
First Experimental Demonstration of Autonomic
Slice Networking

Luis Velasco1*, Lluís Gifre2, Francesco Paolucci3, and Filippo Cugini4

1 Optical Communications Group (GCO), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
2 Universidad Autónoma de Madrid (UAM), Madrid, Spain, 3 Scuola Superiore Sant'Anna, Pisa, Italy, 4 CNIT, Pisa, Italy

e-mail:lvelasco@ac.upc.edu

Abstract: An architecture to enable autonomic slice networking is presented. Extended nodes make
local decisions, whereas domain systems collate and export metered data transparently to customer
controllers. Discovered knowledge is experimentally used for network slice reconfiguration.
© 2017 Optical Society of America1
OCIS codes: (060.4250) Networks; (060.4261) Networks, protection and restoration

1. Introduction
A network slice consists of a set of network resources, and instance-specific policies and configurations that
govern resources’ behavior creating a complete instantiated logical network to meet certain network
requirements. Since network slices might require stringent requirements, e.g., ultra-low latency, they need to be
isolated from other traffic or application in the network to guarantee the committed performance [1]. In addition,
trust in the integrity of devices and data privacy and secure communications are required. To minimize
dependency on human administrators, the concept of autonomic networking entails closing control loops aiming
at providing self-management capabilities[2]; we call this as the observe-analyze-act (OAA) loop [3] since it
includes: i) monitoring resources in the network nodes, ii) using data analytics techniques both, locally in the
network nodes, e.g., to detect anomalies and degradations [4], and in a centralized system aiming at discovering
knowledge from data (KDD), and iii) using discovered knowledge for self-management purposes.
This paper presents and experimentally validates for the first time an architecture to support autonomic slice
networking, so services can implement their own business intelligence and, through the Customer Network
Controller (CNC), can efficiently manage their resources based on the data analysis outcome. This will allow
keeping Total Cost of Ownership (TCO) minimal while provisioning higher QoS services.
2. Network Slicing
Fig. 1a presents a scenario based on the ACTN
framework [5], where two domains for metro and
core support network slicing. Each domain
control/management system includes: i) the
provisioning and reconfiguration module, e.g., based
on ABNO, ii) a data analytics module that collects
data records from the nodes and runs KDD
algorithms, and iii) a slice manager that exports
virtualized network resources in the form of network
slices through a northbound interface (NBI) to the
CNCs. The NBI enables, not only connection
provisioning and network slice reconfiguration, but
also monitoring the network slice, so CNCs can
apply KDD algorithms for autonomic slice
networking. CNCs are able to manage an end-to-end
network composed of multiple network slices from
multiple domain network controllers, as well as
customer-owned infrastructure; they consist of a
module for connection provisioning and network
slice re-configuration, as well as a data analytics
module running KDD algorithms.

Metro Network
Metro Network

C1

C2

S1

S2

S3

X2

X1
X3

X4

S4

S5

S6

Slice Manager

Data Analytics Cntl & Mgmt

Core Control and Management

Customer Network Controller (CNC)

Data Analytics Control & Management

Slice Manager

Data Analytics Cntl & Mgmt

Metro Control and Management

S1

S2

S3 S4

S5

S6
S1

S2

S3 S4

S5

S6

C2C1

Core
Network

Slice X2

X1
X3

X4

Metro
Network

Slice

Customer
Network

Optical Core
Network

X2

X1 X3

X4

(a)

(b)

NBI

(c)

(d)

Fig. 1. Management architecture and network slice concept

In the example in Fig. 1, domain controllers exporting network slices allow the CNC to operate a multi-layer,
multi-domain network that includes both sliced and customer-owned physical resources. The metro network
slice (Fig. 1b) includes six MPLS switches (S1..6) connected through virtual links (vlink), where vlinks S2-S5
and S3-S4 in particular, are supported by lightpaths through the core network slice. The core network slice (Fig.
1c) consists of four cross-connects (X1..4), where two lightpaths are established. An MPLS connection entering
through S1 and leaving through S6 is established on the metro network slice. The CNC operates an end-to-end
network (Fig. 1d) that includes the network slices and two customer nodes (C1 and C2). An end-to-end

1The research leading to these results has received funding from the Spanish MINECO SYNERGY project (TEC2014-59995-R), from the Catalan Institution for
Research and Advanced Studies (ICREA), and from the EU Commission for the H2020-ICT-2014 project 5GEx (G.A. 671636).

Data
Forwading

IPFIX
Speaker

Notifications

RESTCONF
Client

Data
records

Slice Config
• Customer

• Service / SLA
• Resources Map

Network Slice
Monitoring
Manager

IPFIX
Speaker

RESTCONF
Server

Network Slice
Monitoring

Config Manager

Control &
Management

Data Analytics

Slice Manager

Domain Control and Management

Notifications

Send
Config.

