
P versus NP under codings

Frank Vega

Abstract

P versus NP is considered as one of the most important open problems in computer science.
This consists in knowing the answer of the following question: Is P equal to NP? This question
was first mentioned in a letter written by John Nash to the National Security Agency in 1955. A
precise statement of the P versus NP problem was introduced independently in 1971 by Stephen
Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed.
We define a coding to be a mapping from symbols of some alphabet (not necessarily one-to-
one). NP is closed under codings. However, P is closed under codings if and only if P = NP.
Usually, the empty string is by definition not a symbol and thus it is not part of any alphabet.
Nevertheless, we show a coding of a NP language which produces a NEXP-complete problem
when the empty string is considered as a symbol. If P = NP, then this NEXP-complete language
would be in P, but this is not possible due to the Hierarchy Theorem. In this way, we prove P is
not equal to NP when the empty string is taken as a symbol.

1. Introduction

The P versus NP problem is a major unsolved problem in computer science [6]. This is
considered by many to be the most important open problem in the field [6]. It is one of
the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a
US$1,000,000 prize for the first correct solution [6]. It was essentially mentioned in 1955 from
a letter written by John Nash to the United States National Security Agency [6]. However,
the precise statement of the P = NP problem was introduced in 1971 by Stephen Cook in a
seminal paper [6].

In 1936, Turing developed his theoretical computational model [3]. The deterministic and
nondeterministic Turing machines have become in two of the most important definitions related
to this theoretical model for computation [3]. A deterministic Turing machine has only one
next action for each step defined in its program or transition function [3]. A nondeterministic
Turing machine could contain more than one action defined for each step of its program, where
this one is no longer a function, but a relation [3]. Another relevant advance in the last century
has been the definition of a complexity class. A language over an alphabet is any set of strings
made up of symbols from that alphabet [2]. A complexity class is a set of problems, which are
represented as a language, grouped by measures such as the running time, memory, etc [2].

The set of languages decided by deterministic Turing machines within time f is an important
complexity class denoted TIME(f(n)) [3]. In addition, the complexity class NTIME(f(n))
consists in those languages that can be decided within time f by nondeterministic Turing
machines [3]. The most important complexity classes are P and NP . The class P is the union
of all languages in TIME(nk) for every possible positive fixed constant k [3]. At the same
time, NP consists in all languages in NTIME(nk) for every possible positive fixed constant k
[3]. NP is also the complexity class of languages whose solutions may be verified in polynomial
time [3]. The biggest open question in theoretical computer science concerns the relationship
between these classes: Is P equal to NP? In 2012, a poll of 151 researchers showed that 126

2000 Mathematics Subject Classification 68Q15, 68Q17 (primary), 68R10, 68Q45 (secondary).

Page 2 of 4 FRANK VEGA

(83%) believed the answer to be no, 12 (9%) believed the answer is yes, 5 (3%) believed the
question may be independent of the currently accepted axioms and therefore impossible to
prove or disprove, 8 (5%) said either do not know or do not care or don’t want the answer to
be yes nor the problem to be resolved [4].

2. Theory

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite strings
over Σ [1]. A Turing machine M has an associated input alphabet Σ [1]. For each string w in
Σ∗ there is a computation associated with M on input w [1]. We say that M accepts w if this
computation terminates in the accepting state, that is M(w) = “yes” [1]. Note that M fails to
accept w either if this computation ends in the rejecting state, that is M(w) = “no”, or if the
computation fails to terminate [1].

The language accepted by a Turing machine M , denoted L(M), has an associated alphabet
Σ and is defined by:

L(M) = {w ∈ Σ∗ : M(w) = “yes”}.

