
Efficient Management Solutions for
Software-Defined Infrastructures

Stuart Clayman, Lefteris Mamatas†, and Alex Galis
Dept. of Electronic Engineering, University College London, London, UK

† Dept. of Applied Informatics, University of Macedonia, Thessaloniki, Greece
Emails: s.clayman@ucl.ac.uk, emamatas@uom.gr, a.galis@ucl.ac.uk

Abstract—Novel evolutions in the networking world have been
proposed under the umbrella of 5G initiatives. The NFV concept
is related with the building blocks for virtual networks that
are characterized as highly dynamic network environments. SDN
performs logically-centralized network control that is decoupled
from the data plane, enabling holistic network management.
Furthermore, there is a recent trend towards lightweight virtual-
ized network devices and servers bringing significant advantages
in terms of adaptability and responsiveness to the network
and service environment dynamics. The above paradigms can
be combined together, resulting in unprecedented flexibility in
Software Defined Infrastructures (SDI) operations. Such unified
environments require new efficient and distributed management
facilities that are characterized by scalability, reliability, and
adaptability to the dynamic conditions in terms of resource avail-
ability and changing service and infrastructure requirements.
To assist the evaluation of these components, we developed a
distributed facility for testing, evaluating, and experimenting
with the management of these SDI environments - the Very
Lightweight Software-Driven Network and Services Platform
(VLSP). It exhibits the following properties: (i) it is a complete
integrated management platform for SDI environments; and (ii)
it is distributed and scalable, making it suitable for a wide range
of topologies and network service deployments.

I. INTRODUCTION

Software-Defined Networks (SDNs) are realizing a major
architectural shift in the Internet, such as the decoupling of
network control from the data plane. Logically-centralized
control is gradually replacing the distributed self-organized
way the Internet behaves, mainly within the boundaries of
a single organization domain, thus enabling decision-making
aligned to an organization structure. As SDN deployment has
been increasing, the focus of research has gradually moved
from the phase of SDNs to Software-Driven Infrastructures,
where novel management approaches can bring services and
networks closer together [1]. The combination of server de-
ployment within the network and devices that are gradually
adopting the virtualization technologies, provides a network
architecture concept with deeper integration of networks with
the IT domains and their related operations through Network
Functions Virtualization (NFV). This allows significant cost
savings and more flexibility in service provisioning.

Such a shift in approach calls for a more unified and effi-
cient management and control with software entities focusing
beyond traffic engineering. Management in 5G should address
at least the following 6 aspects: (i) efficient service function,
(ii) optimized service function availability, (iii) service and

VNF lifecycle automation, (iv) service placement automation,
(v) efficient resource utilization, and (vi) dynamic resource
up/down scaling (elasticity).

Our previous experience [2] has highlighted the following
critical issues with testing efficiency when managing virtual-
ized systems: (i) the number of virtual machines that can run on
a physical host is limited, the startup speed of a virtual machine
is quite slow and its image size large; (ii) in terms of highly
dynamic networks, and virtualized routers in particular, we
observed that over 95% of the router functionality was never
utilized in any experiments that were run; and (iii) there were
some serious hurdles with the IP networking configuration of
virtual machines and virtual routers. With these issues, it is
difficult and complex to design and build 5G management
systems that address these 6 highlighted aspects.

The VLSP integrates and unifies management of networks,
compute, and services into a single platform. The whole
system, including a lightweight virtual router, was designed
and built from scratch to enable flexible experimentation of
virtual infrastructures. VLSP has the following advantages:

Support of integrated SDN and NFV environments: to un-
cover the potential of virtualized SDN solutions and NFV
deployments, in a naturally integrated way, with common
management and control facilities.

Lightweight virtual router implementation: to allow evalua-
tion of diverse scenarios, including the testing of various
management lifecycle schemes and robustness to “unex-
pected" network/node conditions (such as sudden start
up/shut down events exposing software deficiencies).

Distributed infrastructure implementing logically-centralized
management and control: to support optimizations, based
on centralized decisions using a global system picture de-
rived from an integrated monitoring infrastructure based on
Lattice [3]. It also supports flexible and adaptable service
provisioning, plus aspects beyond traffic engineering.

