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propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].

Only the LIGO detectors were observing at the time of
GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg? (90%
credible region) [39,46].

The basic features of GW150914 point to it being
produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m, and m,, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]

M= (nnmz)""s‘ _ Li I:ix—s,‘.‘f—llu‘.‘ f] 3"'5_

(mi +m) 7 G [96

where f and f are the observed frequency and its time
derivative and G and ¢ are the gravitational constant and
speed of light. Estimating f and f from the data in Fig. 1,
we obtain a chirp mass of M = 30M,, implying that the
total mass M = m; + m; is Z70M, in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM/c* = 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only =350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO
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FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GWI150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bortom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(Rs = 2GM/c?) and the effective relative velocity given by the
post-Newtonian parameter v/c = (GMxf/c*)'/3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
L, =L, = L =4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is AL(t) = 6L, — 8L, = h(t)L, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational
waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20 W of laser input is increased to 700 W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes
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FIG. 2. Top: Estimated gravilational-wave strain amplitude
from GWI150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bortom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(Rs = 2GM/c?) and the effective relative velocity given by the
post-Newtonian parameter v/c = (GMxf/c*)'/?, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
L, =L, = L = 4km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is AL(t) = 8L, — 8L, = h(t)L, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
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resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
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2l property is often diagnostic in

DC resistivity surveys obtain information about subsurface electrical conductivity, . This phys
al expl ental and hych problems, where the target of interest has a significant

electrical conductivity contrast from the background. In a DC resistivity survey, steady state currents are set up in the
subsurface by injecting current through a positive electrode and completing the circuit with a return electrode (Figure 1). The
equations for DC resistivity are derived in (Figure 2). Conservation of charge (which can be derived by taking the divergence of

Ampere's law at steady state) connects the divergence of the current density everywhere in space to the source term which

consists of two point sources, ane positive and one negative. The flow of current sets up electric fields according to Ohm's la
which relates current density to electric fields through the electrical conductivity. From Faraday's law for steady state fields, we
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form of potential differences.
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3. Harmonics

So far, we've been tweaking the amplitude
and frequency of a waveform, but we've
been using the same waveform shape all
along.

The shape of a waveform refers to the
curve of the waveform line; in other
words, how the displacement changes
over time.

We've been looking at a sine waveform.
Its origins come from trigonometry, and
it's known as the funa"akmental waveform.

This is because it's pure: there are no
"side effects". When you play a 440Hz sine
wave, the only frequency you hear is
440Hz. Sine waves are the "vanilla" wave;
it doesn't have any bells or whistles.

When a waveform has "side effect"
frequencies, we call them harmonics.

NOTE

Curious to learn more about how the sine wave
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Events Timeline

The following interactive plot shows all event data to date. Make a selection on the lower bar graph

in order to filter points on the top plot. To clear the selection, click on an unselected area of the

chart.

Number of Earthquakes per day since 11 Sep 2021
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Note that now all variables are defined over the entire mesh. We could solve this coupled system or we could eliminate j
and solve for ¢ directly (a smaller, second-order system).

diag(v)DM/ (o l) lD'diag(v)cp =q (5)

By solving this system matrix, we obtain a solution for the electric potential ¢ everywhere in the domain. Creating
predicted data from this requires an interpolation to the electrode locations and subtraction to obtain potential

differences!
Z Source: All Together Now O)
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Figure 6: Electric potential on (a) tensor and (b) curvilinear meshes.

Interactive output of the a DC Resistivity simulation

Moving from continuous equations to their discrete analogues is fundamental in geophysical simulations. In this tutorial,
we have started from a continuous description of the governing equations for the DC resistivity problem, selected
locations on the mesh to discretize the continuous functions, constructed differential operators by considering one cell
at a time, assembled and solved the discrete DC equations. Composing the finite volume system in this way allows us to

move to different meshes and incorporate various types of boundary conditions that are often necessary when solving

these equations in practice. ‘ '
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As you have seen in the links in MyST (e.g. Frontmatter), there is information that is pulled
forward into your reading context on hover or click. We believe it is important to provide as
much possible context when you are reading on elements like links to other pages, cross-
references to figures, tables and equations as well as traditional academic citations(? (- click

the footnote!). Additionally, all of these have fallbacks in static PDF or Word documents.

