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ABSTRACT 

This paper provides a New Log-Likelihood Estimator (NLLE) function as a tool for value 
approximation. We improved the accuracy of the log MLE in two steps (i) determine the log 
likelihood of a random variable X, and (ii) adjust the estimate by a factor of  (1 / 1) ln ( )n L X . In-

Sample testing was accomplished by using daily SET100 indices over a period of 60 days. Out-of-
sample data were used for confirmatory verification; out-of-sample data came from 5 major stock 
markets: NASDAQ, DOW, SP500, DAX, and CAC40. Relevant tests used to compare the results of 
the proposed NLLE include Cramer-Rao Lower Bound (CRLB), Likelihood Ratio Test, Wald 
statistic, and Lagrange Multiplier (Score Statistic). It was found that NLLE is more efficient than 
the conventional MLE. It gives practitioners a better tool for value estimation in many fields of 
natural and social sciences. 
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1. INTRODUCTION 
The research question presented in this paper is: “whether the current log-likelihood function is 
adequately accurate for value estimation?” Researchers always seek better tool for stock price 
forecast or value estimation. The likelihood function is a common tool for value estimation (Myung, 
2003). The current likelihood function lacks precision (Efron, 1981). This paper addresses this 
weakness in two steps: (i) determine the log likelihood of 1(X : x ,..., x )i n , and (ii) adjust the 

estimate by a factor of  ( 1) ln ( )n L X . The data used for this research consists of 5 major stock 
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markets: NASDAQ, DOW, SP500, CAC40, FTSE. over a period of 60 days. The minimum sample 
size requirement was met by using the n-omega method (Louangrath, 2014). 

There is a gap in the literature concerning the improvement of likelihood function. For 
example, there is the need for an accurate forecasting tool to estimate stock price in face of price 
fluctuation. Under price fluctuation, the current MLE method cannot provide accurate estimation of 
the expected value. A more accurate estimation tool would have practical application in investment 
risk management. This paper attempts to fill that gap. In this paper, {X }i represents stock price. 

Two general cases classified by data types introduce the subject matter of likelihood function and 
the log-likelihood function as tools for estimating the expected value for random variable {X }i .  

This paper is presented in five sections. Section 1 introduces the likelihood function and its 
corresponding log-likelihood as the motivation for stock price analysis in light of price fluctuation. 
Section 2 explains the data used for the Monte Carlo simulations. Section 3 presents the proposed 
correction to the log-likelihood estimator and introduces a predictive function to track and forecast 
stock price under volatile condition. The findings and discussions are covered in section 4. Section 
5 concludes the paper by urging practitioners to employ the new LLE as a new tool for stock price 
estimation and risk management. 
 
2. DATA 
The data used for the simulation and testing in this research came from two sources. The first set of 
data is comprised of the daily CLOSE price of the 100 companies comprising SET100 index for the 
Stock Exchange of Thailand. The daily prices of these 100 over a period of 30 training sessions 
were used as a sample. A second set of data consists of the daily indices of 10 major stock markets:  
(i) NASDAQ; (ii) DOW; (iii) SP500; (iv) CAC40; and (v) FTSE. This second set of data is used for 
out-of-sample confirmatory verification so that the proposed LLE could be generalized. The 
generalizability of the proposed LLE is based on the result of consistency in Monte Carlo 
simulation of 217 iterations using out-of-sample data.  
 
3. METHODOLOGY 
The validity and reliability of the old and new log-likelihood functions are compared. The in-
sample employed the data from the Stock Exchange of Thailand.  Out-of-sample tests were 
achieved through the use of stock indices taken from 10 major stock markets over a period of at 
least 60 trading sessions. Comparative results of the following tests were observed: Cramer-Rao 
Lower Bound (CRLB), Likelihood Ratio Test, Wald statistic, and Lagrange Multiplier (Score 
Statistic). 

The log-likelihood function in the current literature may be written linearly as: 
 

 1
ln (X) X ln ( ( ) (1 X ) ln (1 ( ))i iL L F Z L F Z

n
        (1) 

 
where X  is the observed values 1(X : x ,..., x )i n , Z is the standard score given by ( ) /iZ X X S   

and ( )F Z  is the percentage probability read from the Z-table at a given critical Z value. In this 

study, iX  is the CLOSE price of the stock in the SET100 index. For the out of sample test, 

iX represents the daily market indices of 5 major stock markets. The result of (1) is called the 

expected value of series 1(X : x ,..., x )i n   or [X]E . The result of the estimate is compared to the 

arithmetic means. The arithmetic mean is given by:  iXnX )/1( . 