Experimentation on management: to focus on the experimen-
tation of distributed management and control components
of SDI rather than data plane performance. VLSP brings
the following benefits: (i) more routers can be deployed
on each host, making it easier to test scalability and
stability; (ii) enhanced distributed management, control and
monitoring evaluations can be carried out, which is difficult
to achieve in a running environment using a number of de-
ployed data centers; (iii) suitable for both experimentation
with virtual networks and lightweight virtual servers; and
(iv) supports experiments with dynamic topologies (such978-1-5090-0223-8/16/$31.00 c© 2016 IEEE

as migratable virtual routers).

In this paper, we present the advantages of VLSP with ex-
perimental results and detailed implementations with an op-
erational evaluation of VLSP’s non-functional characteristics.
Two experimental scenarios are presented showing (1) the
management of diverse topologies, which demonstrates the
flexibility and scalability of VLSP, and (2) the management
of data streams, which shows how VLSP handles monitoring
data streams. The main VLSP architectural artefacts, with a
discussion of representative use-cases, are presented in [4].
The VLSP open source solution is available at [5].

A summary of the remaining paper follows: Section II gives
background information and contrasts the proposed platform
with the related work. Section III discusses the design and
implementation details of the VLSP. Section IV highlights our
experimental methodology and shows our evaluation results.
Finally, section V concludes the paper.

II. BACKGROUND AND RELATED WORK

A number of open-source initiatives have appeared, bring-
ing together NFV with SDNs, such as Open Daylight [6]. It
is common in deployed networks, including cloud and data
center networks, to use system-level virtual machines (e.g.
Xen, VMware) plus embedded software routers (e.g. Click [7]
or Quagga). However, these VMs are too heavy for large-scale
experimentation of their management features. Furthermore,
NFVs and SDNs have a parallel evolution that have decoupled
aspects, particularly for the management functions.

Other researchers have also observed the same serious
issues with managing virtualized systems and they have pro-
posed a number of lightweight virtual servers and routers,
such as Mirage OS [8], OSv [9] and ClickOS [10]. These
solutions are based on unikernels (or Cloud Operating Sys-
tems), [11], where the application can be defined with a high-
level programming language. Its compilation output is a very
lightweight and single-purpose virtual machine, keeping the
essential part of the OS system only. For this reason they
are called a Library OS. These virtual machines may be a
few megabytes in size and boot up quickly enough that they
can startup with the establishment of a TCP connection or the
reception of a DNS request packet. So far, such proposals are
being deployed within existing cloud or SDN environments
that are not designed especially for these lightweight virtual-
ized network devices.

A number of management solutions have been proposed for
the studied flexible infrastructures. The CONTENT architec-
ture proposes an orchestrater (at the cloud service layer) feder-
ating the IT resources from distributed sites with user-to-data-
center and inter-data-center multi-layer connectivity services,
managed by an SDN-based network layer. The UNIFY consor-
tium [12] devises means to orchestrate, verify and observe end-
to-end service delivery from premises / enterprise networks,
using aggregation over core networks, into data centers. The
T-NOVA project [13] plans to exploit the concept of NFV
allowing operators not only to deploy Virtualized Network
Functions (VNFs) for their own needs, but also to offer them
to their customers as value-added services. OpenMANO is an
open source project that provides a practical implementation of

the reference architecture for Management and Orchestration
under standardization at ETSI’s NFV ISG [14].

Many research institutes have constructed national-level
SDN testbeds, such as “OF@TEIN” and “OFELIA” [15].
However, these are large-scale deployments which may not
be suitable for frequent experimentations. In some cases such
infrastructure was not available and the well-known SDN
emulator Mininet was used instead (e.g. [16]). Virtualization
is used for emulating heterogeneous network technologies as
well. Most of these deployments offer virtualized environments
being supported by OpenFlow switches. In our case, VLSP
proposes a virtual network that consists of SDN-enabled virtual
routers. The Mininet [17] is suitable for small networks (i.e.
runs on a single host) and does not support network dynamicity
and performance assessment of virtualized hosts [18].

