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Abstract This paper deals with the subject of minimal path decomposition of com-1

plete bipartite graphs. A path decomposition of a graph is a decomposition of it into2

simple paths such that every edge appears in exactly one path. If the number of paths 13

is the minimum possible, the path decomposition is called minimal. Algorithms that4

derive such decompositions are presented, along with their proof of correctness, for5

the three out of the four possible cases of a complete bipartite graph. 26

Keywords Minimal path decomposition · Complete bipartite graphs7

1 Introduction8

A path decomposition of a graph is a decomposition of it into paths such that every9

edge appears in exactly one path. If the number of paths is the minimum possible, the10

path decomposition is called minimal.11

A complete bipartite graph is a graph with its nodes partitioned in two sets, such12

that no edge that connects nodes of the same set exists in the graph, and all edges that13

connect nodes of the two sets exist in the graph.14

In this paper, the subject of minimal path decomposition of complete bipartite15

graphs is investigated. The complete bipartite graphs are split into four cases that16

cover every possible instance of them. Algorithms that provide the actual paths of a17
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minimal path decomposition are presented for the three out of the four possible cases.18

A proof of correctness is also given for the presented algorithms.19

To the best of our knowledge, no algorithms can be found in the literature that20

provide minimal path decomposition of complete bipartite graphs. Relevant work can21

be found in Alspach (2008), Bryant (2010) where the cases of complete graphs of22

even, odd order respectively are investigated. The subject of decomposing a graph23

into paths of certain length is investigated in Parker (1998), Truszczyski (1985), Zhai24

and Lu (2006). Work that is concentrated on the theoretical analysis of the subject of25

path decomposition can be found, among others, in Haggkvist and Johansson (2004),26

Thomassen (2008a), Thomassen (2008b), Heinrich (1992), Dean and Kouider (2000),27

Tarsi (1983), Lovasz (1968), Fan (2005), Pyber (1996), Harding and McGuinness28

(2014), Donald (1980).29

The remaining of the paper consists of the following sections: The necessary nota-30

tion and definitions are given in Sect. 2, and the general framework that is applied31

for the derivation of the proposed algorithms is presented in Sect. 3. The proposed32

algorithms are presented in Sect. 4. The conclusions and ongoing research are given33

in Sect. 5.34

2 Preliminaries35

The graphs considered in the current paper are undirected, connected, without multiple36

edges between the same pair of nodes and without self-loops (i.e., without edges37

that connect a node to itself). The notation G = (V, E) stands for a graph with the38

aforementioned characteristics, consisting of n = |V | nodes and m = |E | edges. The39

notation x ↔ y represents the (undirected) edge that connects nodes x and y. The40

nodes are labeled with the numbers 1 to n. The difference between the labels of two41

nodes x and y is defined as |x − y|. Two edges x ↔ y, x ′ ↔ y′ are identical if x = x ′
42

and y = y′, or if x = y′ and y = x ′. For this case, obviously, |x − y| = |x ′ − y′|.43

By the notation simple path we mean a path where each node appears at most once.44

The Path Decomposition (PD) of a graph consists of a set of simple paths (PD-paths)45

that are edge-disjoint and every graph edge appears in exactly one of them. If the46

number of these paths is the minimum possible, the decomposition is called Minimal47

PD (MPD), and the corresponding paths are called MPD-paths.48

For the derivation of the MPD-paths, a Path Matrix (PM) is created. The elements49

of this matrix are the graph nodes. Therefore, the notions element and node are used50

interchangeably throughout the paper. The position (or place) of the element found51

in the i th row and j th column of the PM is denoted by [i][ j]. Each position of the52

PM is called cell, and i , j are the coordinates of cell [i][ j]. If node x is found in cell53

[i][ j], then [i][ j] = x and the phrase “the node [i][ j]” means “the node found in cell54

[i][ j]”. If [i][ j] = 0, then cell [i][ j] is empty. A pair of neighboring (on the same55

row) nodes x , y in the PM represents the corresponding edge x ↔ y. If [i][ j] = x56

and [i][ j + 1] = y, then x ↔ y = [i][ j] ↔ [i][ j + 1].57

A path that can be found in the PM consists of either a complete row of the PM,58

or a continuous part of it. The path that can be found in the i th row of the PM and59

has the nodes [i][ j] and [i][ j + k] as ending nodes, consists of the nodes [i][ j + l]60
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Table 1 Possible cases of a

complete bipartite graph Kn1,n2

Case Characteristics

1 Even n1, Even n2, n1 = n2

2 Even n1, 1 ≤ n2 ≤ n1 − 1

3 Odd n1, Odd n2, n1 = n2

4 Odd n1, 1 ≤ n2 ≤ n1 − 1

and of the edges [i][ j + l] ↔ [i][ j + l + 1], with l = 0, 1, . . . , k (excluding edge61