3

-2
To link to a document, for example Frontmatter, is done through a simple Markdown link []

(./frontmatter.md), you can put your own content in between the square brackets, but if you
leave it out the link contents will be filled in with the title of the page. If you define the
frontmatter on that page (i.e. the description and tooltip), you will also see that information
when you hover over the link. This also works for links to Wikipedia (e.g. Ponyies M) as well as
Github code (e.g. README.md).

To create a cross-reference, you need to label a "target", like a figure, section, equation or table
(or anything!!). To be referenceable, these elements can add the label option in many
directives. To then reference the figure, use the link syntax again pointing to the label as the
target [] (#my-fig). If you leave the title blank the default will fill in with an enumerated "Figure
"

***{figure} https://source.unsplash.com/random/500x200/7mountain
:name: my-fig
:align: center

My sxbold*x mountain wida.

Chark ant [1{(#mu—Ffinlll

Overview

Typography

Directives and Roles
Frontmatter

Links & Cross-References
Citations

What's Next?



Scaling up annual removal

Let's look at a slightly different case, we're going to look at the cost of scaling up Calculating the years to get to 10Gt annual removal
annual volume up to 10Gt a year. This time suppose we are currently removing 500 Ciivaiih aiiiial FovaL(Cr= B hias
tonnes of carbon from the atmosphere at a unit cost of $392. To locate ourselves on Yearly growthoate (ladile
the cost curve also suppose cumulatively we have removed EUH t 1 tonnes of carbon 10Gt=C(1+ 1:To)t
in total & again our learning rate is 19.77. Now if we increase our tonnes removed LGt
by 407 a year in will take 50.0 years for us to reach a 10Gt scale and total cost of this E= log(1+ T )(T)
increase will be approximately $ 3,824,800. 100
t =50.0 years

One thing to really emphasise about the example is the effect of changing the
amount we are scaling up removal each year. Currently this is set to 407 & at this
rate, with our other set values, it will take us 50.0 years to get to our 10Gt of removal
a year target. The thing I really want to emphasise is that if we increase the yearly

growth rate, while it means paying more in any given year it also means that the

total cost to scale to our 10Gt target actually falls. The reasoning for this is just that if
we scale slowly then we are spending more years still paying a lot for carbon
removal but not actually yet at our target rate. This leads to the result that in our race
to 10Gt a year increasing speed and minimising total cost work with not against

each other.

DISCOVERY av




CONTINUOUS
PROCESS



2.9

cd 00_myst_template/

CONTI NUOUS base ~/git/journals/scipy/2024/papers/00 myst template




. N N A gs/papers/aaron_meurer

2.9

CONTINUOUS
PROCESS I r—




2.9

CONTINUOUS
PROCESS

Synthesis

We provide a compressed version of the dataset of (Deligianni et al, 2014), Users can directly execute the code and
have both the python package, as well as the dataset, setup in a google colab environment. The flow of execution

has been already described. In the end a synthesized fMRI is shown, as illustrated in Figure 2. This image is built

using the viz_utils.py. The user can find metrics for synthesis evaluation in eeg_to_fmn.metrics.quantitative_metrics.

We report results from the (Calhas & Henriques, 2022) study on the NODDI dataset (Deligianni et al, 2014). An

exam

classification task.