Many promising open-source initiatives are present in the
area of SDN/NFV, such as OpenStack [19], Open Daylight
[6] and OPNFV [20]. Open Daylight is based on a loosely-
coupled architecture, whereby service and virtual network
device plugins realize the targeted behaviour and are hidden
behind a common API. Neutron augments OpenStack clouds
[21] with networking as a service capabilities. ONF is working
on OpenFlow standardization aspects [22] and ETSI [23] is
studying the architecture of NFV from the network operators’
perspective. Several SDN/NFV efforts have appeared within
the IETF (e.g. [24]) in the form of working group initiatives.
The ITU’s Telecommunication Standardization Sector (ITU-
T) hosts study groups on SDNs (e.g. SG13) which focus
on future and 5G networks. In the IRTF [25], the Software-
Defined Networking Research Group identifies future research
challenges for SDN environments. Other SDN initiatives have
a stronger focus on combining SDNs with NFV.

III. THE VLSP SYSTEM

VLSP provides a complete environment from the protocol
stack up to the service management level, including a tailor-
made monitoring facility. Consequently, we are able to experi-
ment with new complete 5G network management and control
facilities over virtual networks based on our lightweight virtual
entity resembling both servers and routers.

A. VLSP Architecture

The architecture consists of three main layers to provide the
management of the full virtual infrastructure (as in figure 1):

1) the Application Layer executes Management Applications
that define the software components and functions of a
network service, together with their configuration param-
eters and operations. The Application Layer allows high-
level services and management applications to operate
while having a holistic view of the network.

2) the Orchestration Layer consists of software elements
which perform most of the management and orchestration
activities and is in charge of managing the full lifecycle
operations of the virtual resources in the network and
the allocation of the applications running on the virtual
nodes. It provides an Infrastructure Controller which
orchestrates the elements of a service and its associated
resources, an Infrastructure Optimizer which optimizes

the service nodes and resources in terms of optimal place-
ment, configuration and data flow operation, and the Con-
figuration and Monitoring entity providing configuration
related processes (such as configuration representation)
plus monitoring of the network and service resources
using our own monitoring facility.

3) the Infrastructure Layer contains both the Virtual In-
frastructure which represents the virtual resources that
make up the virtual networks, and the Data Center
Infrastructure which are the physical machines hosting
the virtual entities. It includes a Host Controller which
acts as a Network Hypervisor, presenting abstractions
for starting, stopping, and configuring virtual elements.
It is also responsible for the runtime operation of the
virtualized resources and the applications they host.

VLSP is a distributed management infrastructure that has
centralized functionality and is responsible for the setup,
configuration, optimization, and shutdown of network entities.
As depicted in Figure 1, it takes input from various Manage-
ment Applications regarding various high-level requirements
(e.g. a performance goal for the global system operation)
and translates that input into network and service resource
configuration enforced through a set of Host Controllers.

Infrastructure+
Layer+

Orchestra0on+
Layer+

Ingress+Point+ Egress+Point+

Web+Client+

Web+Server+
Streaming+
Applica0on+

File+Transfer+
Applica0on+

Monitoring+
Probe+

Host+
Controller+

Host+
Controller+++++++++++

+
+
+
+

Configura0on+and+Monitoring+

Configurators+Scrip0ng+
Engine+

Monitoring+
Engine+

Host+
Controller+

HighELevel+Services+and++
Management+Applica0ons+

+
+
+
+

Infrastructure+Controller+

Resource+
Orchestrator+

Service+
Orchestrator+

+
+
+
+

Infrastructure+Op0mizer+

Flow+
Controller+

Placement+
Engine+

Orchestra0on+
Interface+

Orchestra0on+
Interface+

Infrastructure+Control+
Interface+

Infrastructure+Monitoring+
Interface+

Physical+Host+C+Physical+Host+B+Physical+Host+A+

Applica0on+
Layer+

Fig. 1. Overall System Architecture and Components

In order to manage the challenging and dynamic infras-
tructures of virtual networks there needs to be a monitoring
system which collects data and reports on the behavior of both
the physical resources (e.g. CPU usage, memory usage) and
the virtual resources (e.g. utilization level of the virtual links).
These monitoring data items are sent to the Infrastructure
Optimizer and Controller components. The former uses the
monitoring information in order to take decisions regarding
network strategies and the latter enforces these decisions.