Data
records

Network Slice
Optimizer

Network Slice
Config Manager

Network Slice
Life-cycle

Notifications
Data records

Send
Config.

IPFIX
Speaker

RESTCONF
Client

Data
records

Control &
Management

Data Analytics

Notifications

Send
Config.

CNC (a)

Notif

IPFIX
Speaker

Config

From Node

Extended Node

RESTCONF
Server

Local KDD

Mgr.

Network Slices

KDD
Application

To/From Domain
Control and

Management

From/To Extended Node

App
Mgr.

Encryption
Sample
Handler

Process

AppRepo

KDD Application (running in a sandbox)

Process
Config

Message
mapping

Repo Config

(b)

KDD

Notif

Run

Data Analytics

Notifications

Send configuration

Config
Notify

Control &
ManagementCommands

Save
configuration

Collected Repo

IPFIX
Speaker

Notifications

Store
Data records

RESTCONF
Client

Data
records

Decrypt
Obs Group

Handler
Data

Manager

ProcessProcess

KDD API

Get
samples

Decision
Maker

Web
Interface

(c)

Deployable element

Fig. 2. Detailed architecture proposed for Autonomic Slice Networking.
customer MPLS connection is established from C1 to C2. To enable autonomic slice networking, observation
points need to be configured in network nodes for each network slice independently and metered data collated
by the corresponding CNC transparently, where domain systems play the role of IPFIX mediators [6].
3. Architecture to support Autonomic Slice Networking
Fig. 2a overviews the proposed architecture. Extended node modules receive IPFIX messages from physical
nodes containing data records with data from observation points belonging to an observation domain Id; we use
a different Id for each network slice. The extended node includes a different local KDD application for each
network slice in charge of handling and processing data records. A manager is the entrance point for the KDD
applications; it receives data records and delivers them to the corresponding KDD application. Extended nodes
can be deployed as separate elements or run inside physical nodes with computation capabilities. KDD
applications (Fig. 2b) include: i) a repository where data records are temporarily stored; ii) a number of software
components (KDD processes and data handlers to deal with data aggregation); and iii) an application manager
that serves as an interface between the KDD application and the rest of elements. The architecture ensures that
monitoring data records are only accessed and processed by software components specifically developed for the
network slice; such software components are deployed directly from the CNC managing the network slice. To
isolate KDD application execution, each KDD application runs in a self-contained execution environment. In
addition, an encryption module uses the CNC’ public key to encrypt data records being conveyed to the CNC.
The granularity of data records received from physical nodes is generally finer than that used to export data
toward the domain system and therefore, data records are temporally stored and aggregated; this opens the
opportunity to apply data analytics techniques directly in the network nodes. Hence, upon the reception of
monitoring data records from an observation point, the KDD application manager looks at the process mapping
database to find the sample handler in charge of aggregating data records of the given type, stores them in the
observation point’s temporal repository, and calls the KDD process in charge of processing those data records.
In case, the KDD process discovers a pattern in the data, a notification to the CNC controller can be sent.
Periodically, data records in each temporal repository are aggregated, encrypted, and sent toward the CNC.
The domain control/management system includes the domain analytics and the slice manager. Data records and
notifications received from the network nodes are received by a data forwarder module that delivers them either
to the domain analytics module in case the associated resource is locally managed, or to the slice manager in
case the associated resource belongs to a network slice. Upon the reception of a data record or a notification
from the data forwarder, the slice manager finds the CNC managing the network slice the associated resource
belongs to and forwards the data record or notification to such CNC through the appropriate interface.
Data records and notifications arriving at the CNC are sent to the analytics module (Fig. 2c); a data manager
decrypts their contents using the CNC’s private key to obtain plain data. Data records can be aggregated using a
specific sample handler and stored into a scalable multi-master database. A decision maker module is notified,
and the corresponding CNC KDD process is executed; KDD processes can run locally or in a cluster using big-
data processing engines. In the case that a network slice reconfiguration is needed, the CNC network controller
can be triggered. Note also that the CNC manages the configuration of the KDD application deployed in the
network nodes; whenever configuration parameters need to be tuned, a message encrypted using the KDD
application’s public key can be sent through the RESTCONF interface with the new values.