[i][ j + k] ↔ [i][ j + k + 1]). If the two ending nodes of the path found in the i th62

row are the first and last element of this row, then we say that this path consists of the63

complete row i .64

For complete bipartite graphs, set V is split in two sets V1, V2 such that V1∪V2 = V ,65

V1∩V2 = ∅, |V1| = n1, |V2| = n2, (therefore n1+n2 = n). Without loss of generality,66

throughout the paper it is assumed that n2 ≤ n1. Set E consists of all edges x ↔ y such67

that x ∈ V1 and y ∈ V2. Nodes of set V1 are labeled with the numbers from 1 to n1,68

and nodes of set V2 with the numbers from n1 + 1 to n. The complete bipartite graph,69

using the aforementioned notation, is denoted by Kn1,n2 . It can be easily verified that70

every possible instance of a complete bipartite graph belongs in one of the four cases71

presented in Table 1.72

3 General framework73

The proposed algorithms that are presented in Sect. 4 are derived using the general74

framework presented here. The derived paths must have the following properties in75

order to constitute an MPD:76

3.1 Properties77

– Property A: All the derived paths are simple.78

– Property B: All the edges in the derived paths are unique.79

– Property C: The number of edges in the derived paths is equal to m = |E |.80

– Property D: The number of the derived paths is the minimum possible.81

Necessity of property A is obvious, since the solution must consist of simple paths.82

Property B states that no edge is used more than once. Property C (under the validity83

of property B) states that the solution includes all the edges. If properties A–C are84

valid, then the solution constitutes a PD. For MPD, property D must be valid as well.85

3.2 Steps of the general framework86

(i) Create the PM.87

(ii) Locate the part of the PM that must be manipulated, and derive the corresponding88

PD.89
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(iii) Verify that properties A–C are valid for the derived PD.90

(iv) If property D is not valid for the derived PD, modify the paths of the latter in91

order to derive an MPD, while preserving the validity of properties A–C.92

The steps of the general framework are detailed and easily understood in the fol-93

lowing section, where the proposed algorithms are presented.94

4 Proposed algorithms95

4.1 Complete bipartite graphs Kn1,n2
with even n1, even n2 and n1 = n296

Consider the case of the complete bipartite graph Kn1,n2 where n1 and n2 are even,97

and n1 = n2 = n
2

(i.e., Kn1,n2 = K n
2 , n

2
). Obviously, for this case, n ≥ 4. The graph98

consists of n1 ·n2 = n2

4
edges. The application of the general framework is as follows.99

Step GM-I The PM is created using the proposed Algorithm 1. Algorithm 1 creates100

a PM consisting of n
2

rows and n columns (shown in Table 2).101

Algorithm 1 Kn1,n2 with even n1, even n2 and n1 = n2

1. Create row 1 of the PM:

(a) Place nodes 1, . . . , n
2 in odd cells, sequentially, in increasing order

(b) Place nodes ( n
2 + 1), . . . , n in even cells, sequentially, in decreasing order

2. Create rows 2 to n
2 of the PM. Create each row from the previous one, by adding one to the label of

each node. For each cell of the row under creation:

(a) If it belongs to an odd column and the resulting label is greater than n
2 , subtract n

2 from the label

(b) If it belongs to an even column and the resulting label is greater than n, subtract n
2 from the label

Derivation of cell content from cell coordinates102

Note that the odd (even) cells of row 1 (steps 1a and 1b of Algorithm 1) are the ones103

described by [1][ j], j odd (even). For odd column k (odd k), node k+1
2

is placed in104

cell [1][k], i.e., [1][k] = k+1
2

; for even k, [1][k] = n − k
2
+1. Since the labels for each105

upcoming row are increased by one compared to the previous row, and number n
2

is106

subtracted if the resulting label is, for odd k, larger than n
2

, and for even k, larger than107

n, the general equations for row i , 1 ≤ i ≤ n
2

are as follows:108

– For odd k,109

[i][k] =
k + 1

2
+ (i − 1) (1)110

If [i][k] >
n

2
⇒ [i][k] =

k + 1

2
+ (i − 1) −

n

2
(2)111

– For even k,112
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[i][k] = n −
k