To allow fully dynamic management and control of the
system elements we have a Scripting Engine which allows
the definition of scenarios, resources, or other software entity
parameters. We use the Clojure language for the dynamic con-
figurations. This allows us to perform fully Software-Defined
Operations using a functional language that has an expressive
representation of the configuration settings, while being very
brief. Calling a function like (topo-line a-name 10) defines
a network structure of 10 nodes and 9 links. This structure

is only a software representation of the virtual network. W
Another function activates the network onto the infrastructure,
and hence deploys the virtual routers and virtual links. We
use scripting for networks, services, and static configuration
files. All communicated information is transmitted over REST
channels and using JSON descriptions.

The Infrastructure Layer consists of a number of virtual
entities, which represent the Virtual Infrastructure, instantiated
across a number of physical machines, that are part of a
Data Center infrastructure. The virtual entities are logically
independent software elements which communicate with each
other via network interfaces. The network traffic is made up of
datagrams that are communicated between the virtual entities.
Each virtual entity can be dynamically created or destroyed
within the virtual network, and has a management control
connection to a Host Controller. This sends the instructions
to start up or shutdown entities on the local machine as well
as to setup or tear-down connections with other virtual routers
or machines. Each virtual entity has a built-in monitoring probe
for determining the usage of the network resources and another
probe to monitor CPU, thread, and memory usage. The data
provided by the probes is collected and can be used by the
Orchestration Layer to manipulate the virtual infrastructure.

B. VLSP Implementation and Deployment

We have created a working implementation of the architec-
ture described in the section III-A called the Very Lightweight
Software-Driven Network and Services Platform (VLSP). It
has been implemented for the purpose of testing and evaluating
various aspects of managing SDN and highly dynamic virtual
environments, in particular the 6 aspects of: (i) efficient ser-
vice function, (ii) optimized service function availability, (iii)
service and VNF lifecycle automation, (iv) service placement
automation, (v) efficient resource utilization, and (vi) dynamic
resource up/down scaling (elasticity). VLSP is a testbed that
consists of a large number of virtualized entities which execute
on a number of physical machines. The testbed has been
validated for some of these aspects in previous work we have
undertaken on virtualized and highly dynamic networks [26].

The testbed set up has all the components described in
section III-A, including: (i) a supervisor and experimental con-
troller realizing the basic functionalities of the Orchestration
Layer; (ii) per-host Host Controllers; and (iii) the virtualized
entity, which runs inside a JVM. The testbed is configured by
the Infrastructure Controller running on one physical server,
and the Host Controllers running on physical machines that
host virtual entities. Under control from the Orchestration
Layer, the individual Host Controllers start or interact with
virtual entities when needed. The choice of Host Controller is
decided by the Placement Engine, which uses an algorithm to
determine the best physical machine to deploy the new virtual
entity. The Infrastructure Controller also sends requests, via a
Host Controller, to connect virtual routers together via virtual
network links.

In the VLSP testbed, the virtual servers and routers are
autonomous entities, with the virtual network executing inde-
pendently from the control elements. The control parts interact
with the virtual layer, as depicted in Figure 2. We also allow
static configurations and dynamic configurations for the Con-
figuration and Monitoring component and the Infrastructure

JVM

JVM

Router REST
Management

Router REST
Management

JVM

Server

JVM

Router REST
Management

Server REST
Management

Host
Controller

Physical Host B Physical Host C

Infrastructure Controller

RouterRouter

Router

Host
Controller

Dynamic
control

Host Controller
REST Management

Host Controller
REST Management

Configuration
and Monitoring

Management
Application

Management
Application

Infrastructure Controller
REST Management

Physical Host A

Infrastructure
Optimizer

Static
configurations

Dynamic
configurations

Fig. 2. Component Setup plus Control Path to Virtual Entities

Optimizer. Both of these components enable the dynamicness
in the Infrastructure Controller. The start up and shutdown
of virtual entities and links is managed by the Infrastructure
Controller and is performed by the Host Controller that resides
on each host. The Host Controller behaves in the same way
that a hypervisor does in other virtualised environments, by
starting virtual entities on the same physical host, but can also
pass on Infrastructure Controller commands to the entities.