Classification

19

Calhas, D., & Henrlques, R. (2022 237G to IMRI Synthesis Benefits from
config attentional Graphs of Electrode Relallonships. arXiv Preprint
consti #X/v:2203.03481. 10,48550/arX1v.2203.03481

> ®

best model, which used the
10.3972 RMSE and 0.4613 SSIM. This
2 applied in EEG only datasets for

Figure 4: Output of the predicted TMRI when given an EEG representation. Note that, due to the EEG encoder being optimized

towards classifying the data according to the groups of individuals defined, e.g. schizophrenic and healthy controls, the decoder
(that has the parameters frozen) gives a slightly altered representation. This change Is seen In the produced fMRI, where activity

beyond the limit of the human scalp is reported. Please recall Figures 1 and 2 to directly compare with an IMRI representation

without these flaws

We also provide a compressed version of the dataset of (Padée & others, 2022). This example, available in this
classification notebook, is based on a publicly available dataset that contains individuals diagnosed with
schizophrenia and healthy controls. The whole goal of the project is to be applied in an health care setting and to

this end we employ an end to end software solution. The whole software package is able to synthesize fMRI and
adapt to a classification setting, that given EEG recordings outputs a set of probabilities for each group of people

considered in the dataset.

A8550/arXv.2203.03481

IN THIS ARTICLE

Introduction
Methods
Description
Package modules
New data integration
Building an EEG to fMRI mode
Cost function and optimization
Examples
| Synthesis
Classification
Collaboration

Conclusion
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vak: a neural network framework for
researchers studying animal acoustic
communication

David Nicholson'®, and Yarden Cohen?

'Independent researcher, Baltimore, Maryland, USA, 2Weizmann Institute of Science, Rehovot, Israel

Abstract

How is speech like birdsong? What do we mean when we say an animal learns their vocaliza-
tions? Questions like these are answered by studying how animals communicate with sound.
As in many other fields, the study of acoustic communication is being revolutionized by deep
neural network models. These models enable answering questions that were previously im-
possible to address, in part because the models automate analysis of very large datasets.
Acoustic communication researchers have developed multiple models for similar tasks, often
implemented as research code with one of several libraries, such as Keras and Pytorch. This
situation has created a real need for a framework that allows researchers to easily bench-
mark multiple models, and test new models, with their own data. To address this need, we
developed vak (https://github.com/vocalpy/vak), a neural network framework designed for
acoustic communication researchers. (“vak” is pronounced like “talk” or “squawk” and was
chosen for its similarity to the Latin root voc, as in “vocal”.) Here we describe the design of the
vak, and explain how the framework makes it easy for researchers to apply neural network
models to their own data. We highlight enhancements made in version 1.0 that significantly
improve user experience with the library. To provide researchers without expertise in deep
learning access to these models, vak can be run via a command-line interface that uses con-
figuration files. Vak can also be used directly in scripts by scientist-coders. To achieve this,
vak adapts design patterns and an API from other domain-specific PyTorch libraries such as
torchvision, with modules representing neural network operations, models, datasets, and
transformations for pre- and post-processing. vak also leverages the Lightning library as a
backend, so that vak developers and users can focus on the domain. We provide proof-of-
concept results showing how vak can be used to test new models and compare existing mod-
els from multiple model families. In closing we discuss our roadmap for development and
vision for the community of users.

Keywords animal acoustic communication, bioacoustics, neural networks

1. INTRODUCTION

Are humans unique among animals? We seem to be the only species that speaks languages
[1], but is speech somehow like other forms of acoustic communication in other animals,
such as birdsong [2]? How should we even understand the ability of some animals to learn
their vocalizations [3]? Questions like these are answered by studying how animals com-
municate with sound [4]. As others have argued, major advances in this research will re-
quire cutting edge computational methods and big team science across a wide range of
disciplines, including ecology, ethology, bioacoustics, psychology, neuroscience, linguistics,
and genomics [5], [6], [3], [1].

SciPy 2023 | July 10, 2023 10f10
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Elemental Microscopy

We publish focused reviews and tutorials of foundational concepts and modern advances in microscopy-based

maging and spectroscopy techniques in a dynamic multi-media d qgia format

Latest Articles

Comeutariona. Articte  Tilt-Corrected BF-STEM

Computational article on the tilt-corrected bright-field STEM technique -- a dose efficient
phase contrast imaging modality which utilizes the principle of reciprocity.