The arithmetic mean is a biased estimator if the difference between the arithmetic mean and 
the expected value is non-zero: [ ] 0X E X  . In the learning data of 15 days of trading, the 

arithmetic mean of the PTT per share price is 00.237X , but the estimated value under the log 
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likelihood method is 549.39 Baht per share. The over-shoot is twice the arithmetic mean. The 
current MLE method does not produce adequately precise value for small sample. 
 This paper proposes to modify the log likelihood function in order to reduce the bias or 
inaccuracy between the arithmetic mean and the expected value. The proposed function consists of 
two steps: (i) determine the log likelihood of 1(X : x ,..., x )i n  under the new LLE, and (ii) adjust the 

estimate the LLE in (i) by subtracting   1ln ( ) nL X   . The proposed log-likelihood in step 1 is 

given by: 
 

2
ln (Z) (1 )(1 ( ))

ln ( )
1 1

i iX F X F Z
L X

n n n

              
     (2) 

 
With the estimate obtained in (2), the expected value for 1(X : x ,..., x )i n  is obtained through: 

 

  ln ( )1
[ ] ln( )

1i i
L X

E X X X
n n

 
   

  

       (3) 

 
The result of (3) is approximates equal to [ ]X E X  and, thus, the bias for the estimator is 

minimized. Under this proposed log-likelihood estimator function, the arithmetic mean 
approximately equals to the expected value.  Note that if the denominator of the correcting factor is 
n such that: 

 

  ln ( )1
ln( )i i

L X
X X

n n

 
  

  

        (4) 

 
The expected value is observationally equivalent to the arithmetic mean of the series 

1(X : x ,..., x )i n , this breaks the first property of identity where  the condition ̂  , but ̂   

must be maintained. Therefore, in (3) following the Bessel correction, the degree of freedom is 
used. Under the new LLE method, the Fisher information ( )( 0I ) is calculated by 

|]1/)(ln|)(lnvar[/1)( 0  nXLXLXI iii . 

 
3.1 Monte Carlo Simulation 
Monte Carlo is a class of algorithm used in repeated measurement as a simulation tool to 
approximate the true value (Kroese et al., 2014). One function served by the Monte Carlo 
simulation is to iterate the measurement until asymptotic normality is achieved or series of 
estimated values is stabilized. The issue of Fisher information as a means for explaining asymptotic 
normality is a common approach in the literature. Although theoretically sound, this approach may 
not be practicable in a case of smaller sample size and data volatility. In the context of stock price 
movement, investors are expected to see price volatility within a short period. For purposes of risk 
management, decisions must be made shorter time frame. Therefore, the Monte Carlo iteration size 
must be adjusted accordingly. 

 Define that ˆ T   and Z  then the asymptotic normality condition 

  2ˆ (0, )n N     becomes   2(0, )n T Z N   . Since the sample and population 

distribution under normality is almost always equal, their relationship may be written as 22 S . 

Therefore, the argument   2(0, )n T Z N    may also be written as 
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 2 2 2(0, )n S N   . Under this approach, the variance of the two distributions is used as the 

basis for the analysis. In order to test that this proposed method to assure that it is reliable, we 
suggest the use of repeated measurement through Monte Carlo simulation. Monte Carlo is given by: 
 

1

1 3
lim Pr 99.80%

N

n R i
N n

 
 

 
   

  
       (5) 

 
Given a series of random variable }{ iX , there exists the maximum and minimum values, the error 

for Monte Carlo is given by: 
 

50/
2

minmax
* 






 

         (6) 

 
The number of simulation needed in Monte Carlo is obtained through: 
 

2

*

3









 xiN           (7) 

 
where xi  is the estimated standard deviation of three values: max1 X , min1 X , and 

2/min)(max3 X . Similarly,   in (24)   /X T S n    The learning data of PTT price for 

15 days produces the following N  iteration for the series. In the initial example of 15 days of PTT 
price, the maxima is 250 and the minima is 209. Thus, 1 250X  ; 1 209X  ; and 

3 (250 209) / 2 459 / 2 229.5X     . Use these three X’s to determine  . The standard deviation 

of the 3 X’s is 20.15S   with the corresponding estimated standard deviation of  16.74xi  . For 

this information, under (7), the expected error is * [(250 209) / 2] / 50 0.41    . The Monte Carlo 

iterations size under (7) is simply: 2 2([3(16.74)] / 0.41) 122.49 15,003N    . This means that 
with a sample of 15 days trading, the Monte Carlo requires 15,003 iterations in order to obtain an 
acceptable estimated value of stock price. 