The monitoring system Lattice [3] has been used for mon-
itoring virtualised services in federated cloud environments,
monitoring virtual networks [27], and as the monitoring sys-
tem for an information management platform that aggregates,
filters, and collects data in a scalable manner within virtual
networks [2]. Lattice has been proven to be ideal for the task
of collecting monitoring data for various types of dynamic
network environments. Each virtual entity has at least one
probe that can generate data. Monitoring data is also collected
from each Host Controller. This data is send to the Monitoring
Engine of the Orchestration Layer that processes it, and is the
data that is used by the Placement Engine for determining
where a new virtual entity is placed.

IV. RESULTS

In this section we present our evaluation and validation
of VLSP for managing virtual entities. First, we detail our
experimental setup, the relevant methodological issues, and
our experimental scenarios. Then we present and discuss the
experimental results from each scenario, starting with the
scenario details and the performance metrics used each time.
The goal of the following experiments is to: (i) highlight
the scalability, flexibility, and adaptability of the VLSP for
a diverse set of topologies and network service deployments,
and (ii) show that VLSP can operate with a wide range of
network and service environments.

The following experimental scenarios we developed:

• Scenario 1 - Management of Diverse Topologies: The
first scenario demonstrates the flexibility and scalability
of VLSP. We deployed various topologies across a set
of servers in our testbed, showing the rapid creation and

removal of topologies that can enable dynamic services.
Our six 5G management aspects i highlight: efficient
resource utilization, dynamic resource elasticity, VNF
lifecycle automation, and service placement automation.
We see the speed of creating virtual routers and virtual
links, as well as their deletion times.

• Scenario 2 - Management of Data Streams: The second
scenario shows how the complete VLSP environment
manages monitoring data streams. We create applications
handling management data of network operations that are
deployed across a virtual topology. We demonstrate the
adaptability behavior of VLSP and also its scalability
advantages from another view point, compared to the first
scenario. This highlights the aspects of efficient service
function and optimized service function availability. In
our runs, the topology adapts dynamically under the
VLSP control as nodes are created and deleted.

In all of our experiments we used the following hardware: (i)
2 servers with 2 Intel 2.5GHz CPUs (4 cores) and 8GB of
memory, (ii) 4 servers with 8 AMD Opteron 2.347GHz CPUs
(4 cores) and 32GB of memory, and (iii) 5 servers with 16
Intel Xeon 2.27GhZ CPUs (4 cores) and 32GB of memory.

A. Scenario 1 - Management of Diverse Topologies

Here we validate the management capabilities of VLSP
through measuring the router / link startup and deletion times
for creating a number of representative virtual topologies.
The studied topologies are commonly seen in Data Centers
- namely the grid and tree topologies. We created: (i) a 10 X
10 grid; (ii) a tree with a spanout of 4 and depth of 4; and (iii) a
tree with a spanout of 16 and depth of 2. We programmatically
created the topology descriptions using the Clojure language.
For example, the method (topo-grid 10 10) creates a 10
X 10 Grid, the method (topo-tree 4 4) creates a Tree (4,
4), and the method (topo-tree 16 2) creates a Tree (16, 2).
Any size of grid, tree, or other topology can be devised and
created by VLSP.

In order to demonstrate the distributed nature of VLSP
over a number of physical servers, we deployed each of the
3 topologies across all of the machines in the test-bed. After
ten iterations each time, we decreased the number of servers
by one, under the control of the Orchestration Layer. The
experiment stops when the number of physical servers is too
small to accept the required number of virtual routers. In table
I, we show the number of virtual routers and virtual links in
each of the three topologies. Each experimental run starts with
the creation of a new network topology and, during the run, we
gather the following metrics for analysis. After the topology
creation, we shut the topology down and gather deletion times.