2
+ 1 + (i − 1) = n −

k

2
+ i (3)113

If [i][k] > n ⇒ [i][k] =
n

2
−

k

2
+ i (4)114

Step GM-II The following part of the PM is selected for the derivation of the115

PD-paths:116

1. Each of the paths i , 1 ≤ i ≤ n
4

, consists of the complete row i .117

2. Each of the paths i , n
4

+ 1 ≤ i ≤ n
2

, consists of a single edge, that is, the edge118

[i][ n
2
] ↔ [i][ n

2
+ 1].119

Step GM-III Here, it is verified that properties A-C are valid for the derived PD-120

paths.121

Proposition 1 Property A is valid.122

Proof If this property is valid for the whole PM, it is valid for the derived PD-paths.123

To prove that it is valid for the whole PM, it is sufficient to show that each row does124

not have the same node more than once. This is proven using mathematical induction:125

1. Prove that it is true for the first row: This is trivial, as it is an immediate result of126

the way the first row was created.127

2. Assume that it is true for the i th row.128

3. Prove that it is true for the (i + 1)th row: Let v1, v2 represent two nodes on the i th129

row (v1 = v2) and v′
1, v′

2 represent the corresponding nodes on the (i + 1)th row130

(i.e., the ones that belong to the same columns as v1, v2). The following cases can131

occur:132

– v′
1 belongs to an odd column and v′

2 to an even column: 1 ≤ v′
1 ≤ n

2
and n

2
+ 1 ≤133

v′
2 ≤ n ⇒ v′

1 = v′
2134

– v′
1 belongs to an even column and v′

2 to an odd column: n
2

+ 1 ≤ v′
1 ≤ n and135

1 ≤ v′
2 ≤ n

2
⇒ v′

1 = v′
2136

– Both v′
1, v′

2 belong to odd (or even) columns. Then, both v1, v2 belong to odd (or137

even) columns and 1 ≤ v1, v2 ≤ n
2

(or n
2

+ 1 ≤ v1, v2 ≤ n). The following cases138

are possible:139

v′
1 = v1 + 1 (5)140

or141

v′
1 = v1 + 1 −

n

2
(6)142

and143

v′
2 = v2 + 1 (7)144

or145

v′
2 = v2 + 1 −

n

2
(8)146
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If Eqs. 5 and 7 (or 6 and 8) are valid,147

v′
1 − v′

2 = v1 − v2 = 0 ⇒ v′
1 = v′

2148

If Eqs. 5 and 8 are valid,149

1 ≤ v1, v2 ≤ n
2

(or n
2

+ 1 ≤ v1, v2 ≤ n)150

⇒ v2 − v1 = n
2

⇒ v1 = v2 − n
2

⇒ v1 + 1 = v2 + 1 − n
2

⇒ v′
1 = v′

2151

If Eqs. 6 and 7 are valid,152

1 ≤ v1, v2 ≤ n
2

(or n
2

+ 1 ≤ v1, v2 ≤ n)153

⇒ v1 − v2 = n
2

⇒ v2 = v1 − n
2

⇒ v2 + 1 = v1 + 1 − n
2

⇒ v′
2 = v′

1154

⊓⊔155

To prove that property B is valid, Proposition 2 is used.156

Proposition 2 All the nodes of a column (of the whole PM) are unique.157

Proof Consider that for an odd (or even) column the nodes from 1 to n
2

(or from n
2
+1158

to n) are arranged circularly, in increasing order according to their labels, and node 1159

(or n
2

+ 1) is found after node n
2

(or n). Then, the creation of a column can be seen160

as the selection of n
2

sequential nodes found on the aforementioned circle. Regardless161

the first node of a column, since the number of elements in the column is equal to the162

number of elements in the circle, all the selected nodes are unique. Therefore, all the163

nodes of a column are unique. ⊓⊔164

Proposition 3 Property B is valid.165

Proof First it is proven that property B is valid for the paths i , 1 ≤ i ≤ n
4

, i.e., for the166

upper half of the derived PM.167

Consider that we have the edges e = a ↔ b, e′ = a′ ↔ b′. The possible cases of168

them can be found in Table 3, as derived by Eqs. 1–4. These edges will have either169

a′ = a or a′ = a. If a′ = a, obviously e′ = e. If a′ = a, according to Propositions170

1 and 2, nodes a, a′ belong to different rows and columns, i.e., i ′ = i and k′ = k for171

the contents of Table 3.172

In Table 3:173

– 1 ≤ k, k′ ≤ n − 1, since columns k + 1, k′ + 1 can take values up to n, according174

to the way the PM is created.175

– For cases with |a − b| = 3n
2

− k, since |a − b| ≤ n − 1,176

k ≥
n

2
+ 1 (9)177
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– For cases with |a′ − b′| = 3n
2