In the case of 5 major stock market indices out of sample test, the required Monte Carlo 
iteration is 22,500 runs. The required Monte Carlo iteration for SET100 components is 217 using 
adjusted result from the new LLE. For practical purpose, this conventional approach may not be 
practical. In stock trading where decisions are required within shorter span of time and the available 
of sample size is also smaller, demands for efficiency requires a faster method.  

The new LLE method approximates the value of the set as [ ]E X  and compared it to the 

arithmetic mean of the sample ( X ). These two values are used as the maximum and minimum 
values to obtain the Monte Carlo iteration. The required number of iteration is reduced 
considerably. This reduction evidences the efficiency of the new LLE function. 
 
4. FINDINGS & DISCUSSION 
The proposed new log-likelihood estimation (LLE) method provides a better estimation for the 
expected value of a given series of random variable 1(X : x ,..., x )i n . The improvement is evidenced 

through the result of the following tests: Cramer-Rao Lower Bound (CRLB), Likelihood Ratio Test, 
Wald statistic, and Lagrange Multiplier (Score Statistic). This improvement was achieved without 
sacrificing the general requirements of MLE: (i) consistency, (ii) asymptotic normality, and (iii) 
efficiency. 
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 For the SET100 data set, the general finding is that the proposed new log-likelihood 
function produces more efficient estimation while retaining acceptable level of Fisher information. 
When subjected to hypothesis tests, the new LLE performed well. 
 
4.1 Cramer-Rao Lower Bound Test 
The Cramer-Rao Low Bound test is used to verify the efficiency of the proposed new LLE method. 
Efficiency is defined as the optimality of the estimator, i.e. experimental design (Everitt, 2002) or 
hypothesis testing procedure (Nikulin, 2001). More efficient procedure needs less observations, i.e. 
if the model is efficient, the required sample size is smaller. The efficiency of an unbiased 
estimator, T, for parameter   is defined as: 
 

1 / ( )
( )

var( )

I
e T

T


          (8) 

 
where ( )I   is the Fisher information of the sample and ( )e T  is the minimum possible variance of 
an unbiased estimator divide by its actual variance (Fisher, 1921). The Cramer-Rao bound is used to 
prove that ( ) 1e T  . Efficiency is achieved at ( ) 1e T  . This is proved by the Cramer-Rao 
inequality for  . The Cramer-Rao bound is given by: 

2

2

1 1ˆvar( )
I( )

log ( | )E f X







 
 

  
  

      (9) 

 
Table 1. Comparison of Results from Old and New LLE 
Market X  Old LLE Diff* New Diff** 
Dow   17,614.72    13,548.25  -4,066.47   17,708.73           94.01  
SP500     2,080.28      1,382.22  -698.06     2,095.27           14.99  
NASDAQ     5,036.54      4,473.78  -562.76     5,037.91             1.37  
DAX     4,927.64      3,245.74  -1,681.90     4,896.49  -        31.15  
CAC40   11,117.15    12,470.79  1,353.64   11,103.28  -        13.87  
TWSE     8,476.10      9,847.43  1,371.33     8,562.26           86.16  
Heng Seng   24,097.87    27,551.49  3,453.62   24,303.04         205.17  
Shanghai     4,032.44      5,389.37  1,356.93     3,693.45  -      338.99  
KOSPI     2,025.44      2,063.35  37.91     2,020.38  -          5.06  
NIKKEI   20,240.28  -   1,371.32  -21,611.60   20,403.06         162.78  
* X - Old LLE = Off from the arithmetic mean. ** X - New LLE = Off from the arithmetic mean. 
 
 The result of the Cramer-Rao test is shown in Table 2. The efficiency achieved under the 
new log-likelihood function is at or near 1.00. This is consistent with the findings in Table 1 where 
the accuracy of the old LLE is about 80% and the accuracy of the new LLE is 99.82% which also 

meets the requirement of the Monte Carlo simulation for %80.99/3 n . 
 
Table 2. Result of the Cramer-Rao Test under Conventional MLE and New LLE 
Markets )ˆ(Var  )(I  

)var(

)(/1

T

I
eT


  

)(

1
)ˆ(




I
Var   

Dow     308,045.00    0.00000  1.00 Yes 
SP500        4,505.00    0.00022  1.00 Yes 
NASDAQ       11,268.00    0.00009  1.00 Yes 
DAX       51,553.00    0.00002  1.00 Yes 
CAC40       15,654.00    0.00006  1.00 Yes 
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4.2 Likelihood Ratio Test 
The likelihood ratio test is based on chi square distribution with degree of freedom of 