Topology No of Mean Std No of Mean Std
routers time (ms) Dev (ms) links time (ms) Dev (ms)

Grid (10 X 10) 100 839.9 10.5 188 194.3 1.9
Tree (4, 4) 85 822.2 9.7 84 181.5 2.6
Tree (16, 2) 17 804.9 9.7 16 159.5 2.5

TABLE I. TOPOLOGY SIZES / TIMES W.R.T NO. OF ROUTERS & LINKS

Router Startup Time - the time taken to start a virtual router
includes the JVM creation time, the loading of the rele-
vant classes, and the time to initiate the required objects
to ensure the router is in a ready state.

Link Startup Time - the time taken to start a virtual link be-
tween two virtual routers includes the negotiation between
the routers to set-up both ends of the link to ensure the
link is in a ready state.

Router Deletion Time - the time taken to delete a virtual
router includes ending all of the executing virtual appli-
cations and shutting down all the virtual links attached
to that particular router. Deleting a link also requires
negotiating with the other end of the link to ensure a
bilateral disconnection and consistent state.

Across all of the three experiments the router creation time
is around 820ms, the link creation time is around 180ms, and
the router (plus link) deletion times is around 30ms. The test
runs have been executed 10 times to ensure replicability of
our observations. We deemed 10 replications appropriate for
safe analysis (which produced a very low standard deviation
of the values, as shown in Table I). According to these results,
we can confirm the scalable behavior of the VLSP in terms
of rapidness in the manipulation of virtual routers / links. The
topology type, size and number of physical servers have an
insignificant impact on the virtual entities creation and deletion
times, making VLSP suitable to provide the virtual network
infrastructure supporting a wide-range of deployed services.

B. Scenario 2 - Management of Data Streams

To highlight how the VLSP operates as a complete system,
we devised a scenario where management data is processed
and manipulated. Dealing with management data flows is
extremely important for virtual infrastructure management
as so many entities can be created dynamically. A number
of management data clients communicate with data servers,
potentially using data proxies. The VLSP monitors the be-
havior of the management data flows and requests a change
in a global performance objective when it detects abnormal
behavior. In our case, it trades a detected jitter in the average
response time of the requested data for a slight increase in the
average value of this particular performance metric. We tested
this scenario with large topologies in order to investigate the
behavior of VLSP when considering efficient functionality.

We have created data management applications for Data
Clients, Data Servers, and Data Proxies. The Data Clients
periodically transmit performance measurements to the man-
agement component of VLSP by communicating with the most
appropriate VLSP nodes. We deployed the Data Clients and
Data Servers randomly. The VLSP determines the optimal
position of Data Proxies on VLSP nodes according to the
topology size and using the PressureTime placement algorithm
[26], whereby the number of Data Proxies increases with
the topology size. This aspect involves two components of
the Orchestration Layer, the Infrastructure Optimizer which
enforces optimization decisions by communicating with the
Infrastructure Controller, and the Placement Engine of the
Orchestration Layer which points each of the Data Clients and
Servers to the most appropriate Data Proxy, where the current
strategy is to choose the Data Proxy node closest to them.
Then, after a warm-up period, the communication begins.

Each experimental run starts with the creation of a new
network topology. This involves interactions between the In-
frastructure Controller and the corresponding Host Controllers

deployed on all 11 physical servers. The topology consists of a
number of virtual routers and a number of virtual links created
randomly. The link details are picked from a distribution (i.e.
a discrete distribution with a minimum of one, to maintain
connectivity). Each new virtual router is dynamically assigned
to the physical machine with the least processing load.

All of the experiments have a stochastic nature, with
random network topologies and random placements of Data
Clients and Servers etc. Again, the test runs have been executed
10 times to ensure replicability of our observations. The
average values of all above metrics are calculated every 10
seconds in a separate metric collection aggregator. For each
run, data is sampled in order to gather the following metrics:

Average Response Time - the average time taken from the
request of a data set from a Data Client to the point that
it is received.

