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Abstract This paper deals with the subject of minimal path decomposition of com-
plete bipartite graphs. A path decomposition of a graph is a decomposition of it into
simple paths such that every edge appears in exactly one path. If the number of paths
is the minimum possible, the path decomposition is called minimal. Algorithms that
derive such decompositions are presented, along with their proof of correctness, for
the three out of the four possible cases of a complete bipartite graph.
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1 Introduction

A path decomposition of a graph is a decomposition of it into paths such that every
edge appears in exactly one path. If the number of paths is the minimum possible, the
path decomposition is called minimal.

A complete bipartite graph is a graph with its nodes partitioned in two sets, such
that no edge that connects nodes of the same set exists in the graph, and all edges that
connect nodes of the two sets exist in the graph.

In this paper, the subject of minimal path decomposition of complete bipartite
graphs is investigated. The complete bipartite graphs are split into four cases that
cover every possible instance of them. Algorithms that provide the actual paths of a
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1¢  minimal path decomposition are presented for the three out of the four possible cases.
19 A proof of correctness is also given for the presented algorithms.

20 To the best of our knowledge, no algorithms can be found in the literature that
21 provide minimal path decomposition of complete bipartite graphs. Relevant work can
22 be found in Alspach (2008), Bryant (2010) where the cases of complete graphs of
23 even, odd order respectively are investigated. The subject of decomposing a graph
24 into paths of certain length is investigated in Parker (1998), Truszczyski (1985), Zhai
25 and Lu (2006). Work that is concentrated on the theoretical analysis of the subject of
26 path decomposition can be found, among others, in Haggkvist and Johansson (2004),
2z Thomassen (2008a), Thomassen (2008b), Heinrich (1992), Dean and Kouider (2000),
28 Tarsi (1983), Lovasz (1968), Fan (2005), Pyber (1996), Harding and McGuinness
29 (2014), Donald (1980).

30 The remaining of the paper consists of the following sections: The necessary nota-
a1 tion and definitions are given in Sect. 2, and the general framework that is applied
s for the derivation of the proposed algorithms is presented in Sect. 3. The proposed
ss algorithms are presented in Sect. 4. The conclusions and ongoing research are given
s 1in Sect. 5.
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ss 2 Preliminaries

s The graphs considered in the current paper are undirected, connected, without multiple
a7 edges between the same pair of nodes and without self-loops (i.e., without edges
ss that connect a node to itself). The notation G = (V, E) stands for a graph with the
s aforementioned characteristics, consisting of n = |V| nodes and m = | E| edges. The
40 notation x < y represents the (undirected) edge that connects nodes x and y. The
4 nodes are labeled with the numbers 1 to n. The difference between the labels of two
«2 nodes x and y is defined as |x — y|. Two edges x < y, x’ <> y’ are identical if x = x’
s andy =y, orif x =y’ and y = x'. For this case, obviously, [x — y| = |x" — y/|.

44 By the notation simple path we mean a path where each node appears at most once.
45 The Path Decomposition (PD) of a graph consists of a set of simple paths (PD-paths)
4 that are edge-disjoint and every graph edge appears in exactly one of them. If the
47 number of these paths is the minimum possible, the decomposition is called Minimal
4 PD (MPD), and the corresponding paths are called MPD-paths.

49 For the derivation of the MPD-paths, a Path Matrix (PM) is created. The elements
so of this matrix are the graph nodes. Therefore, the notions element and node are used
st interchangeably throughout the paper. The position (or place) of the element found
s2 in the ith row and jth column of the PM is denoted by [i][j]. Each position of the
ss. PMis called cell, and i, j are the coordinates of cell [i][j]. If node x is found in cell
s« [i]1[j], then [{][j] = x and the phrase “the node [i][ j]” means “the node found in cell
ss [E1[j]7. If [i][j] = O, then cell [][j] is empty. A pair of neighboring (on the same
ss row) nodes x, y in the PM represents the corresponding edge x < y. If [i][j] = x
s and [i][j + 1] =y, thenx < y = [i][j] < [i][j + 1].

