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Abstract: An architecture to enable autonomic slice networking is presented. Extended nodes make 
local decisions, whereas domain systems collate and export metered data transparently to customer 
controllers. Discovered knowledge is experimentally used for network slice reconfiguration. 
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1. Introduction 
A network slice consists of a set of network resources, and instance-specific policies and configurations that 
govern resources’ behavior creating a complete instantiated logical network to meet certain network 
requirements. Since network slices might require stringent requirements, e.g., ultra-low latency, they need to be 
isolated from other traffic or application in the network to guarantee the committed performance [1]. In addition, 
trust in the integrity of devices and data privacy and secure communications are required. To minimize 
dependency on human administrators, the concept of autonomic networking entails closing control loops aiming 
at providing self-management capabilities[2]; we call this as the observe-analyze-act (OAA) loop [3] since it 
includes: i) monitoring resources in the network nodes, ii) using data analytics techniques both, locally in the 
network nodes, e.g., to detect anomalies and degradations [4], and in a centralized system aiming at discovering 
knowledge from data (KDD), and iii) using discovered knowledge for self-management purposes. 
This paper presents and experimentally validates for the first time an architecture to support autonomic slice 
networking, so services can implement their own business intelligence and, through the Customer Network 
Controller (CNC), can efficiently manage their resources based on the data analysis outcome. This will allow 
keeping Total Cost of Ownership (TCO) minimal while provisioning higher QoS services. 
2. Network Slicing 
Fig. 1a presents a scenario based on the ACTN 
framework [5], where two domains for metro and 
core support network slicing. Each domain 
control/management system includes: i) the 
provisioning and reconfiguration module, e.g., based 
on ABNO, ii) a data analytics module that collects 
data records from the nodes and runs KDD 
algorithms, and iii) a slice manager that exports 
virtualized network resources in the form of network 
slices through a northbound interface (NBI) to the 
CNCs. The NBI enables, not only connection 
provisioning and network slice reconfiguration, but 
also monitoring the network slice, so CNCs can 
apply KDD algorithms for autonomic slice 
networking. CNCs are able to manage an end-to-end 
network composed of multiple network slices from 
multiple domain network controllers, as well as 
customer-owned infrastructure; they consist of a 
module for connection provisioning and network 
slice re-configuration, as well as a data analytics 
module running KDD algorithms. 
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Fig. 1. Management architecture and network slice concept 

In the example in Fig. 1, domain controllers exporting network slices allow the CNC to operate a multi-layer, 
multi-domain network that includes both sliced and customer-owned physical resources. The metro network 
slice (Fig. 1b) includes six MPLS switches (S1..6) connected through virtual links (vlink), where vlinks S2-S5 
and S3-S4 in particular, are supported by lightpaths through the core network slice. The core network slice (Fig. 
1c) consists of four cross-connects (X1..4), where two lightpaths are established. An MPLS connection entering 
through S1 and leaving through S6 is established on the metro network slice. The CNC operates an end-to-end 
network (Fig. 1d) that includes the network slices and two customer nodes (C1 and C2). An end-to-end  
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Fig. 2. Detailed architecture proposed for Autonomic Slice Networking. 
customer MPLS connection is established from C1 to C2. To enable autonomic slice networking, observation 
points need to be configured in network nodes for each network slice independently and metered data collated 
by the corresponding CNC transparently, where domain systems play the role of IPFIX mediators [6]. 
3. Architecture to support Autonomic Slice Networking 
Fig. 2a overviews the proposed architecture. Extended node modules receive IPFIX messages from physical 
nodes containing data records with data from observation points belonging to an observation domain Id; we use 
a different Id for each network slice. The extended node includes a different local KDD application for each 
network slice in charge of handling and processing data records. A manager is the entrance point for the KDD 
applications; it receives data records and delivers them to the corresponding KDD application. Extended nodes 
can be deployed as separate elements or run inside physical nodes with computation capabilities. KDD 
applications (Fig. 2b) include: i) a repository where data records are temporarily stored; ii) a number of software 
components (KDD processes and data handlers to deal with data aggregation); and iii) an application manager 
that serves as an interface between the KDD application and the rest of elements. The architecture ensures that 
monitoring data records are only accessed and processed by software components specifically developed for the 
network slice; such software components are deployed directly from the CNC managing the network slice. To 
isolate KDD application execution, each KDD application runs in a self-contained execution environment. In 
addition, an encryption module uses the CNC’ public key to encrypt data records being conveyed to the CNC. 