11

13

12

Re-route
Connection set

(templateId:500)

Extended
Node

Metro
Node

Optical
Node

Extended
Node

Customer
Node

Core
Control/Mngt

Metro
Control/Mngt CNC-328

(templateId:300)

IPFIX

IPFIX

IPFIX
(templateId:401)

(templateId:264)
IPFIX

1

12

2

6

8

(templateId:501)
IPFIX

4
IPFIX

(templateId:400)

IPFIX
(templateId:264)

IPFIX

Notification
Excessive BER

9 Notification
Excessive BER 10

11

13

5

3

7

Connections

Fi
nd

 C
an

di
da

te
Co

nn
ec

tio
ns

{
"time-stamp": 1488813600,
"severity": "warning",
"symbolicName": "LSP-01-03",
"observationGroupId": 3,
"kind": "BER-threshold-exceeded",
"node-id": 168427523,
"templateId": 400,
"samples": [
{
"timeStamp": 1488813600,
"direction": 2,
"ber": 1.1700e-06,
"rxPower": -8.6537553442,
"txPower": -2.5892834887

},
...]

}

10

reroute

1
2
3
4
5
6
7

8

Network Slice Id

Fig. 3. Workflow and captures.

4. Experimental assessment
For the experimental validation, we implemented a network slice reconfiguration use case, where the CNC
decides to reroute those MPLS connections using vlink X1-X3 when BER degradation on the underlying
lightpath is detected by the KDD process in the related extended node. Experiments have been carried out on a
distributed field trial set-up connecting premises in UPC (Barcelona, Spain), and Scuola Superiore Sant’Anna
(Pisa, Italy) through IPSec tunnels. UPC’s extended node, network slice manager and data analytics modules
were implemented in Python and run in a computer cluster under Linux. UPC’s CNC control and management
module was developed in Python and interoperates with a planning tool developed in C++ for Linux. The data
plane is realized at Sant’Anna premises, and it consists of a network including commercial Juniper routers
equipped with GbE interfaces and Ericsson SPO-1400 ROADMs encompassing 100Gb/s transceiver cards.
Nodes are controlled by C++-based SDN controllers handling configuration by means of dedicated southbound
interfaces [7]. The NBI exploits a REST API server able to receive vlink and connections’ setup and modify
requests from the CNC, along with TED and LSP-DB synchronization procedures.
The scenario depicted in Fig. 1 was reproduced; Fig. 3 presents the OAA loop implemented. Different IPFIX
templates were used to encode monitoring data, depending on the type of observation point, and the IPFIX
session, and its data can be optionally encrypted. We defined the template Id 300 to encode optical transponder
monitoring data, including BER and optical power (message 1) and used OpenVSwitch’s template Id 264 for L2
traffic (message 2); the field Observation Domain Id is used to identify the network slice. We configured L2 and
L0 nodes to send monitoring data records every 60 s. Extended nodes use a different template to aggregate data
and were configured to send data records every 15 min.; those templates include the originator nodeId as
original Observation Domain Id (template Ids 401 and 501) (messages 4 and 6). Finally, the domain
control/management system uses templates IDs 400 and 500 with the CNCs, where the field Observation
Domain Id contains the originator nodeId (messages 5 and 7) and slicing information was removed. Note that
customer’s nodes send IPFIX monitoring data directly to the CNC (message 3).
Upon a BER degradation (we configured a BER threshold equal to 1e-6 for lightpath X1-X3) is detected in an
extended node (after reception of message 8), a notification that includes the last measured values on the
observation point is sent to the network slice’s CNC, via the core control and management system (messages 9
and 10). The CNC decides to re-route customer connections using the degraded vlink, so it collects all the
affected connections and requests their rerouting to the metro domain control/management system, excluding
the vlink in degraded BER condition from the path computation (messages 11-13).
5. Conclusions
An architecture to enable autonomic slice networking has been presented and experimentally demonstrated
using a use case of preventive network slice MPLS connection rerouting in the event of excessive BER detected
in a lightpath belonging to the network slice that supports a vlink.
References
[1] NGMN 5G P1 “Requirements & Architecture Work Stream End-to-

End Architecture: Description of Network Slicing Concept,” 2016.
[2] M. Behringer et al., IETF RFC 7575, 2015.
[3] Ll. Gifre et al., “Experimental Assessment of Node and Control

Architectures to Support the Observe-Analyze-Act Loop,” OFC 2017

[4] A. P. Vela et al., “Early Pre-FEC BER Degradation
Detection to Meet Committed QoS,” OFC, 2017.

[5] D. Ceccarelli and Y. Lee, draft-ceccarelli-teas-actn-
framework, IETF work-in-progress, 2017.

[6] B. Claise et al., IETF RFC 7119, 2014.
[7] F. Paolucci et al., “Service Chaining in Multi-Layer Networks using Segment Routing and Extended BGP FlowSpec”, OFC 2017.

	1. Introduction
	2. Network Slicing
	3. Architecture to support Autonomic Slice Networking
	4. Experimental assessment
	5. Conclusions
	References