12 dfdfdf   (Huelbeck, 1997). The ratio calculation is the likelihood of the null divided by the 
likelihood of the proposed model. The test statistic was given by as )(x  by Wilk (1938) as: 
 

)|(

)|(
)(

1

0

XL

XL
x




          (10) 

 
or equivalently: 
 

 }{:)|(sup

)|(
)(

10

0




mXL

XL
x


        (11) 

 
where )|( XL   is likelihood function, sup is the supremium function. The decision rule is governed 
by if c  do not reject the null hypothesis and if c  then reject the null hypothesis. The 
rejection point is the probability c . The variable c  and q  are selected at specified alpha (error) 

level whose relationship may be summarized as:  )|()|( 00 HcPHcqP . The 

likelihood ratio test is a tool against Type I error. Type I error occurs when the null hypothesis is 
wrongly rejected. In the seminal literature, the likelihood ratio test has been classified as a power 
test (Neyman & Pearson, 1933). Casella and Berger (2011) wrote (10) and (11) as: 
 

}:)|(sup{

}:)|(sup{
)( 0







xL

xL
x         (12) 

 
Equations (10), (11) and (12) yield the same result. 
 The calculation for the likelihood ration follows a chi square hypothesis testing. With 60 
counts for each market, the ratio is 1 or near one for all markets. This near 1 result shows that the 
estimation is close to the actual observed value or arithmetic mean. The critical value against which 
the ratio is test is 79.10. The null hypothesis that the two groups are not significantly different 
cannot be rejected. 
 
Table 3. Result of the Likelihood Ratio Test under Conventional MLE and New LLE 

Market )|( 0 XL   )|( 1 XL   )(x  10.79)60(2   
Dow   17,614.72    17,708.73         0.99  Not significant 
SP500     2,080.28      2,095.27         0.99  Not significant 
NASDAQ     5,036.54      5,037.91         1.00  Not significant 
DAX     4,927.64      4,896.49         1.01  Not significant 
CAC40   11,117.15    11,103.28         1.00  Not significant 
 
 
4.3 Wald Statistic 
The third test to assess the likelihood function is the Wald statistic. For a single-parameter scenario, 
the Wald statistic is given by: 
 

 
 


ˆvar

ˆ 2
0

W         (13) 
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This test is compared to the chi square in case where the data distribution is not normal. In 
case where the data is normally distributed, the Wald test is given by: 
 

 

ˆ

ˆ
0

se
WN


           (14) 

 
where se is the standard error of the MLE estimate which is given by: 
 

)(

1

MLEI
se

n
          (15) 

 
where nI  is the Fisher information (Harell, 2001, Fears et. al., 1996, Engle, 1983, and Agresti, 

2002). The finding of the Wald test in Table 4 shows that there is no significant difference between 
the arithmetic mean and the estimated mean. The practical implication for stock price analysis is 
that the new LLE can provide a more accurate estimation. 
 
Table 4. Result of the Wald Test under Conventional MLE and New LLE 

Market 0  1   
 


ˆvar

ˆ 2
0

W
10.79)60(2   

Dow   17,614.72    17,708.73  0.00 Not significant 
SP500     2,080.28      2,095.27  0.00 Not significant 
NASDAQ     5,036.54      5,037.91  0.00 Not significant 
DAX     4,927.64      4,896.49  0.00 Not significant 
CAC40   11,117.15    11,103.28  0.00 Not significant 
 
 
4.4 Lagrange Multiplier (Score Statistic) 
The Langrange multiplier test is also called the score test. The score test had been explained by 
several authors, such as Bera (2001), Lehman and Casella (1998), Engle (1983), and Cook and 

Demets (2007). The score test is more appropriate where the deviation between ̂  and   is small; 
this is the case of the adjusted log likelihood proposed by this paper. The score test is given by: 
 








)|(log

)(
XL

U         (16) 

 
The null hypothesis is 0  . If the null hypothesis cannot be rejected, the data is treated as chi 

square distribution. The test statistic is given by: 
 

 
 0

2
0

0 )(




I

U
S           (17) 

 

where )( 0I  is the Fisher information or 















 


 |)|(log)(

2

2

0 XLEI . For normally 

distributed data, the score test is given by: 
 

)()(*  SS           (18) 
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The result of the score statistic shows that the null hypothesis 0   is true for all markets 

under 95% confidence interval. Only Shanghai index shows a significant difference between the 
actual and estimated value. Under this test, the new LLE could show 10 our of 10 cases in accuracy. 
 