58 A path that can be found in the PM consists of either a complete row of the PM,
ss or a continuous part of it. The path that can be found in the ith row of the PM and
e has the nodes [i][j] and [i][j + k] as ending nodes, consists of the nodes [i][j + /]
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Table 1 Possible cases of a

L Case Characteristics
complete bipartite graph Ky n,

1 Evenny, Evenny, ny =np
2 Evenny, 1 <np <n;-—1
3 Odd ny, Odd ny, ny =np
4 Oddny, 1 <np <n;—1
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st and of the edges [i][j + ] < [i][j + [+ 1], withl = 0, 1, ..., k (excluding edge
o2 [i][j + k] < [i1[j + k + 1]). If the two ending nodes of the path found in the ith
es row are the first and last element of this row, then we say that this path consists of the
s complete row i.

65 For complete bipartite graphs, set V is splitin two sets V1, V> suchthat ViUV, =V,
e VINV> =0,|Vi| =ny,|Va| = na, (therefore n| +n, = n). Without loss of generality,
o7 throughout the paper itis assumed thatny < nj. Set E consists of all edges x <> y such
es thatx € Vj and y € V;. Nodes of set V| are labeled with the numbers from 1 to ny,
e and nodes of set V, with the numbers from n1 4 1 to n. The complete bipartite graph,
70 using the aforementioned notation, is denoted by K, »,. It can be easily verified that
71 every possible instance of a complete bipartite graph belongs in one of the four cases
72 presented in Table 1.

s 3 General framework

7+ The proposed algorithms that are presented in Sect. 4 are derived using the general
75 framework presented here. The derived paths must have the following properties in
76 order to constitute an MPD:

77 3.1 Properties

78 — Property A: All the derived paths are simple.

Property B: All the edges in the derived paths are unique.

so — Property C: The number of edges in the derived paths is equal to m = |E].
Property D: The number of the derived paths is the minimum possible.

79

81

82 Necessity of property A is obvious, since the solution must consist of simple paths.
ss  Property B states that no edge is used more than once. Property C (under the validity
s« of property B) states that the solution includes all the edges. If properties A—C are
s valid, then the solution constitutes a PD. For MPD, property D must be valid as well.

s 3.2 Steps of the general framework
sz (1) Create the PM.

s (il) Locate the part of the PM that must be manipulated, and derive the corresponding
89 PD.
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o0 (iii) Verify that properties A—C are valid for the derived PD.
o1 (iv) If property D is not valid for the derived PD, modify the paths of the latter in
o order to derive an MPD, while preserving the validity of properties A—C.

9 The steps of the general framework are detailed and easily understood in the fol-
s« lowing section, where the proposed algorithms are presented.

s 4 Proposed algorithms
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s 4.1 Complete bipartite graphs K,,, ,, with even n1, even n; and n1 = n;

o7 Consider the case of the complete bipartite graph K,,, ,, where n| and n, are even,
e andn; =np = % (.e., Kpjn, = K%y%). Obviously, for this case, n > 4. The graph

90 consistsofny-ny = % edges. The application of the general framework is as follows.
100 Step GM-I The PM is created using the proposed Algorithm 1. Algorithm 1 creates
11 a PM consisting of 5 rows and n columns (shown in Table 2).

Algorithm 1 K,,, ,,, with even ny, even ny and ny = np

1. Create row 1 of the PM:
(a) Placenodes 1, ..., % in odd cells, sequentially, in increasing order
(b) Place nodes (% :12 + 1,..., n in even cells, sequentially, in decreasing order

2. Create rows 2 to » of the PM. Create each row from the previous one, by adding one to the label of
each node. For each cell of the row under creation:
(a) If it belongs to an odd column and the resulting label is greater than %, subtract % from the label
(b) If it belongs to an even column and the resulting label is greater than n, subtract % from the label

w2 Derivation of cell content from cell coordinates

1s Note that the odd (even) cells of row 1 (steps 1a and 1b of Algorithm 1) are the ones
104 described by [1][j], j odd (even). For odd column k (odd k), node k+1 is placed in
105 cell [1][k],1.e., [1][k] = k+] ;forevenk, [1][k] = n — Z + 1. Since the labels for each
106 Upcoming row are 1ncreased by one compared to the previous row, and number 75 is
107 subtracted if the resulting label is, for odd k, larger than % and for even k, larger than
e n, the general equations forrow i, | <i < % are as follows:

109 — For odd k,

k+1
R A )
ELK > 2 = [k = L -2 @)
[k > 5 = [k =~ + G~ 1)~
112 — Forevenk,
@Springer
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Wk =n— 5 1= =n—X 4 ;
113 i =n 5 @ )=n > i 3)
A > n = 1K = 5~ 4 @

115 Step GM-II The following part of the PM is selected for the derivation of the
e PD-paths:

1n7 1. Each of the paths i, 1 <i < %, consists of the complete row i.
1ns 2. Each of the paths i, % +1<i< %, consists of a single edge, that is, the edge
119 [i][%] < [i][% +1].
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120 Step GM-III Here, it is verified that properties A-C are valid for the derived PD-
121 paths.

122 Proposition 1 Property A is valid.

123 Proof If this property is valid for the whole PM, it is valid for the derived PD-paths.
122 To prove that it is valid for the whole PM, it is sufficient to show that each row does
15 not have the same node more than once. This is proven using mathematical induction:

126 1. Prove that it is true for the first row: This is trivial, as it is an immediate result of
127 the way the first row was created.

128 2. Assume that it is true for the ith row.

129 3. Prove that it is true for the (i 4+ 1)th row: Let vy, v represent two nodes on the ith

130 row (v; # vp) and vi, vé represent the corresponding nodes on the (i + 1)th row
131 (i.e., the ones that belong to the same columns as vy, v2). The following cases can
132 occur:
s — v belongs to an odd column and v} to an even column: 1 < v} < Sand § +1 <
134 véfnzﬂ;i;évé
s — v) belongs to an even column and v} to an odd column: 5 + 1 < v; < n and
136 lgvéfgivﬁ#vé
137 — Both v’l s vé belong to odd (or even) columns. Then, both v, v2 belong to odd (or
138 even) columns and 1 < v, vy < % (or % + 1 < vy, va < n). The following cases
139 are possible:
140 vi =v; +1 (5)
141 or
, n
142 v1:v1—|—1—— (6)
2
143 and
144 vé =v+1 )
145 or
146 vé=v2+1—— (8)
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147 If Egs. 5 and 7 (or 6 and 8) are valid,

- Y Y N
G
1)
E 149 If Egs. 5 and 8 are valid,
5
= 150 l<wv,vy<5(r5+1=<v,v=n)
+—
2 151 :>v2—v17é§:>v1#v2—§:>v1+17év2+1—%:>v§;évé

152 If Egs. 6 and 7 are valid,

153 l<v,vy<5(r5+1=<v,v=<n)
154 SV -—nEISnFE-—F0nFlFu+1-5 =0 #v]
155 O

156 To prove that property B is valid, Proposition 2 is used.
157 Proposition 2 All the nodes of a column (of the whole PM) are unique.

18 Proof Consider that for an odd (or even) column the nodes from 1 to % (or from % +1
159 to n) are arranged circularly, in increasing order according to their labels, and node 1
w0 (or % + 1) is found after node % (or n). Then, the creation of a column can be seen
11 as the selection of 5 sequential nodes found on the aforementioned circle. Regardless
12 the first node of a column, since the number of elements in the column is equal to the
s number of elements in the circle, all the selected nodes are unique. Therefore, all the
1es  nodes of a column are unique. O

165 Proposition 3 Property B is valid.

s Proof First it is proven that property B is valid for the paths i, 1 <i < %, i.e., for the
17 upper half of the derived PM.

168 Consider that we have the edges ¢ = a <> b, ¢ = a’ <> b’. The possible cases of
10 them can be found in Table 3, as derived by Eqs. 1-4. These edges will have either
1w a =aora # a.lfa # a,obviously ¢ # e.If a’ = a, according to Propositions
w71 and 2, nodes a, a’ belong to different rows and columns, i.e., i’ # i and k” # k for
172 the contents of Table 3.