We denote by tM (w) the number of steps in the computation of M on input w [1]. For n ∈ N
we denote by TM (n) the worst case run time of M ; that is:

TM (n) = max{tM (w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [1]. We say that M runs in polynomial time
if there is a constant k such that for all n, TM (n) ≤ nk + k [1]. In other words, this means the
language L(M) can be accepted by the Turing machine M in polynomial time. Therefore, P
is the complexity class of languages that can be accepted in polynomial time by deterministic
Turing machines [2]. A verifier for a language L is a deterministic Turing machine M , where:

L = {w : M(w, c) = “yes” for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time
verifier runs in polynomial time in the length of w [1]. A verifier uses additional information,
represented by the symbol c, to verify that a string w is a member of L. This information
is called certificate. NP is also the complexity class of languages defined by polynomial time
verifiers [3].

A function f : Σ∗ → Σ∗ is a polynomial time computable function if some deterministic
Turing machine M , on every input w, halts in polynomial time with just f(w) on its tape
[1]. Let {0, 1}∗ be the infinite set of binary strings, we say that a language L1 ⊆ {0, 1}∗ is
polynomial time reducible to a language L2 ⊆ {0, 1}∗, written L1 ≤p L2, if there is a polynomial
time computable function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

An important complexity class is NP–complete [5]. A language L ⊆ {0, 1}∗ is NP–complete if

– L ∈ NP , and
– L′ ≤p L for every L′ ∈ NP .

If L is a language such that L′ ≤p L for some L′ ∈ NP–complete, then L is NP–hard [2].
Moreover, if L ∈ NP , then L ∈ NP–complete [2].

HAMILTON–PATH is an important NP–complete problem [5]. An instance of the language
HAMILTON–PATH is a graph G = (V,E) where V is the set of vertices and E is the set
of edges, each edge being an ordered pair of vertices [5]. We say (u, v) ∈ E is an edge in a
graph G = (V,E) where u and v are vertices. For a graph G = (V,E) a simple path in G is a
sequence of distinct vertices < v0, v1, v2, ..., vk > such that (vi−1, vi) ∈ E for i = 1, 2, ..., k [2].

P VERSUS NP UNDER CODINGS Page 3 of 4

A Hamilton path is a simple path of the graph which contains all the vertices of the graph.
The problem HAMILTON–PATH asks whether a graph has a Hamilton path [5].

Another NP–complete problem is CIRCUIT–SAT [5]. A Boolean circuit is an acyclic graph
C = (V,E), where the nodes V = {1, ..., n} are called the gates of C. We can assume that
all edges are of the form (i, j) where i < j. All nodes in the graph have in-degree (number
of incoming edges) equal to 0, 1 and 2. Also, each gate i ∈ V has a sort c(i) associated with
it, where c(i) ∈ {true, false,∧,∨,⇁} ∪ {x1, x2, ...}. If c(i) ∈ {true, false} ∪ {x1, x2, ...}, then
the in-degree of i is 0, that is, i must have no incoming edges. Gates with no incoming edges
are called the inputs of C. If c(i) =⇁, then i has in-degree one. If c(i) ∈ {∧,∨}, then the
in-degree of i must be two. Finally, node n (the largest numbered gate in the circuit, which
necessarily has no outgoing edges), is called the output gate of the circuit. Let X(C) be the
set of all Boolean variables that appear in the circuit C (that is, X(C) = {x ∈ X : c(i) =
x for some gate i in C}). We say that a truth assignment T is appropriate for C if it is defined
for all the variables in X(C). The problem CIRCUIT–SAT asks whether a given circuit C
has a truth assignment T , appropriate to C, such that C(T) = true. Consider, however, the
same problem for circuits with no variable gates. This problem, known as CIRCUIT–VALUE,
obviously has a polynomial time algorithm [3].

On the other hand, EXP is the complexity class of languages that can be accepted in
exponential time by deterministic Turing machines [2]. NEXP is the complexity class of
languages defined by exponential time verifiers [3]. NEXP–complete is also defined under
polynomial time reductions but each problem is in NEXP . One of the most important
problems related to circuits and graph is SUCCINCT–HAMILTON–PATH. A succinct rep-
resentation of a graph with 2× n− 1 nodes is a Boolean circuit C with 2× b input gates
where n = 2b is a power of two [3]. The graph represented by C, denoted GC , is defined
as follows: The nodes of GC are {0, 1, 2, . . . , 2× n− 1}. And (i, j) is an edge of GC if
and only if C accepts the binary representations of the b-bits integers i, j as inputs [3].
The problem SUCCINCT–HAMILTON–PATH is now this: Given the succinct representation
C of a graph GC with 2× n− 1 nodes, does GC have a Hamilton path? The problem
SUCCINCT–HAMILTON–PATH is in NEXP–complete [3].

