
Baseboxd

Linux
networking

tools

CAWR

ML2 plugin

Broadcom
OF-DPA
Switch

Linux application / Netlink

Application controller

Giant switch abstraction

OF-DPA hardware
OF-DPA

Switching
chip

OF-Agent
Embeded

Linux

Fig. 1: Architecture and components of Basebox

 - AUTHOR COPY - DRAFT VERSION -

Basebox - Integrating Whitebox Switches into
Linux

A Controller Implementation for OF-DPA Hardware

Daniel Fritzsche, Zsolt Magyari, Michael Schlosser and Tobias Jungel
BISDN GmbH

Berlin, Germany
daniel.fritzsche@bisdn.de

Abstract— In this paper we show an SDN controller
implementation named Basebox that listens to Linux Netlink and
translates commands into OpenFlow rules to control a domain of
OF-DPA based switches in an OpenStack cluster.

Keywords— whitebox switch; OpenStack; Netlink; OpenFlow;
controller; SDN

I. INTRODUCTION

Recently, a number of open-source initiatives have
commoditized the data center. While OpenStack provides the
base for a relatively easy setup of data center software, the
Open Compute Project certifies hardware that can be used to
build an entire data center from commodity hardware. The
integration of whitebox switches into OpenStack is however
still dominated by commercial solutions.

Based on the principles of a layered SDN controller
architecture and the OpenFlow protocol we developed
Basebox, a modular software that listens to Linux Netlink
commands [1] and translates them into OpenFlow rules for
Broadcom switches (OF-DPA2.0, OpenFlow - Data Plane
Abstraction) [2]. In comparison with other solutions, one
instance of the software can control multiple hardware switches
at once, which lets the user scale his switching capacity
without any changes to the application that is used. Basebox
can run any Linux networking application on top of it, e.g. IP-
routers like Quagga. In a first use case, Basebox was utilized to
integrate whitebox switches into OpenStack to target the needs
of small-to-medium OpenStack installations. Consisting of an
embedded Linux based operating system and two stacked SDN
controllers (Baseboxd and CAWR) it integrates into OpenStack
via the Modular Layer 2 (ML2) Neutron plug-in. This enables
the creation of isolated tenant networks (network slicing), on-
demand VLAN configuration for tenant networks as well as
other features like multi-chassis link aggregation. Basebox is
built on BISDN's 'Revised OpenFlow Library (rofl)' in C++
and can be deployed via ONIE [3]. Both, rofl and the
standalone controller Baseboxd, are Open-source software and
available on github [4].

II. CONTROLLER ARCHITECTURE AND COMPONENTS

In Fig. 1 the components of Basebox are shown. Baseboxd
is the controller part that interacts with typical Linux network
applications, whereas the CAWR controller provides a giant
switch abstraction to Baseboxd, hiding details about the
hardware domain like internal connections. Since the
controllers use the OpenFlow protocol (requires IP-
connectivity) they can be placed on the same host or on
different hosts, in a virtual machine (VM) or in Linux
containers, as long as the quality of the OpenFlow channel in
terms of bandwidth and latency is sufficient for the applications
being used.

Only the external ports of the CAWR domain are visible to
the Baseboxd controller. From its view, the CAWR domain and
the CAWR controller appear as a single giant network element
which sends and receives FlowMods and other OpenFlow
messages. The features of Baseboxd could have also been
included in the CAWR controller. However, the layered
approach followed here leads to better scaling and more
innovation, as the Baseboxd developers do not need to care
about the size of the switching domain. If no giant switch is
needed, Baseboxd can be run standalone on a single switch as

mailto:daniel.fritzsche@bisdn.de

Broadcom
OF-DPA
Switch

Broadcom
OF-DPA
Switch

Baseboxd

CAWR

ML2 plugin

OS Server

OS Server

OS Server

OS Control

Fig. 2: OpenStack integration using Basebox

 - AUTHOR COPY - DRAFT VERSION -

well. In any case, the Linux application running on top of
Baseboxd doesn’t need to be changed, not matter if CAWR is
used or not.

A. The Baseboxd controller

Baseboxd is a SDN controller released earlier this year, that
translates Linux Netlink commands into OpenFlow switch
rules and vice versa. The proposed solution can be easily
managed and flawlessly integrated in any existing Linux
environment. The application on top can be any Linux
networking tool, e.g. software routing daemons like Quagga,
BIRD, or even an OpenStack ML2 plugin that is demonstrated
in this paper.

Baseboxd is a Linux application that has an OpenFlow
(OF-DPA2.0) southbound interface that can be attached to a
single OpenFlow northbound interface, either to a switch
directly or to the CAWR controller (II. B.) to increase
switching capacity. For each OpenFlow switch port that is
attached to Baseboxd it creates a tap interface in Linux that can
then be used like any other tap interface, e.g. be added to a
Linux bridge or be bound to a VLAN. Baseboxd will translate
any operation on the tap interface into OpenFlow rules and
configure the switches properly. It is also able to handle
packet_ins like ARP, interpret the message, update the network
state in Linux and send the corresponding packet_out messages
if required.