173 In Table 3:

w  — 1 <k, kK <n—1,since columns k + 1, k¥’ + 1 can take values up to n, according
175 to the way the PM is created.
176 — For cases with |a — b| = 37” —k,since la —b| <n—1,
177 k> L +1 ©)]
2
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s  — For cases with |a’ — b'| = 37" —k',since |’ —b'| <n—1,
,_n
179 k>—-+1 (10)
2
180 For equality of the two edges e, ¢/, apart from a’ = a, |a — b| must be equal to

11 |a’ — b’|. Consequently, the cases where |a —b| =n —k and |a’ — b'| =n —k/, or
w2 |la—b| = 37” —kand|d' —b'| = 37" — k' are omitted, since for them |a —b| # |a’ —b'|,
183 due to the fact that k # k’. The rest of the cases are investigated as follows:
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184 — Case la-2b

k+1 k' +1

185 a:a’$T+i—1= > +i'—1=2k—kK =20 -1 (11
186 To prove that b # b, we assume that b = b’ and from it we derive a non-valid
187 result:
k+1 K +1
- n—%—i—i:g— ; bl snmk—k 426 —i g — by
189 The last result is not valid:
.. n ./ . n
190 lfl,lSZ:>max{4(l—l)}:4<Z—1>:n—4<n.
191 Therefore, b # b’ and, consequently, e # €.
192 — Case la—2c
k+1 K +1
o5 a:d:>%+i—l: ¢ +i/—1—g:>k—k/:2(i/—i)—n (12)
194 To prove that b # b, we assume that b = b’ and from it we derive a non-valid
195 result:
k+1 K +1
- n—%ﬂ:n— ;L il sk —k =2 — D) A =4 — i)
197 As previously, the last result is not valid. Therefore, b # b’ and, consequently,
108 e#e.
199 — Case la-2f
, k1 ko , g
200 a=a :>T+1—1=n—5+1:>k—|—k=2n+2(1—l)+1 (13)
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201 To prove that b # b, we assume that b = b’ and from it we derive a non-valid
202 result:
= k+1 kK +2 n
o 203 n———+i = +i/—1——=>k+k/
E 2 2 2
5 204 =3n—2(i’—i)—1gn—2=4(i’_5)
L]
5
< 205 As previously, the last result is not valid. Therefore, b # b’ and, consequently,
206 e#e.
207 — Case la—2g
k+1 K’
208 a:a/:>%+i—l:g—§+i/:>k+k’:n+2(i/—i)+l (14)
209 To prove that b # b, we assume that b = b’ and from it we derive a non-valid
210 result:
k+1 kK +2
211 n—L—}—i: + +i'—1=k+k
2 2
. (14% g
212 =2n—2(z—1)—1 n—2=4(l—l)
213 As previously, the last result is not valid. Therefore, b # b’ and, consequently,
214 4 ;é e.
215 For brevity, the investigation of the rest of the cases is omitted; it can be easily
216 verified that, using the aforementioned framework, Proposition 3 is valid for them as
27 well.

218 Subsequently, Proposition 3 has been proven for the PD-paths found in the upper
o half of the PM,ie., forl <i < 'Z’ and 1 <k < n (result 3a). For the PD-paths found

220 in the lower half (each one consisting of a single edge), i.e., for 7 + 1 <i < 5 and

2

- 2
21 k= 5:
222 — k is even, therefore either Eqs. 3 or 4 is valid. The one that is valid is Eq. 4 since,
. k. . n . o [3n
223 minin — = +1i :mln{n——+t}:mm —4iy=n+1>n (15
2 4 4
222 — k4 11is odd, therefore either Egs. 1 or 2 is valid. The one that is valid is equation
225 2 since,
. k+2+(. 1 '{n—}-l—i-' 1} {n+} n+l n
—_ = —_ —_ = —_ = — > —
min i min | - i min | - +1 > >
226 (16)
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227 Therefore, the single edges e = |a — b| that constitute the paths i, 7 +1 <i <
208 are as follows:

[NS1

wo a< b=kl < [k+1]=[i] [g] < i [% + 1]

20 :(g—g—i—i)(—)(l%z—}-(i—l)—g):<%+i><—><—%+i)

231 Consequently, |[a — b| = 5. According to Table 3, the edges ¢’ = a' < b’ =
22 [i][k'] <> [i][k’ + 1] to be checked whether they are equal to a <> b can have:

G
]
]
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2 1 |a'=b|=n—k.Ife' =e,then|a —b|=la-bl=>n—-kK=5=k=5=

234 k" = k. This is not possible, since for ¢’ = e, a’ must be equal to a, and, according
235 to Proposition 2, for k' = k, a’ # a.

w6 2. |a' =b'|=1|5—K|.Ife =e, then|a’ —b'| =|a —b| = |5 — k| =5 = either
287 k' = 0or k' = n, both non-valid since 1 <k’ <n — 1.

m 3. la —b|=3 —k.Ife =e thenld —b|=la—b|= P -k =4 =k =n,
239 non-valid.