Table 5. Result of the Score Statistic Test under Conventional MLE and New LLE 

Market 0  1  0   10.79)60(2   
Dow   17,614.72    17,708.73  -0.5% Not significant 
SP500     2,080.28      2,095.27  -0.7% Not significant 
NASDAQ     5,036.54      5,037.91  0.0% Not significant 
DAX     4,927.64      4,896.49  0.6% Not significant 
CAC40   11,117.15    11,103.28  0.1% Not significant 
 
 
4.5 A Proposed Test for New LLE under Chi Square 
This paper proposed a test statistic for the new LLE method by using chi square statistic in form: 
 

1

2
][

2
)(ln2

)1(






ndf
XE

XLSn


         (19) 

 

where n  is the sample size; 2
)(ln XLS  is the variance of the new )(ln XL  under equation (18), and 

2
][XE  is the estimated variance of the ][XE  in (19). The critical value for the null hypothesis is 

read from the chi square table at degree of freedom 1n . Under this proposed test statistic, we are 
able to achieve more consistent result than the score statistic in Table 5. 
 
Table 6. Result of the LLE Ratio Test under New LLE 

Market 2
)(ln XLS  2

][XE  2
ln ( )

2
[ ]

( 1) L X

E X

n S




 

10.79)60(2   

Dow 308,045.00  1,834,128,509.00 0.01 Not significant 
SP500 4,505.00  20,287,376.00  0.01 Not significant 
NASDAQ 11,268.00  94,746,147.00  0.01 Not significant 
DAX 51,553.00  606,504,707.00  0.01 Not significant 
CAC40 15,654.00  143,094,150.00  0.01 Not significant 
 
4.6 Out-of-Sample Test 
Findings made from in-sample testing may not be reproduced when an out-of-sample test is 
conducted (Inuoe & Lutz, 2002). An out-of-sample test is the re-testing of the claimed made by a 
prior empirical whose conclusion was reach by using in-sample testing. In some cases, the out-of-
sample data comes from the original sample where it has been split (Hansen & Timmermann, 
2012). In the present case, the out-of-sample test employs a set of data different from the sample 
use for the hypothesis testing. The out-of-sample test consists of the daily indices of 10 major stock 
markets: (i) NASDAQ; (ii) DOW; (iii) SP500; and (iv) CAC40. The data was taken from a period 
of 60 days between June and August 2015. 
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Table 7. Out-of-Sample Test for Estimated Value under Old and New LLE Methods 
 

Market 
Max 

1X  
Min 

2X  
* 

3X  
Mean 

X  
 

S  
 
  

Dow 18,144.07 17,515.42 17,829.75 17,829.75 314.32 17,299.84
SP500 2,124.20 2,046.68 2,085.44 2,085.44 38.76 2,020.10
NASDAQ 5,160.09 4,909.76 5,034.93 5,034.93 125.16 4,823.91
DAX 11,542.54 10,676.78 11,109.66 11,109.66 432.88 10,379.88
CAC40 5,059.17 4,604.64 4,831.91 4,831.91 227.26 4,448.77
*((X1+X2)/2) = 3X . 

 
The result of the Monte Carlo for the out-of-sample test follows the following decision rule: 


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 3

/
Pr:)0( , otherwise H(A) where S  is the pool sample standard deviation. The 

result of the test is summarized in Table 7 below. 
 
Table 8. Monte Carlo Simulation for 5 Major Stock Markets in Out-of-Sample Test 
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DOW 17,829.75 17,299.84 0.841 0.998 
SP500 2,085.44 2,020.10 0.841 0.998 
NASDAQ 5,034.93 4,823.91 0.841 0.998 
DAX 11,109.66 10,379.88 0.841 0.998 
CAC40 4,831.91 4,448.77 0.841 0.998 
*Monte Carlo iteration: n = 217. 
 

The result of the test shows that the null hypothesis cannot be rejected. The Monte Carlo 
simulation of 271 iterations produces estimated value within the range of confidence interval at 
99.8%. In terms of stock price analysis, this out-of-sample test confirms that the proposed 
estimating method is generalizable, i.e. apply n situation outside of the empirical data. Recall that 
the empirical data used in this paper consists of stock prices of 100 companies in the SET100 index. 
The out-of-sample tests uses data from a different source: indices from 5 major stock markets. The 
practical implication of this confirmation is that the new log likelihood estimator is generalizable. 
 
5. CONCLUSION 
The New Log-Likelihood Estimation (NLLE) function presented in this paper is a novel discovery. 
It may serve as a better tool for risk management and value estimator. This innovation is a 
contribution to the field because they fill the gap in the literature and have practical utility. Beyond 
stock price analysis, NLLE also has general applications in other fields in natural and social 
sciences. 
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