− k′, since |a′ − b′| ≤ n − 1,178

k′ ≥
n

2
+ 1 (10)179

For equality of the two edges e, e′, apart from a′ = a, |a − b| must be equal to180

|a′ − b′|. Consequently, the cases where |a − b| = n − k and |a′ − b′| = n − k′, or181

|a −b| = 3n
2

−k and |a′ −b′| = 3n
2

−k′ are omitted, since for them |a −b| = |a′ −b′|,182

due to the fact that k = k′. The rest of the cases are investigated as follows:183

– Case 1a–2b184

a = a′ ⇒
k + 1

2
+ i − 1 =

k′ + 1

2
+ i ′ − 1 ⇒ k − k′ = 2(i ′ − i) (11)185

To prove that b = b′, we assume that b = b′ and from it we derive a non-valid186

result:187

n −
k + 1

2
+ i =

n

2
−

k′ + 1

2
+ i ′ ⇒ n = k − k′ + 2(i ′ − i)

(11)
��⇒ n = 4(i ′ − i)188

The last result is not valid:189

1 ≤ i, i ′ ≤
n

4
⇒ max{4(i ′ − i)} = 4

(n

4
− 1

)

= n − 4 < n.190

Therefore, b = b′ and, consequently, e = e′.191

– Case 1a–2c192

a = a′ ⇒
k + 1

2
+ i −1 =

k′ + 1

2
+ i ′ −1−

n

2
⇒ k −k′ = 2(i ′ − i)−n (12)193

To prove that b = b′, we assume that b = b′ and from it we derive a non-valid194

result:195

n −
k + 1

2
+ i = n −

k′ + 1

2
+ i ′ ⇒ k − k′ = −2(i ′ − i)

(12)
��⇒ n = 4(i ′ − i)196

As previously, the last result is not valid. Therefore, b = b′ and, consequently,197

e = e′.198

– Case 1a–2f199

a = a′ ⇒
k + 1

2
+ i − 1 = n −

k′

2
+ i ′ ⇒ k + k′ = 2n + 2(i ′ − i) + 1 (13)200
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To prove that b = b′, we assume that b = b′ and from it we derive a non-valid201

result:202

n −
k + 1

2
+ i =

k′ + 2

2
+ i ′ − 1 −

n

2
⇒ k + k′

203

= 3n − 2(i ′ − i) − 1
(13)
��⇒ n − 2 = 4(i ′ − i)204

As previously, the last result is not valid. Therefore, b = b′ and, consequently,205

e = e′.206

– Case 1a–2g207

a = a′ ⇒
k + 1

2
+ i − 1 =

n

2
−

k′

2
+ i ′ ⇒ k + k′ = n + 2(i ′ − i) + 1 (14)208

To prove that b = b′, we assume that b = b′ and from it we derive a non-valid209

result:210

n −
k + 1

2
+ i =

k′ + 2

2
+ i ′ − 1 ⇒ k + k′

211

= 2n − 2(i ′ − i) − 1
(14)
��⇒ n − 2 = 4(i ′ − i)212

As previously, the last result is not valid. Therefore, b = b′ and, consequently,213

e = e′.214

For brevity, the investigation of the rest of the cases is omitted; it can be easily215

verified that, using the aforementioned framework, Proposition 3 is valid for them as216

well.217

Subsequently, Proposition 3 has been proven for the PD-paths found in the upper218

half of the PM, i.e., for 1 ≤ i ≤ n
4

and 1 ≤ k ≤ n (result 3a). For the PD-paths found219

in the lower half (each one consisting of a single edge), i.e., for n
4

+ 1 ≤ i ≤ n
2

and220

k = n
2

:221

– k is even, therefore either Eqs. 3 or 4 is valid. The one that is valid is Eq. 4 since,222

min

{

n −
k

2
+ i

}

= min
{

n −
n

4
+ i

}

= min

{

3n

4
+ i

}

= n + 1 > n (15)223

– k + 1 is odd, therefore either Eqs. 1 or 2 is valid. The one that is valid is equation224

2 since,225

min

{

k + 2

2
+ (i − 1)

}

= min
{n

4
+ 1 + i − 1

}

= min
{n

4
+ i

}

=
n

2
+ 1 >

n

2
(16)226
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Therefore, the single edges e = |a − b| that constitute the paths i , n
4

+ 1 ≤ i ≤ n
2

227

are as follows:228

a ↔ b = [i][k] ↔ [i][k + 1] = [i]
[n

2

]

↔ [i]
[n

2
+ 1

]

229

=

(

n

2
−

k

2
+ i

)

↔

(

k + 2

2
+ (i − 1) −

n

2

)

=
(n

4
+ i

)

↔
(

−
n

4
+ i

)