240 The aforementioned analysis has proven that the edges e = |a — b| that constitute
241 the paths i, % +1<ic< %, do not exist anywhere else in the PM (result 3b).

242 Results 3a, b constitute the proof of Proposition 3 O

23 Proposition 4 Property C is valid.
224 Proof According to Step GM-II

as 1. Bachof the paths i, 1 <i < Z, consists of n — 1 edges.

26 2. Bachof the paths i, 7 + 1 <i < 7, consists of one edge.

247 Therefore, the PD consistsof 7 - (n — 1) + 7 - 1 = "72 = m edges. O

248 Step GM-1V Up to this point, the derived solution consists of 5 paths. Since each
249 path of K 1 4 can consist of at most n — 1 edges, the number of paths of an MPD is:

n2
N (17)
“ n—1| 4
n? n2
25t Proof If it is proven that 25 > % and -2 < 7 + 1, then it is straightforward that
n2
252 f%1 = % +1.
253 It is obvious that
7 7 Z
= - 18
> n—1>n:>n—1>4 (18)
255 To prove that
n2
L (19)
- n—1 4
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257 we modify inequality 19 until we reach to a valid inequality:

19 2

- =l <t < (P 41) dn—Dza’ <+ Hn-1)
e - =n’<n’+dn-n—-4=3n-4>0=n> 3% (20)
il
A
5 260 Since n > 4, inequality 20 is valid. Therefore, inequality 19 is valid as well. The
= 261 validity of inequalities 18 and 19 constitutes the proof of Eq. 17, since 7 and 7 + 1
2 262 are consecutive integers. O

263 Since the number of the derived PD-paths is larger than the minimum possible, we

26 modify the PD as follows, in order to derive an MPD from it.
265 Derivation of MPD from the derived PD

266 — Path 1 of the MPD is equal to path 1 of the PD.

267 — Paths of the MPD from 2 to % are derived from the corresponding paths of the PD,
268 neglecting the last edge of each one of them.

20— Path (7 + 1) of the MPD consists of the edges of the single-edge paths § + 1 to
270 5 of the PD, and of the edges that were removed from the paths 2 to 7 of the PD.
271 Node in jth position of this path (1 < j < %) is found in:

— Cell [§ + (5] for odd j.

273 - Cell [§ + {1[5 + 1] for even j.

274 In other words, the edges that were removed from paths 2 to 7 of the PD, are used

275 to connect the edges of the single-edge paths 7 + 1 to 5 of the PD (in increasing order
27 according to the row they belong), so as to construct a single path (i.e., path (7 + 1)
277 of MPD) from them. More precisely, paths i and i + 1 of the PD (% +1<ic< % —1),
278 consist of the following edges, according to Egs. 2 and 4:

279 Path i consists of a; <> b; = [i][5] < [i][5 + 1]

250 :(g—%+i)e(¥+(i—1)—g)=(§+i)e(—§+i) @1)
201 Pathi + 1 consists of a] <> b = (§ +i+1) & (=F+i+1) (22)
282 Below, it is shown that edge [i'][n — 1] < [i’][n], 2 < i’ < % (which has been

2ss removed from path i’ of the PD) can be used to connect the aforementioned edges
284 (i/Zi—%—}-l):

285 [n—-1N= 4@ -D=4+G-1D>1%

286 S[h-1=i"-1=>{-5+)—-1=i-5%=b

207 [(nl=n—-5+i'=n—4+i'=3+G(-4+D)=2+i+1=d

288 Under this transformation, it is obvious that properties A-C are still valid. Property

289 D is also valid, since the number of MPD-paths is equal to % + 1, i.e., the minimum
200 possible according to Eq. 17.
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291 The following part presents an example of the proposed procedure. The PM as
202 derived by Algorithm 1 is presented, as well as the derived MPD-paths.