B. The CAWR controller

CAWR – Capability AWare Routing – is a supplemental
shim OpenFlow controller that is layered in between the data
path network elements and an application controller (e.g.
Baseboxd) and that creates a giant switch abstraction from a set
of OpenFlow switches. This giant switch smoothly integrates
with Baseboxd and increases the effective switching capacity
of the system.

The CAWR controller manages the ports of all network
elements in the domain. It uses LLDP (Link Layer Discovery
Protocol) protocol to discover its topology and OpenFlow to
retrieve switch properties such as the number of ports, the
number of tables and flow entries per table. Is a switch
connected to another switch in the domain, then the two
connected ports are considered as internal and only visible to
the CAWR controller, otherwise they are external. External
ports are exposed to the Baseboxd controller. If the multi-
chassis link aggregation (MLAG) option is used, CAWR will
manage a pair of switch ports that is connected to a single
physical host but will export just a single port to Baseboxd.
Both, Baseboxd and the Linux application running on top of it
do not need to be changed in any way, regardless of how many
switches are in use. Other tasks of CAWR are to translate
FlowMods and other OpenFlow control messages; apply
algorithms to calculate paths inside its domain; handle error
cases like port and link failures, which result in re-routing
internal traffic; or manage load balancing.

III. CLOUD INTEGRATION USE CASE

In a first use-case, we demonstrate the integration of
whitebox switches into OpenStack. To do so we developed a
Neutron ML2 plugin that can be combined with Baseboxd for
the seamless integration with OpenStack. The ML2 plugin

enables the system to adapt to the network state of OpenStack
tenant networks automatically. Whenever a VM is created in an
OpenStack tenant network, the OpenStack control node will
notify Baseboxd / Netlink via the ML2 plugin which will then
configure the switch ports via OpenFlow messages, i.e. enable
the MAC of the VM for the corresponding VID and port.

If CAWR is also used, then it will translate the Openflow
messages coming from Baseboxd depending on the network
state, taking into account what ports or links are active and
calculate paths in case of failover or load balancing. Having a
domain of multiple switches means more available ports, but
also the ability to do MLAG (connect two ports per OpenStack
server to two different switches) and load balancing (reroute
traffic internally in a way that links to and from servers can be
fully utilized, but also make sure that internal switches and
links are not congested).

This use case was tested in a medium sized OpenStack
installation of a Berlin based data center operator. The realized
setup uses a yocto-based embedded Linux running on Trident-
II switches of Quanta and Accton/Edge-core, respectively. We
used two switches to connect about 50 servers in an MLAG
configuration. Each server was connected via a bond interface
aggregating two physical ports, where each port was connected
to a different switch. During the test, the switches were booted
from scratch and our Linux distribution was installed along
with the Basebox package. Then, virtual machines were created
in a tenant network in OpenStack and Basebox configured the
ports on the switches. We evaluated the flow tables of the
hardware switched to check the results and the switch state was
always updated accordingly. In another test, we simulated the
case of a link or port failure on a server and the CAWR
controller automatically added FlowMods to the switches in
order to reroute traffic so that the server was still reachable
from all ports of all other switches. In any case, no manual
configuration of switch hardware was needed.

 - AUTHOR COPY - DRAFT VERSION -

IV. CONCLUSION

Based on Broadcom's OF-DPA 2.0 specification, we
developed Basebox, a layered SDN controller to integrate
whitebox switches into Linux. The solution can be deployed
via ONIE and can run a standalone Layer2 switch when
Baseboxd runs locally. Alternatively, a remote OpenFlow
controller named CAWR builds a giant switch abstraction
across a number of whitebox switches and allows the user to
scale their switching capacity. The same Baseboxd controller
then manages an entire domain of switches via a single
OpenFlow interface including features like automatic failover
and multi-chassis link aggregation. Basebox can run any Linux
networking application on top of it. In a first use case it was
utilized to integrate OpenFlow switches into OpenStack via the
ML2 plugin. By implementing multi-path routing and MLAG,

we could combine a scalable data center switching solution
with high availability.

ACKNOWLEDGMENT

This work was partially funded by the European
Commission through the H2020 project 5GEx.

Special thanks goes to Tomasz Fratczak and Girmaye
Delelegn Desta from BISDN for valuable support.

REFERENCES

[1] https://www.linux.com/manpage/man7/netlink.7.html

[2] https://github.com/Broadcom-Switch/of-dpa

[3] http://onie.org/

[4] https://github.com/bisdn

https://github.com/bisdn
http://onie.org/
https://github.com/Broadcom-Switch/of-dpa

	I. Introduction
	II. Controller Architecture and Components
	A. The Baseboxd controller
	B. The CAWR controller

	III. Cloud Integration Use Case
	IV. Conclusion
	Acknowledgment
	References