230

Consequently, |a − b| = n
2

. According to Table 3, the edges e′ = a′ ↔ b′ =231

[i][k′] ↔ [i][k′ + 1] to be checked whether they are equal to a ↔ b can have:232

1. |a′ − b′| = n − k′. If e′ = e, then |a′ − b′| = |a − b| ⇒ n − k′ = n
2

⇒ k′ = n
2

⇒233

k′ = k. This is not possible, since for e′ = e, a′ must be equal to a, and, according234

to Proposition 2, for k′ = k, a′ = a.235

2. |a′ − b′| = | n
2

− k′|. If e′ = e, then |a′ − b′| = |a − b| ⇒ | n
2

− k′| = n
2

⇒ either236

k′ = 0 or k′ = n, both non-valid since 1 ≤ k′ ≤ n − 1.237

3. |a′ − b′| = 3n
2

− k′. If e′ = e, then |a′ − b′| = |a − b| ⇒ 3n
2

− k′ = n
2

⇒ k′ = n,238

non-valid.239

The aforementioned analysis has proven that the edges e = |a − b| that constitute240

the paths i , n
4

+ 1 ≤ i ≤ n
2

, do not exist anywhere else in the PM (result 3b).241

Results 3a, b constitute the proof of Proposition 3 ⊓⊔242

Proposition 4 Property C is valid.243

Proof According to Step GM-II244

1. Each of the paths i , 1 ≤ i ≤ n
4

, consists of n − 1 edges.245

2. Each of the paths i , n
4

+ 1 ≤ i ≤ n
2

, consists of one edge.246

Therefore, the PD consists of n
4

· (n − 1) + n
4

· 1 = n2

4
= m edges. ⊓⊔247

Step GM-IV Up to this point, the derived solution consists of n
2

paths. Since each248

path of K n
2 , n

2
can consist of at most n − 1 edges, the number of paths of an MPD is:249

⌈

n2

4

n − 1

⌉

=
n

4
+ 1 (17)250

Proof If it is proven that
n2

4
n−1

> n
4

and
n2

4
n−1

< n
4

+ 1, then it is straightforward that251

⌈
n2

4
n−1

⌉ = n
4

+ 1 .252

It is obvious that253

n2

4

n − 1
>

n2

4

n
⇒

n2

4

n − 1
>

n

4
(18)254

To prove that255

n2

4

n − 1
<

n

4
+ 1 (19)256
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we modify inequality 19 until we reach to a valid inequality:257

(19)
��⇒ n2

4(n−1)
< n

4
+ 1 ⇒ n2 <

(

n
4

+ 1
)

· 4(n − 1)⇒ n2 < (n + 4)(n − 1)258

⇒ n2 < n2 + 4n − n − 4 ⇒ 3n − 4 > 0 ⇒ n > 4
3

(20)259

Since n ≥ 4, inequality 20 is valid. Therefore, inequality 19 is valid as well. The260

validity of inequalities 18 and 19 constitutes the proof of Eq. 17, since n
4

and n
4

+ 1261

are consecutive integers. ⊓⊔262

Since the number of the derived PD-paths is larger than the minimum possible, we263

modify the PD as follows, in order to derive an MPD from it.264

Derivation of MPD from the derived PD265

– Path 1 of the MPD is equal to path 1 of the PD.266

– Paths of the MPD from 2 to n
4

are derived from the corresponding paths of the PD,267

neglecting the last edge of each one of them.268

– Path ( n
4

+ 1) of the MPD consists of the edges of the single-edge paths n
4

+ 1 to269

n
2

of the PD, and of the edges that were removed from the paths 2 to n
4

of the PD.270

Node in j th position of this path (1 ≤ j ≤ n
2

) is found in:271

– Cell [ n
4

+
j+1
2

][ n
2
] for odd j .272

– Cell [ n
4

+
j
2
][ n

2
+ 1] for even j .273

In other words, the edges that were removed from paths 2 to n
4

of the PD, are used274

to connect the edges of the single-edge paths n
4
+1 to n

2
of the PD (in increasing order275

according to the row they belong), so as to construct a single path (i.e., path ( n
4

+ 1)276

of MPD) from them. More precisely, paths i and i + 1 of the PD ( n
4

+ 1 ≤ i ≤ n
2

− 1),277

consist of the following edges, according to Eqs. 2 and 4:278

Path i consists of ai ↔ bi = [i][ n
2
] ↔ [i][ n

2
+ 1]279

=
(

n
2

− n
4

+ i
)

↔
( n

2 +2

2
+ (i − 1) − n

2

)

=
(

n
4

+ i
)

↔
(

− n
4

+ i
)

(21)280

Path i + 1 consists of a′
i ↔ b′

i =
(

n
4

+ i + 1
)

↔
(

− n
4

+ i + 1
)