203 4.1.1 Example: path decomposition of Kg g

20¢ The PM as derived by Algorithm 1 is given in Tables 4 and 5 gives the derived MPD-
205 paths. Kg g consists of 64 edges, and this is exactly the number of edges found in Table
206 5. According to equation 17, the minimum number of decomposition paths is 5, equal
207 to the number of MPD-paths found in Table 5.
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28 4.2 Complete Bipartite Graphs K, ,, withEvenniand1 <n; <n; —1

200 Consider the case of the complete bipartite graph K, ,, where n is even and
s 1 < np < ny — 1 (with ny either odd or even). Therefore, n = n; + np, > 3.
s The graph consists of nj - ny edges. The application of the general framework is as
sz follows:
303 Step GM-I: The PM is created using Algorithm 2. It consists of "7‘ rows and 2n, + 1
s04 columns.

Table 4 PM derived by Algorithm 1 for the case of Kg g

row col—> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9
2 2 9 3 16 4 15 5 14 6 13 17 12 8 11 1 10
3 3 10 4 9 5 16 6 15 7 14 8 13 1 12 2 11
4 4 11 5 10 6 9 7 16 8 15 1 14 2 13 3 12
5 5 12 6 11 7 10 8 9 1 16 2 15 3 14 4 13
6 6 13 7 12 8 11 1 10 2 9 3 16 4 15 5 14
7 7 14 8 13 1 12 2 11 3 10 4 9 5 16 6 15
8 8 15 1 14 2 13 3 12 4 11 5 10 6 9 7 16
Table 5 MPD-paths for the case of Kg g
1 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9
2 9 3 16 4 15 5 14 6 13 7 12 8 11 1
3 10 4 9 5 16 6 15 7 14 8 13 1 12 2
4 11 5 10 6 9 7 16 8 15 1 14 2 13 3
9 1 10 2 11 3 12 4
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Algorithm 2 K, ,, withEvennjand1 <np <n; —1
1. Create row 1 of the PM:
(a) Placenodes 1, ..., (np + 1) in odd cells, sequentially, in increasing order
(b) Place nodes (n] + 1), ..., n in even cells, sequentially, in increasing order
2. Create rows 2 to 5L of the PM. For each cell of the row under creation:

(a) If it belongs to an odd column, add 2 to the label of the node found in the same column in the
previous row; If the resulting label is greater than n1, subtract ny from it. Place the result in this
cell

(b) If it belongs to an even column, place the label of the node found in the same column in the
previous row
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as Derivation of cell content from cell coordinates

ss For odd column k (odd k), node ]%1 is placed in cell [1][k], i.e., [1][k] = "2i1 For
sz evenk, [1][k] =n1 + % The general equations for row i, 1 <i < ”71 are as follows
8 (n=mn1+ny):

309 — For odd k N

1
310 [[1[k] = k% + 2i —2) (23)
. . k+1 .
311 If [i][k] > n1 = [il[k] = T+(21—2)—n1 (24)
s12 — Forevenk,
. k
313 [[1[k] =n; + E (25)

314 Step GM-II The complete PM is selected for the derivation of the PD. Therefore,
a5 the derived PD consists of ”71 paths, and path i (1 <i < "7‘) consists of the complete
316 TOW I.

317 Step GM-III Here, it is verified that properties A—C are valid for the derived PD.

sis  Proposition 5 Property A is valid.

a9 Proof It is sufficient to show that each row does not have the same node more than
a0 once. This is proven using mathematical induction:

a1 1. Prove that it is true for the first row: This is trivial, as it is an immediate result of
322 the way the first row was created.

a8 2. Assume that it is true for the ith row.

s24 3. Prove that it is true for the (i 4 1)th row: Let vy, v, represent two nodes on the ith

325 row (vi # v2) and v}, v} represent the corresponding nodes on the (i + 1)th row
326 (i.e., the ones that belong to the same columns as vy, vp). The following cases are
327 possible.
328 — v}, v} belong to even columns: v} — vy = vy — v # 0 = v} # v5.
329 — v}, v} belong to odd, even column respectively: 1 < v <nj,n;+1 <) <
330 ni + ny = v # vj. Analogously for even, odd column.
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331 — v}, v} belong to odd columns. The following cases are possible:

332 —vi=v+2, V=0 +2= 0] v =v — v # 0= v] # ).