The granularity of data records received from physical nodes is generally finer than that used to export data 
toward the domain system and therefore, data records are temporally stored and aggregated; this opens the 
opportunity to apply data analytics techniques directly in the network nodes. Hence, upon the reception of 
monitoring data records from an observation point, the KDD application manager looks at the process mapping 
database to find the sample handler in charge of aggregating data records of the given type, stores them in the 
observation point’s temporal repository, and calls the KDD process in charge of processing those data records. 
In case, the KDD process discovers a pattern in the data, a notification to the CNC controller can be sent. 
Periodically, data records in each temporal repository are aggregated, encrypted, and sent toward the CNC. 
The domain control/management system includes the domain analytics and the slice manager. Data records and 
notifications received from the network nodes are received by a data forwarder module that delivers them either 
to the domain analytics module in case the associated resource is locally managed, or to the slice manager in 
case the associated resource belongs to a network slice. Upon the reception of a data record or a notification 
from the data forwarder, the slice manager finds the CNC managing the network slice the associated resource 
belongs to and forwards the data record or notification to such CNC through the appropriate interface. 
Data records and notifications arriving at the CNC are sent to the analytics module (Fig. 2c); a data manager 
decrypts their contents using the CNC’s private key to obtain plain data. Data records can be aggregated using a 
specific sample handler and stored into a scalable multi-master database. A decision maker module is notified, 
and the corresponding CNC KDD process is executed; KDD processes can run locally or in a cluster using big-
data processing engines. In the case that a network slice reconfiguration is needed, the CNC network controller 
can be triggered. Note also that the CNC manages the configuration of the KDD application deployed in the 
network nodes; whenever configuration parameters need to be tuned, a message encrypted using the KDD 
application’s public key can be sent through the RESTCONF interface with the new values. 
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Fig. 3. Workflow and captures. 

4. Experimental assessment 
For the experimental validation, we implemented a network slice reconfiguration use case, where the CNC 
decides to reroute those MPLS connections using vlink X1-X3 when BER degradation on the underlying 
lightpath is detected by the KDD process in the related extended node. Experiments have been carried out on a 
distributed field trial set-up connecting premises in UPC (Barcelona, Spain), and Scuola Superiore Sant’Anna 
(Pisa, Italy) through IPSec tunnels. UPC’s extended node, network slice manager and data analytics modules 
were implemented in Python and run in a computer cluster under Linux. UPC’s CNC control and management 
module was developed in Python and interoperates with a planning tool developed in C++ for Linux. The data 
plane is realized at Sant’Anna premises, and it consists of a network including commercial Juniper routers 
equipped with GbE interfaces and Ericsson SPO-1400 ROADMs encompassing 100Gb/s transceiver cards. 
Nodes are controlled by C++-based SDN controllers handling configuration by means of dedicated southbound 
interfaces [7]. The NBI exploits a REST API server able to receive vlink and connections’ setup and modify 
requests from the CNC, along with TED and LSP-DB synchronization procedures. 
The scenario depicted in Fig. 1 was reproduced; Fig. 3 presents the OAA loop implemented. Different IPFIX 
templates were used to encode monitoring data, depending on the type of observation point, and the IPFIX 
session, and its data can be optionally encrypted. We defined the template Id 300 to encode optical transponder 
monitoring data, including BER and optical power (message 1) and used OpenVSwitch’s template Id 264 for L2 
traffic (message 2); the field Observation Domain Id is used to identify the network slice. We configured L2 and 
L0 nodes to send monitoring data records every 60 s. Extended nodes use a different template to aggregate data 
and were configured to send data records every 15 min.; those templates include the originator nodeId as 
original Observation Domain Id (template Ids 401 and 501) (messages 4 and 6). Finally, the domain 
control/management system uses templates IDs 400 and 500 with the CNCs, where the field Observation 
Domain Id contains the originator nodeId (messages 5 and 7) and slicing information was removed. Note that 
customer’s nodes send IPFIX monitoring data directly to the CNC (message 3). 
Upon a BER degradation (we configured a BER threshold equal to 1e-6 for lightpath X1-X3) is detected in an 
extended node (after reception of message 8), a notification that includes the last measured values on the 
observation point is sent to the network slice’s CNC, via the core control and management system (messages 9 
and 10). The CNC decides to re-route customer connections using the degraded vlink, so it collects all the 
affected connections and requests their rerouting to the metro domain control/management system, excluding 
the vlink in degraded BER condition from the path computation (messages 11-13). 
5. Conclusions  
An architecture to enable autonomic slice networking has been presented and experimentally demonstrated 
using a use case of preventive network slice MPLS connection rerouting in the event of excessive BER detected 
in a lightpath belonging to the network slice that supports a vlink. 
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