(22)281

Below, it is shown that edge [i ′][n − 1] ↔ [i ′][n], 2 ≤ i ′ ≤ n
4

(which has been282

removed from path i ′ of the PD) can be used to connect the aforementioned edges283

(i ′ = i − n
4

+ 1):284

[i ′][n − 1] = k+1
2

+ (i ′ − 1) = n
2

+ (i ′ − 1) > n
2

285

⇒ [i ′][n − 1] = i ′ − 1 = (i − n
4

+ 1) − 1 = i − n
4

= bi286

[i ′][n] = n − k
2

+ i ′ = n − n
2

+ i ′ = n
2

+ (i − n
4

+ 1) = n
4

+ i + 1 = a′
i287

Under this transformation, it is obvious that properties A-C are still valid. Property288

D is also valid, since the number of MPD-paths is equal to n
4

+ 1, i.e., the minimum289

possible according to Eq. 17.290
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The following part presents an example of the proposed procedure. The PM as291

derived by Algorithm 1 is presented, as well as the derived MPD-paths.292

4.1.1 Example: path decomposition of K8,8293

The PM as derived by Algorithm 1 is given in Tables 4 and 5 gives the derived MPD-294

paths. K8,8 consists of 64 edges, and this is exactly the number of edges found in Table295

5. According to equation 17, the minimum number of decomposition paths is 5, equal296

to the number of MPD-paths found in Table 5.297

4.2 Complete Bipartite Graphs Kn1,n2
with Even n1 and 1 ≤ n2 ≤ n1 − 1298

Consider the case of the complete bipartite graph Kn1,n2 where n1 is even and299

1 ≤ n2 ≤ n1 − 1 (with n2 either odd or even). Therefore, n = n1 + n2 ≥ 3.300

The graph consists of n1 · n2 edges. The application of the general framework is as301

follows:302

Step GM-I: The PM is created using Algorithm 2. It consists of n1
2

rows and 2n2 +1303

columns.304

Table 4 PM derived by Algorithm 1 for the case of K8,8

row ↓ col → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9

2 2 9 3 16 4 15 5 14 6 13 7 12 8 11 1 10

3 3 10 4 9 5 16 6 15 7 14 8 13 1 12 2 11

4 4 11 5 10 6 9 7 16 8 15 1 14 2 13 3 12

5 5 12 6 11 7 10 8 9 1 16 2 15 3 14 4 13

6 6 13 7 12 8 11 1 10 2 9 3 16 4 15 5 14

7 7 14 8 13 1 12 2 11 3 10 4 9 5 16 6 15

8 8 15 1 14 2 13 3 12 4 11 5 10 6 9 7 16

Table 5 MPD-paths for the case of K8,8

1 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9

2 9 3 16 4 15 5 14 6 13 7 12 8 11 1

3 10 4 9 5 16 6 15 7 14 8 13 1 12 2

4 11 5 10 6 9 7 16 8 15 1 14 2 13 3

9 1 10 2 11 3 12 4
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Algorithm 2 Kn1,n2 with Even n1 and 1 ≤ n2 ≤ n1 − 1

1. Create row 1 of the PM:

(a) Place nodes 1, . . . , (n2 + 1) in odd cells, sequentially, in increasing order

(b) Place nodes (n1 + 1), . . . , n in even cells, sequentially, in increasing order

2. Create rows 2 to
n1
2 of the PM. For each cell of the row under creation:

(a) If it belongs to an odd column, add 2 to the label of the node found in the same column in the

previous row; If the resulting label is greater than n1, subtract n1 from it. Place the result in this

cell

(b) If it belongs to an even column, place the label of the node found in the same column in the

previous row

Derivation of cell content from cell coordinates305

For odd column k (odd k), node k+1
2

is placed in cell [1][k], i.e., [1][k] = k+1
2

. For306

even k, [1][k] = n1 + k
2

. The general equations for row i , 1 ≤ i ≤ n1
2

are as follows307

(n = n1 + n2):308

– For odd k,309

[i][k] =
k + 1

2
+ (2i − 2) (23)310

If [i][k] > n1 ⇒ [i][k] =
k + 1

2
+ (2i − 2) − n1 (24)311

– For even k,312

[i][k] = n1 +
k

2
(25)313

Step GM-II The complete PM is selected for the derivation of the PD. Therefore,314

the derived PD consists of n1
2

paths, and path i (1 ≤ i ≤ n1
2

) consists of the complete315

row i .316

Step GM-III Here, it is verified that properties A–C are valid for the derived PD.317

