for radial grids is the natural 

equivalent of linearized ‘DC’ OPF for meshed grids. 

Applying the Ben-Tal reformulation technique selectively 

to the SOCP constraints is a path for fine-tuning accuracy 

selectively. Furthermore, this reformulation technique is 

an interesting path to leverage warm-start capability of 

the simplex algorithm.  

For the SmartNet project market clearing simulation, a 

combination of ‘DC’ for the meshed system parts with 

convexified or simplified DistFlow is targeted.  

ACKNOWLEDGMENTS 

The research leading to these results has received funding 

from the European Union’s Horizon 2020 research and 

innovation programme under grant agreement No 

691405.  

The authors thank Tom Van Acker for fruitful discussion 

and Hakan Ergun for careful review.  

 

REFERENCES 

 

[1] “SmartNet Project,” 2016. [Online]. Available: 

http://smartnet-project. eu/ 

[2]  M. E. Baran and F. F. Wu, 1989, “Optimal capacitor 

placement on radial distribution systems.” IEEE 

Trans. Power Deliv., vol. 4, no. 1, pp. 725– 734. 

[3] N. Z. Shor, 1987,. “Quadratic optimization 

problems.” Soviet Journal of Computer and System 

Sciences. 

[4] D. K. Molzahn, I. A. Hiskens, 2014, “Moment-based 

relaxation of the optimal power flow problem.” 

Power Systems Computation Conference, pp. 1–7. 

[5] J. B. Lasserre, 2001,.”Global optimization with 

polynomials and the problem of moments.” SIAM J. 

Optim., vol. 11, no. 3, pp. 796–817. 

[6] S. Kim, M. Kojima, M. Yamashita, 2003,. “Second 

order cone programming relaxation of a positive 

semidefinite constraint.” Optimization Methods and 

Software, vol. 18, no. 5, pp. 535–541.  

[7] A. Ben-Tal, A. Nemirovski, 1999, “On polyhedral 

approximations of the second-order cone.” 

Mathematics of Operations Research, vol. 26, no. 2, 

pp. 193–205.  

[8] M. Fazel, H. Hindi, S.P. Boyd, 2001, “A rank 

minimization heuristic with application to minimum 

order system approximation.” Proc. American 

Control Conf., vol. 6, no. 2, pp. 4734–4739. 

[9] W.A. Bukhsh, A. Grothey, K. I. M. McKinnon, P. A. 

Trodden, 2013, “Local solutions of the optimal power 

flow problem”. IEEE Trans. Power Syst., vol. 28, no. 

4, pp. 4780–4788. 

[10] X. Bai, H. Wei, K. Fujisawa, Y. Wang, 2008, 

“Semidefinite programming for optimal power flow 

problems.” International Journal of Electrical Power 

& Energy Systems, vol. 30, no. 6–7, pp. 383–392.  

[11] R. A. Jabr, 2006, “Radial distribution load flow 

using conic programming,” IEEE Trans. Power Syst., 

vol. 21, no. 3, pp. 2005–2006. 

[12] S.H. Low, 2014, “Convex relaxation of optimal 

power flow - part I: formulations and equivalence.” 

IEEE Trans. Control Netw. Syst., vol. 1, no. 1, pp. 15–

27.  

[13] H. Hijazi, C. Coffrin, P. Van Hentenryck, 2016, 

“Convex quadratic relaxations for mixed-integer 

nonlinear programs in power systems.” Math. Prog. 

Comp., pp. 1–47. 

[14] B. Kocuk, S. Dey, S. Andy, 2016, “Strong SOCP 

relaxations of optimal power flow.” Operations 

Research, vol. 64, no. 6, pp. 1177–1196. 

[15] R. Louca, P. Seiler, E. Bitar, 2013, “A rank 

minimization algorithm to enhance semidefinite 

relaxations of optimal power flow.” 51st Annual 

Allerton Conf. Communication, Control, and 

Computing, pp. 1010–1020. 

[16] C. Coffrin, H. Hijazi, P. Van Hentenryck, 2016, “The 

QC relaxation: theoretical and computational results 

on optimal power flow.” IEEE Trans. Power Syst., 

vol. 31, no. 4, pp. 3008–3018. 

[17] C. Coffrin, H. L. Hijazi, P. Van Hentenryck, 2016, 

“Network flow and copper plate relaxations for AC 

transmission systems.” Power Systems Computation 

Conf. pp. 1–8. 

[18] B. Stott, J. Jardim, O. Alsac, 2009, “DC power flow 

revisited.” IEEE Trans. Power Syst., vol. 24, no. 3, 

pp. 1290–1300. 