Tilt-Corrected BF-STEM

Phase Contrast Imaging

CTEM | BF-STEM Reciprocity

Virtual BF Images Stack
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Aberration Fitting

Upsampling of Aligned BF
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Aberration Surface Gradients

Y 4Ch>

Aberration Fitting
predicted aligned BF stack
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Microscope Geometry: reset angle k.
AL

rotation angle [°) — 49

Aberrations: reset aberrations

defocus [A] -4500

spherical aberration [A] -14862100t

astigmatism [A] 3500

astigmatism angle [°) — 45

coma [A] 23590000

coma angle [°] -180

Plotting Options:

plot arrow frequency === s—— 5

Figure 1: Common aberrations and microscope geometry effects on tcBF-STEM. Notice the relative
robustness of the aligned BF stack when the rotation_angle and defocus sliders are moved slightly away from
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Comparing lineprofiles as below is often a preferable way of showing differences between two images. Below

we show the lineprofiles of x = 0.

iam_line = projected_potential_iam.interpolate_line(
start=(0, @), end=(0, projected_potential_iam.extent[1])
)

dft_line = projected_potential_dft.interpolate_line(
start=(0, @), end=(0, projected_potential_dft.extent[1])
)

abtem.stack([iam_line, dft_linel, ("IAM", "DFT")).show();
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Publications

Mission
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Presentations Open Science

Latest Research

Detecting induced polarisation effects in time-domain data - a modelling
study using stretched exponentials
The effects of the background conductivity are investigated; this study shows that a moderately

conductive and chargeable target in a resistive host is an ideal scenario for generating strong IP
signals

Joint inversion of potential-fields data over the DO-27 kimberlite pipe using a
Gaussian mixture model prior

Producing a quasi-geology model that presents good structural locations of the diamondiferous PK
unit and can be used to provide a resource estimate or decide the locations of future drillholes.

A framework for petrophysically and geologically guided geophysical inversion
using a dynamic Gaussian mixture model prior

Applying our framework to inverting airborne frequency domain data, acquired in Australia, for the
detection and characterization of saline contamination of freshwater.
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Here, we plot the TDEM profile for the Northing position specified.

EW_line_index = 6

y_unique = np.unique(receiver_locations[:, 1])

locations_indices = receiver_locations[:, 1] == y_unique[EW_line_index]
fig
axl

= plt.figure(figsize=(15, 5))
= [fig.add_axes([0.05 + ©0.3 * ii, 0.2, 0.24, 0.75]) for ii in range(®, 3)]

comp_list = ["X", "y", "Z"]

for ii in range(@, 3):
d_temp = data_plotting[ii][:, locations_indices]

for jj in range(n_times):
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How do we plot a resistivity model from airborne electromagnetic data?

Seogi Kang ©®

March 24, 2022

Abstract

The use of airborne electromagnetic (AEM) data for geoscience applications is rapidly
increasing. For instance, in California USA, there is an ongoing AEM project led by the
California Department of Water Resources (CDWR), which plans to map out most of the
Central Valley of California and some water basins in California:
https://water.ca.gov/Programs/Groundwater-Management/Data-and-Tools/AEM All
acquired AEM data and resulting interpretation of the data, which are resistivity models of
the subsurface will be publicly available. There are many big initiatives like this project
throughout the world (e.g., AusAEM: https://www.ga.gov.au/eftf/minerals/nawa/ausaem).
Therefore, it is critical to understand how the resulting resistivity models are obtained from
the acquired AEM data, and further equipped with an ability to download and explore the
available resistivity data. In this talk, | will first introduce how a resistivity model is obtained
from the AEM data then introduce open-source tools that can be used to explore this
resistivity model.