Proposition 5 Property A is valid.318

Proof It is sufficient to show that each row does not have the same node more than319

once. This is proven using mathematical induction:320

1. Prove that it is true for the first row: This is trivial, as it is an immediate result of321

the way the first row was created.322

2. Assume that it is true for the i th row.323

3. Prove that it is true for the (i + 1)th row: Let v1, v2 represent two nodes on the i th324

row (v1 = v2) and v′
1, v′

2 represent the corresponding nodes on the (i + 1)th row325

(i.e., the ones that belong to the same columns as v1, v2). The following cases are326

possible.327

– v′
1, v′

2 belong to even columns: v′
1 − v′

2 = v1 − v2 = 0 ⇒ v′
1 = v′

2.328

– v′
1, v′

2 belong to odd, even column respectively: 1 ≤ v′
1 ≤ n1, n1 + 1 ≤ v′

2 ≤329

n1 + n2 ⇒ v′
1 = v′

2. Analogously for even, odd column.330
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– v′
1, v′

2 belong to odd columns. The following cases are possible:331

– v′
1 = v1 + 2, v′

2 = v2 + 2 ⇒ v′
1 − v′

2 = v1 − v2 = 0 ⇒ v′
1 = v′

2.332

– v′
1 = v1 + 2 − n, v′

2 = v2 + 2 − n ⇒ v′
1 − v′

2 = v1 − v2 = 0 ⇒ v′
1 = v′

2.333

– v′
1 = v1 + 2 − n, v′

2 = v2 + 2 ⇒ v′
1 − v′

2 = v1 − v2 − n = 0 ⇒ v′
1 = v′

2.334

Proposition 6 Properties B and C are valid.335

Proof To prove that properties B and C are valid, it is sufficient to prove that for each336

node x , (n1 + 1) ≤ x ≤ n (which, according to Algorithm 2, can be found in even337

columns) each of the edges x ↔ y, 1 ≤ y ≤ n1 exists exactly once in the derived PD.338

In other words, to prove that for arbitrary even column k, every node z1 such that z1339

is odd and 1 ≤ z1 ≤ n1 − 1, can be found in column k − 1 exactly once, and every340

node z2 such that z2 is even and 2 ≤ z2 ≤ n1, can be found in column k + 1 exactly341

once (or vice versa).342

Consider even column k, with odd k
2

. Then the node found in row i and column343

k − 1 is k
2

+ 2i − 2 or k
2

+ 2i − 2 − n1, according to Eqs. 23 and 24. Since n1
2

rows344

exist, this means that every node z1 such that z1 is odd and 1 ≤ z1 ≤ n1 − 1, can be345

found in column k − 1 exactly once. The node found in row i and column k + 1 is346

k
2

+ 1 + 2i − 2 or k
2

+ 1 + 2i − 2 − n1. This means that every node z2 such that z2347

is even and 2 ≤ z2 ≤ n1, can be found in column k + 1 exactly once. For even k
2

, the348

opposite analysis holds ⊓⊔349

Step GM-IV Up to this point, the derived solution constitutes a PD. To verify that350

this is also an MPD, Proposition 7 is proven.351

Proposition 7 Property D is valid.352

Proof Each path can consist of at most 2n2 edges. Therefore, the minimum number353

of paths is354

n1n2

2n2
=

n1

2
(26)355

Since the derived PD consists of exactly n1
2

paths, property D is valid, i.e., the356

derived PD is also an MPD. ⊓⊔357

Note that for n2 = n1 (i.e., for the case investigated in Sect. 4.1), Algorithm 2358

cannot be applied, since in cell [1][2n2 + 1] node n2 + 1 = n1 + 1 > n1 → 1 will be359

placed, i.e., the first path will not be simple since this node will also be placed in cell360

[1][1]. The same holds for the rest of the rows.361

The following part presents illustrative examples.362

4.2.1 Examples of Algorithm 2363

Tables 6, 7, 8, 9, 10, 11 and 12 present the MPD-paths for the cases of K8,x , x =364

1, . . . , 7, as derived by Algorithm 2.365
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Table 6 MPD-paths for K8,1 as