Average VLSP CPU load - the average CPU load associated
with the VLSP. This allows us to monitor the VLSP
behaviour in terms of processing requirements.

Total Memory Storage Used - the total memory storage
used in the VLSP for the data flow configuration and
the potentially cached data in the proxies.

The main goal of the experiment is to investigate the VLSP
behaviour in terms of scalability and stability. As shown in
figures 3(a) and 3(b), large scales can be reached (up to 500
virtual routers) and VLSP manages to mitigate the jitter issue.

V. CONCLUSIONS

Within the 5G initiatives, flexible and dynamic virtualised
infrastructures bring programmability and adaptability into
the network environment by abstracting away direct manage-
ment and control. We introduced a management platform,
the Very Lightweight Software-Driven Network and Service
Platform (VLSP), which is specially designed to meet the
characteristics of such dynamic environments in terms of: (i)
user and service requirements, (ii) constraints of underneath
physical resources, and (iii) user and virtual machine mobility.
VLSP has integrated operations for all the software defined
elements through one logically-centralized element. We have
evaluated this software defined infrastructure and shown that
it is lightweight and suitable for scalability and stability tests.

VLSP is a lightweight implementation which allows the
evaluation of diverse scenarios. The goals for using the VLSP
architecture over using a hypervisor, running a standard virtual
machine and standard OS, were to have better simplicity
and non-functional characteristics (i.e. better scalability; lower
resource utilization; quicker startup speed; reduced heaviness;
more networking flexibility and eliminating the issue where
98% of the router functionality is not needed). From the results
presented we have achieved these goals. Finally, we aimed for
VLSP to be fully distributed. This has been achieved, as the
management components as well as the host controllers and the
virtual routers themselves can be deployed across any number
of physical hosts. Using a management feature, the physical
hosts can be turned offline and online, as required.

Our immediate plan is to introduce new management
services and applications to exploit the potential of our in-
frastructure.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

R
e
s
p

o
n
s
e

 T
im

e

Time

Average Response Time

Routers 50
Routers 100
Routers 200
Routers 300
Routers 400
Routers 500

(a) Average Response Time

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

C
P

U
 L

o
a

d

Time

Average CPU Load

Routers 50
Routers 100
Routers 200
Routers 300
Routers 400
Routers 500

(b) Average VLSP CPU Load

Fig. 3. Results Without Data Proxy

ACKNOWLEDGEMENT

This work was partially supported by the EU projects:
DOLFIN [28], 5GEX – “5G Multi-Domain Exchange” [29]
and SONATA – “Service Programming and Orchestration for
Virtualized Software Networks” [30].

REFERENCES

[1] A. Galis, J. Rubio-Loyola, S. Clayman, L. Mamatas, S. Kuklinski,
J. Serrat, and T. Zahariadis, “Software enabled future internet - chal-
lenges in orchestrating the future internet,” in Mobile Networks and
Management. Springer, 2013, vol. 125, pp. 228–244.

[2] L. Mamatas, S. Clayman, M. Charalambides, A. Galis, and G. Pavlou,
“Towards an information management overlay for emerging networks,”
in Network Operations and Management Symposium (NOMS). IEEE,
2010, pp. 527–534.

[3] S. Clayman, “The lattice monitoring framework open-source software,”
http://clayfour.ee.ucl.ac.uk/lattice/.

[4] L. Mamatas, S. Clayman, and A. Galis, “A service-aware virtual-
ized software-defined infrastructure,” Communications Magazine, IEEE,
vol. 53, no. 4, pp. 166–174, 2015.

[5] S. Clayman, L. Mamatas, and A. Galis, “The very lightweight software-
driven network and services platform (vlsp) open source software,”
University College London, http://clayfour.ee.ucl.ac.uk/usr/.

[6] OpenDaylight, “SDN and NFV platform that enables network control
and programmability,” Tech. Rep., http://www.opendaylight.org.