March 24th, 2022 @ 10 am PT
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Open Science

Detecting induced polarisation effects in time-
domain data - a modelling study using stretched
exponentials

The effects of the background conductivity are investigated; this study
shows that a moderately conductive and chargeable target in a resistive
host is an ideal scenario for generating strong IP signals

ARTICLE Jan 1, 2020

Joint inversion of potential-fields data over the
DO-27 kimberlite pipe using a Gaussian mixture
model prior

Producing a quasi-geology model that presents good structural locations
of the diamondiferous PK unit and can be used to provide a resource
estimate or decide the locations of future drillholes.

ARTICLE Oct 12, 2020

A framework for petrophysically and geologically
guided geophysical inversion using a dynamic
Gaussian mixture model prior

Applying our framework to inverting airborne frequency domain data,
acquired in Australia, for the detection and characterization of saline
contamination of freshwater.

ARTICLE  Aug 30, 2019

3D electromagnetic modelling and inversion - a
case for open source

Presenting arguments for adopting an open-source methodology for
geophysics and provide some background about open-source software for
electromagnetics.

ARTICLE Jan 1, 2020

Efficient 3D inversions using the Richards
equation

Fluid flow in the vadose zone, governed by the Richards equation, requires
characterizing hydraulic properties using direct and proxy measurements.
We present an efficient inversion technique for 1D, 2D, and 3D hydraulic
properties, implemented in SIMPEG, enabling large-scale inversions with
modest resources.

ARTICLE Jul 1, 2018

Geophysical Inversion Facility

Research group at the University of British Columbia
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propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].

Only the LIGO detectors were observing at the time of
GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg? (90%
credible region) [39,46].

The basic features of GW150914 point to it being
produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m, and m,, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]

M= (nnmz)""s‘ _ Li I:ix—s,‘.‘f—llu‘.‘ f] 3"'5_

(mi +m) 7 G [96

where f and f are the observed frequency and its time
derivative and G and ¢ are the gravitational constant and
speed of light. Estimating f and f from the data in Fig. 1,
we obtain a chirp mass of M = 30M,, implying that the
total mass M = m; + m; is Z70M, in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM/c* = 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only =350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO
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FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GWI150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bortom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(Rs = 2GM/c?) and the effective relative velocity given by the
post-Newtonian parameter v/c = (GMxf/c*)'/3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
L, =L, = L =4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is AL(t) = 6L, — 8L, = h(t)L, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational
waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20 W of laser input is increased to 700 W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes
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Only the LIGO detectors were observing at the time of
GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg® (90%
credible region) [39.46].

The basic features of GW150914 point to it being
produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m,; and m,, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]
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where f and f are the observed frequency and its time
derivative and G and ¢ are the gravitational constant and
speed of light. Estimating f and f from the data in Fig. 1,
we obtain a chirp mass of M = 30M,, implying that the
total mass M = m; + m; is Z70M, in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM/c* = 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only =350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.
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FIG. 2. Top: Estimated gravilational-wave strain amplitude
from GWI150914 projected onto HI1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bortom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(Rs = 2GM/c?) and the effective relative velocity given by the
post-Newtonian parameter v/c = (GMaf/c*)'/3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
L. =L, = L =4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is AL(r) = 6L, — &L, = h(t)L, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational
waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20 W of laser input is increased to 700 W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes
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Tilt series for TEM foils can also be performed along a single orthogonal axis (whether it be oo'
B) using a double tilt stage, but there are limitations to this approach. Depending on the k’
orientation of objects within the TEM foil, especially when they are oriented obliquely to the

stage axes, single axis tilt series may not provide a clear picture. For instance, when a grain
boundary decorated with precipitates is tilted in a non-logical manner (i.e., not against its long
axis) it is difficult to observe the full distribution of precipitates or voids on the boundary. Yet,
when the boundary is tilted against its long axis, the boundary moves in a logical fashion, and

the distribution can be readily observed (Badwe et al, 2018) (). Equally important, if not more,

is the ability to create tilt series along specific planes of atoms that can be beneficial to
demonstrate dislocation microstructures in three dimensions (Liu & Robertson, 2011; Hata et

al, 2020; Yamasaki et al., 2015).
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