derived by Algorithm 2 1 9 2

3 9 4

5 9 6

7 9 8

Table 7 MPD-paths for K8,2 as

derived by Algorithm 2 1 9 2 10 3

3 9 4 10 5

5 9 6 10 7

7 9 8 10 1

Table 8 MPD-paths for K8,3 as

derived by Algorithm 2 1 9 2 10 3 11 4

3 9 4 10 5 11 6

5 9 6 10 7 11 8

7 9 8 10 1 11 2

Table 9 MPD-paths for K8,4 as

derived by Algorithm 2 1 9 2 10 3 11 4 12 5

3 9 4 10 5 11 6 12 7

5 9 6 10 7 11 8 12 1

7 9 8 10 1 11 2 12 3

Table 10 MPD-paths for K8,5

as derived by Algorithm 2 1 9 2 10 3 11 4 12 5 13 6

3 9 4 10 5 11 6 12 7 13 8

5 9 6 10 7 11 8 12 1 13 2

7 9 8 10 1 11 2 12 3 13 4

Table 11 MPD-paths for K8,6

as derived by Algorithm 2 1 9 2 10 3 11 4 12 5 13 6 14 7

3 9 4 10 5 11 6 12 7 13 8 14 1

5 9 6 10 7 11 8 12 1 13 2 14 3

7 9 8 10 1 11 2 12 3 13 4 14 5

Table 12 MPD-paths for K8,7

as derived by Algorithm 2 1 9 2 10 3 11 4 12 5 13 6 14 7 15 8

3 9 4 10 5 11 6 12 7 13 8 14 1 15 2

5 9 6 10 7 11 8 12 1 13 2 14 3 15 4

7 9 8 10 1 11 2 12 3 13 4 14 5 15 6
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4.3 Complete bipartite graphs Kn1,n2
with odd n1, odd n2 and n1 = n2366

Consider the case of the complete bipartite graph Kn1,n2 where n1 and n2 are odd,367

and n1 = n2 = n
2

(i.e., Kn1,n2 = K n
2 , n

2
). For this case, n ≥ 2. The graph consists of368

n1 · n2 = n2

4
edges. The application of the general framework is as follows:369

Step GM-I: The PM is created for the initial graph G, using the proposed Algorithm370

3. This algorithm functions as Algorithm 1, with the difference that the derived PM371

consists of n
2

rows and n
2

+ 1 columns.372

Algorithm 3 Kn1,n2 with Odd n1, Odd n2 and n1 = n2

1. Create row 1 of the PM:

(a) Place nodes 1, . . . ,
n1+1

2 in odd cells, sequentially, in increasing order

(b) Place nodes (n1 +
n1+1

2 ), . . . , n in even cells, sequentially, in decreasing order

2. Create rows 2 to n
2 of the PM. Create each row from the previous one, by adding one to the label of

each node. For each cell of the row under creation:

(a) If it belongs to an odd column and the resulting label is greater than n
2 , subtract n

2 from the label

(b) If it belongs to an even column and the resulting label is greater than n, subtract n
2 from the label

Derivation of cell content from cell coordinates373

Since the PM is derived as in Algorithm 1, Eqs. 1–4 are valid.374

Step GM-II The complete PM is selected for the derivation of the PD. Therefore,375

the derived PD consists of n
2

paths, and path i (1 ≤ i ≤ n
2

) consists of the complete376

row i .377

Step GM-III Here, it is verified that properties A-C are valid for the derived PD.378

Properties A and B are valid according to the proofs of Propositions 3 and 1, since379

the PM is derived as in Algorithm 1.380

Proposition 8 Property C is valid.381

Proof Since n
2

PD-paths are derived and each one consists of n
2

edges, the total number382

of edges of the PD is equal to n
2

· n
2

= n2

4
= m. ⊓⊔383

Proposition 9 Property D is valid.384

Proof Since every node has odd degree, each node is the endpoint of at least one385

path of any path decomposition. Therefore, at least n/2 paths are needed in any path386

decomposition of the graph. This is exactly the number of paths produced by Algorithm387

3. Consequently, property D is valid and the derived PD is also an MPD. ⊓⊔388

4.3.1 Example: path decomposition of K7,7389

Table 13 presents the MPD-paths for the case of K7,7, as derived by Algorithm 3.390
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Table 13 MPD-paths for K7,7

as derived by Algorithm 3 1 14 2 13 3 12 4 11

2 8 3 14 4 13 5 12

3 9 4 8 5 14 6 13

4 10 5 9 6 8 7 14

5 11 6 10 7 9 1 8

6 12 7 11 1 10 2 9

7 13 1 12 2 11 3 10

5 Conclusions391

In the current paper, the subject of minimal path decomposition of complete bipartite392

graphs has been investigated. A path decomposition of a graph is a decomposition393

of it into paths such that every edge appears in exactly one path. If the number of394

paths is the minimum possible, the path decomposition is called minimal. Algorithms395

that derive such decompositions were presented, along with their proof of correctness,396

for the three out of the four possible cases of a complete bipartite graph. Ongoing397

research concentrates on the development of an algorithm that will provide minimal398

path decomposition for the case of complete bipartite graphs Kn1,n2 with odd n1 and399

1 ≤ n2 ≤ n1 − 1. As the three developed algorithms presented in this work cannot be400

modified in order to be able to deal with the fourth case, the exact characteristics of401

this case need to be first understood prior to the development of an algorithm for the402

fourth case as well.403
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