3. Results

Definition 1. CIRCUIT–HAMILTON–PATH
Instance: A Boolean circuit C and a graph G = (V,E).
Question: Does G have a Hamilton path where C is a succinct representation of G?

Theorem 3.1. CIRCUIT–HAMILTON–PATH ∈ NP .

Proof. We can check whether a simple path in G is a Hamilton path in polynomial time
since HAMILTON–PATH ∈ NP . Moreover, we can check in polynomial time whether G has
2× n− 1 nodes where n = 2b is a power of two. Furthermore, we can measure whether the
size of C is upper bounded by bk for a “feasible” positive integer k. Finally, we can verify in
polynomial time whether every ordered pair of vertices (u, v) complies with (u, v) ∈ E if and
only if C accepts the binary representations of the b-bits integers u, v as inputs.

Definition 2. We define a coding κ to be a mapping from Σ to Σ (not necessarily one-to-
one) [3]. If x = σ1 . . . σn, we define κ(x) = κ(σ1) . . . κ(σn) [3]. Finally, if L ⊆ Σ∗ is a language,
we define κ(L) = {κ(x) : x ∈ L} [3].

Page 4 of 4 P VERSUS NP UNDER CODINGS

Definition 3. ENCODED–CIRCUIT–HAMILTON–PATH
Instance: A string κ(C) where C is a Boolean circuit and a graph G = (V,E).
Question: Does G have a Hamilton path where C is a succinct representation of G?
κ is a one-to-one mapping defined as κ(0) = + and κ(1) = −.

Theorem 3.2. ENCODED–CIRCUIT–HAMILTON–PATH ∈ NP .

Proof. ENCODED–CIRCUIT–HAMILTON–PATH is in NP , because we can evaluate in
polynomial time κ−1 on κ(C) to obtain C and CIRCUIT–HAMILTON–PATH is in NP .

Theorem 3.3. If we take the empty string ε as a symbol, then we obtain:
κ′(ENCODED–CIRCUIT–HAMILTON–PATH) = SUCCINCT–HAMILTON–PATH
where κ′ is a coding defined as κ′(+) = 0, κ′(−) = 1, κ′(1) = ε and κ′(0) = ε.

Proof. The string Gκ(C) encoded in κ′ is ε . . . εC, but ε . . . εC is equal to the Boolean circuit
C because the empty string ε complies with εε = ε and is the prefix of every string [3].

Theorem 3.4. P is not closed under codings when we take the empty string as a symbol.

Proof. If P is closed under codings and we take the empty string as a symbol, then
SUCCINCT–HAMILTON–PATH would be P . However, there is not any NEXP–complete in
P due to the Hierarchy Theorem.

Theorem 3.5. P 6= NP when we take the empty string as a symbol.

Proof. P is closed under codings if and only if P = NP [3]. Hence, we prove P 6= NP when
we assume the empty string is a symbol.

References

1. S. Arora and B. Barak, Computational complexity: a modern approach, Cambridge University Press,
2009.

2. T. H. Cormen and C. E. Leiserson and R. L. Rivest and C. Stein, Introduction to Algorithms, 3rd
Edition, The MIT Press, 2009.

3. C. H. Papadimitriou, Computational complexity, Addison-Wesley, 1994.

4. W. I. Gasarch, Guest column: The second P
?
= NP poll, ACM SIGACT News (43) (2012) 53–77.

5. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, 1st Edition, San Francisco: W. H. Freeman and Company, 1979.

6. S. Aaronson, P
?
= NP, Electronic Colloquium on Computational Complexity, Report No. 4

(2017).

Frank Vega
Joysonic, Uzun Mirkova 5, Belgrade, 11000
Serbia

vega.frank@gmail.com