[7] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek, “The click
modular router,” in ACM Transactions on Computer Systems. Citeseer,
2000.

[8] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gaza-
gnaire, S. Smith, S. Hand, and J. Crowcroft, “Unikernels: Library
operating systems for the cloud,” SIGPLAN Not., vol. 48, no. 4, pp.
461–472, Mar. 2013.

[9] A. Kivity, D. Laor, G. Costa, P. Enberg, N. HarÉl, D. Marti, and
V. Zolotarov, “Osv – optimizing the operating system for virtual
machines,” in 2014 usenix annual technical conference (usenix atc 14),
vol. 1. USENIX Association, 2014, pp. 61–72.

[10] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “Clickos and the art of network function virtualization,”
in Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation, ser. NSDI’14. Berkeley, CA, USA:
USENIX Association, 2014, pp. 459–473.

[11] A. Madhavapeddy and D. J. Scott, “Unikernels: Rise of the virtual
library operating system,” Queue, vol. 11, no. 11, pp. 30:30–30:44,
Dec. 2013.

[12] UNIFY, “Unify project,” https://www.fp7-unify.eu/.

[13] T-Nova, “T-nova project,” http://www.t-nova.eu/.
[14] ETSI ISG, “Network functions virtualisation (nfv); architectural frame-

work.”
[15] A. Köpsel and H. Woesner, “Ofelia–pan-european test facility for open-

flow experimentation,” in Towards a Service-Based Internet. Springer,
2011, pp. 311–312.

[16] J. Batalle, J. Ferrer Riera, E. Escalona, and J. A. Garcia-Espin, “On
the implementation of nfv over an openflow infrastructure: Routing
function virtualization,” in Future Networks and Services (SDN4FNS),
2013 IEEE SDN for. IEEE, 2013, pp. 1–6.

[17] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proc. of the 9th ACM
SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010, p. 19.

[18] H. Kim, J. Kim, and Y.-B. Ko, “Developing a cost-effective openflow
testbed for small-scale software defined networking,” in Advanced Com-
munication Technology (ICACT), 2014 16th International Conference
on. IEEE, 2014, pp. 758–761.

[19] OpenStack, “OpenStack Open Source Cloud Computing Software,”
Tech. Rep., http://www.openstack.org.

[20] OPNFV, “Open Platform for NFV,” Tech. Rep., http://www.opnfv.org.
[21] Neutron, “OpenStack Networking - Neutron,” Tech. Rep.,

https://wiki.openstack.org/wiki/Neutron.
[22] ONF, “Software-Defined Networking: The New Norm for Networks,”

ONF White Paper, Tech. Rep.
[23] ETSI, “ETSI Network Functions Virtualization,” Tech. Rep.,

http://www.etsi.org/technologies-clusters/technologies/nfv.
[24] IETF, “IETF Software Driven Networks,” Tech. Rep.,

http://www.ietf.org/proceedings/82/sdn.html.
[25] IRTF, “Software-Defined Networking Research Group (SDNRG),”

Tech. Rep., https://irtf.org/sdnrg.
[26] R. G. Clegg, S. Clayman, G. Pavlou, L. Mamatas, and A. Galis,

“On the selection of management/monitoring nodes in highly dynamic
networks,” Computers, IEEE Transactions on, vol. 62, no. 6, pp. 1207–
1220, 2013.

[27] S. Clayman, A. Galis, and L. Mamatas, “Monitoring virtual networks
with lattice,” in Network Operations and Management Symposium
Workshops (NOMS Wksps), 2010 IEEE/IFIP. IEEE, 2010, pp. 239–
246.

[28] DOLFIN, “Data centres optimization for energy-efficient and envi-
ronmentally friendly internet (dolfin fp7 project),” http://www.dolfin-
fp7.eu.

[29] 5GEX, “EU H2020 - 5G Multi-Domain Exchange (5GEX) project,”
https://5g-ppp.eu/5gex/.

[30] SONATA, “EU H2020 - 5G Service Programing and Orchestration
for Virtualized Software Networks (SONATA) project,” https://5g-
ppp.eu/sonata/.