33 - vil =v+2-nvy=v+2—n=v] -V, =v—v #0=v] # ).
334 -V =v+2-nv=0+2=v] v, =v—vy—n#0=v] #v).

a5 Proposition 6 Properties B and C are valid.

ass  Proof To prove that properties B and C are valid, it is sufficient to prove that for each
sz node x, (n; + 1) < x < n (which, according to Algorithm 2, can be found in even
ss  columns) each of the edges x <> y, 1 < y < nj exists exactly once in the derived PD.
ass  In other words, to prove that for arbitrary even column k, every node z; such that z;
a0 isoddand 1 < z; < ny — 1, can be found in column k — 1 exactly once, and every
a1 node z; such that z5 is even and 2 < z5 < ny, can be found in column k + 1 exactly
a2 once (or vice versa).

343 Consider even column k, with odd % Then the node found in row i and column
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s k—1is % +2i —2or % + 2i — 2 — ny, according to Eqs. 23 and 24. Since %" rows
a5 exist, this means that every node z; such that z; isodd and 1 < z; < nj — 1, can be
as found in column k — 1 exactly once. The node found in row i and column k + 1 is
347 % +1+2i —2or ’% + 1+ 2i — 2 — ny. This means that every node z, such that z;
as iseven and 2 < z» < nj, can be found in column k + 1 exactly once. For even %, the
a9 opposite analysis holds O

350 Step GM-IV Up to this point, the derived solution constitutes a PD. To verify that
a5t this is also an MPD, Proposition 7 is proven.

a2 Proposition 7 Property D is valid.

a3 Proof Each path can consist of at most 2n, edges. Therefore, the minimum number

s« of paths is
nina ny

= — 26
355 2, 5 (26)
356 Since the derived PD consists of exactly "7‘ paths, property D is valid, i.e., the
a7 derived PD is also an MPD. m|

358 Note that for ny = n; (i.e., for the case investigated in Sect. 4.1), Algorithm 2
39 cannot be applied, since in cell [1][2n72 + 1] nodeny +1 =n1+ 1 > n; — 1 will be
s0 placed, i.e., the first path will not be simple since this node will also be placed in cell
st [1][1]. The same holds for the rest of the rows.

362 The following part presents illustrative examples.

ss  4.2.1 Examples of Algorithm 2

s« Tables 6, 7, 8,9, 10, 11 and 12 present the MPD-paths for the cases of Kg ,, x =
ss 1,...,7,asderived by Algorithm 2.
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Table 6 MPD-paths for Kg | as
derived by Algorithm 2

Table 7 MPD-paths for Kg 7 as
derived by Algorithm 2

Table 8 MPD-paths for Kg 3 as
derived by Algorithm 2

Table 9 MPD-paths for Kg 4 as
derived by Algorithm 2

Table 10 MPD-paths for Kg 5
as derived by Algorithm 2

Table 11 MPD-paths for Kg ¢
as derived by Algorithm 2

Table 12 MPD-paths for Kg 7
as derived by Algorithm 2

@ Springer

1 9 2
3 9 4
5 9 6
7 9 8
1 9 2 10 3
3 9 4 10 5
5 9 6 10 7
7 9 8 10 1
1 9 2 10 3 11 4
3 9 4 10 5 11 6
5 9 6 10 7 11 8
7 9 8 10 1 11 2
1 9 2 10 3 11 4 12 5
3 9 4 10 5 11 6 12 7
5 9 6 10 7 11 8 12 1
7 9 8 10 1 11 2 12 3
1 9 2 10 3 11 4 12 5 13 6
3 9 4 10 5 11 6 12 7 13 8
5 9 6 10 7 11 8 12 1 13 2
7 9 8 10 1 11 2 12 3 13 4
19 2 10 3 11 4 12 5 13 6 14 7
39 4 10 5 11 6 12 7 13 8 14 1
59 6 10 7 11 8 12 1 13 2 14 3
7 9 8 10 1 11 2 12 3 13 4 14 5
1 9 2 10 3 11 4 12 5 13 6 14 7 15 8
39 4 10 5 11 6 12 7 13 8 14 1 15 2
5 9 6 10 7 11 8 12 1 13 2 14 3 15 4
7 9 8 10 1 11 2 12 3 13 4 14 5 15 6
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ss 4.3 Complete bipartite graphs K, ,, with odd n1, odd n; and n1 = n;

s7 Consider the case of the complete bipartite graph K,,, ,, where n; and ny are odd,
ws andn; =np = % (i.e., K;, n, = K »). For this case, n > 2. The graph consists of
2 1,712 7:5

9 M| Ny = ”TZ edges. The application of the general framework is as follows:

370 Step GM-I: The PM is created for the initial graph G, using the proposed Algorithm
an 3. This algorithm functions as Algorithm 1, with the difference that the derived PM
sz consists of 5 rows and 5 + 1 columns.
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Algorithm 3 K, ,,, with Odd n1, Odd n and ny = ny
1. Create row 1 of the PM:

ny+l1

(a) Placenodes 1, ..., =5— in odd cells, sequentially, in increasing order
(b) Place nodes (n1 + "12+ 1 ), ..., nineven cells, sequentially, in decreasing order

2. Create rows 2 to % of the PM. Create each row from the previous one, by adding one to the label of
each node. For each cell of the row under creation:
(a) Ifit belongs to an odd column and the resulting label is greater than %, subtract % from the label
(b) If it belongs to an even column and the resulting label is greater than n, subtract 5 from the label

ars  Derivation of cell content from cell coordinates

a7+ Since the PM is derived as in Algorithm 1, Egs. 1-4 are valid.
a75 Step GM-II The complete PM is selected for the derivation of the PD. Therefore,
are  the derived PD consists of % paths, and path i (1 <i < %) consists of the complete

377 TOW I.
a78 Step GM-III Here, it is verified that properties A-C are valid for the derived PD.
379 Properties A and B are valid according to the proofs of Propositions 3 and 1, since

a0 the PM is derived as in Algorithm 1.
a1 Proposition 8 Property C is valid.

sz Proof Since 5 PD-paths are derived and each one consists of 5 edges, the total number
. 2
s of edges of the PD is equal to 5 - 5 = - = m. O

s« Proposition 9 Property D is valid.
a5 Proof Since every node has odd degree, each node is the endpoint of at least one
ass  path of any path decomposition. Therefore, at least n/2 paths are needed in any path

a7 decomposition of the graph. This is exactly the number of paths produced by Algorithm
ss 3. Consequently, property D is valid and the derived PD is also an MPD. O

a0 4.3.1 Example: path decomposition of K7 7

s Table 13 presents the MPD-paths for the case of K7 7, as derived by Algorithm 3.
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Table 13 MPD-paths for K7 7

as derived by Algorithm 3 1 14 2 13 3 12 4 11

2 8 3 14 4 13 5 12

- 3 9 4 8 5 14 6 13

e 4 10 5 9 6 8 7 14
$—

Y 5 11 6 10 7 9 1 8

e 6 12 7 11 1 10 2 9

= 7 13 1 12 2 11 3 10
=
<

s1 5 Conclusions

a2 In the current paper, the subject of minimal path decomposition of complete bipartite
ses graphs has been investigated. A path decomposition of a graph is a decomposition
se4 of it into paths such that every edge appears in exactly one path. If the number of
ass  paths is the minimum possible, the path decomposition is called minimal. Algorithms
ass that derive such decompositions were presented, along with their proof of correctness,
a7 for the three out of the four possible cases of a complete bipartite graph. Ongoing
a8 research concentrates on the development of an algorithm that will provide minimal
sse  path decomposition for the case of complete bipartite graphs K,,, ,, with odd n| and
awo 1 <np <ny— 1. As the three developed algorithms presented in this work cannot be
401 modified in order to be able to deal with the fourth case, the exact characteristics of
a2 this case need to be first understood prior to the development of an algorithm for the
ss fourth case as well.
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