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Abstract 63 

The relationship between soil microbial communities and the resistance of multiple ecosystem 64 

functions (multifunctionality resistance) to global change has never been assessed globally in 65 

natural ecosystems. We collected soils from 59 dryland ecosystems worldwide to investigate the 66 

importance of microbial communities as predictor of multifunctionality resistance (C, N and P 67 

cycling) to climate change and nitrogen fertilization. Multifunctionality had a lower resistance to 68 

wetting-drying cycles than to warming or N deposition. Multifunctionality resistance was 69 

regulated by changes in microbial composition (relative abundance of phylotypes) but not by 70 

richness, total abundance of fungi and bacteria or the fungal: bacterial ratio. Our results suggest 71 

that positive effects of particular microbial taxa on multifunctionality resistance could potentially 72 

be controlled by altering soil pH. Together, our work demonstrates strong links between 73 

microbial community composition and multifunctionality resistance in dryland soils from six 74 

continents, and provide insights into the importance of microbial community composition for 75 

buffering effects of global change in drylands worldwide. 76 
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Introduction 94 

Soil microbes are the most abundant and diverse organisms on Earth (Fierer & Jackson 2006; 95 

Locey & Lennon 2016). Recent experiments and observational studies have showed that, 96 

consistent with reported observations for plant communities (Cardinale et al. 2011; Maestre et al. 97 

2012; Soliveres et al. 2016), soil microbial diversity plays an important role in maintaining 98 

multiple ecosystem functions simultaneously (i.e. multifunctionality) in terrestrial ecosystems 99 

(Philippot et al. 2013; Wagg et al. 2014; Delgado-Baquerizo et al. 2016). These functions 100 

include, but are not limited to, litter decomposition, nutrient cycling, primary production and the 101 

regulation of greenhouse emissions (Wagg et al. 2014; Philippot et al. 2013; Delgado-Baquerizo 102 

et al. 2016; Liu et al. 2017). Conversely, the role of microbial communities in regulating the 103 

resistance of multifunctionality (multifunctionality resistance hereafter) to global environmental 104 

change drivers remains largely unexplored and poorly understood (Orwin et al. 2006; de Vries et 105 

al. 2012; de Vries & Shade 2013). Identifying the major microbial drivers (composition, 106 

diversity, or abundance) of multifunctionality resistance is crucial for developing sustainable 107 

ecosystem management and conservation policies. Such knowledge will help in prioritizing 108 

future protection of microbial attributes involved in multifunctionality resistance, with 109 

implications to reduce impacts from climate change and land use intensification on terrestrial 110 

ecosystems. 111 

Existing knowledge, based mostly on the results of small-scale controlled experiments, 112 

suggests that particular soil microbial attributes (e.g. fungal: bacterial ratio) might regulate the 113 

resistance of particular ecosystem functions (e.g. soil respiration or N mineralization) to global 114 

change drivers such as land use intensification and drought (Orwin et al. 2006; Downing & 115 

Leibold 2010; de Vries et al. 2012; de Vries & Shade 2013). However, we lack direct empirical 116 

evidence to identify how multiple microbial attributes, including the abundance, richness and 117 

composition of soil bacteria and fungi, regulate the response of multifunctionality to global 118 

change drivers, particularly at the global scale. Microbial attributes such as abundance, richness 119 

and community composition could play important roles in driving multifunctionality resistance 120 

to global change (MRGC hereafter), as they constitute important regulators of microbial growth, 121 

microbial interactions and key functional attributes belonging to particular taxa (e.g. 122 

nitrification). Further, little is known about how changes in the composition of microbial 123 

communities across such scales (e.g. dissimilarity across sites; β-diversity) affect MRGC, 124 



particularly in drylands. These ecosystems already cover ~45% of Earth’s land mass (Prăvălie 125 

2016), and are expected to increase by up to 23% by the end of the 21st century due to forecasted 126 

increases in aridity under climate change (Huang et al. 2016). Achieving a better understanding 127 

of how dryland soil microbes drive MRGC is particularly important because: 1) microbial 128 

communities are highly affected by changes in aridity (Maestre et al. 2015), 2) drylands are 129 

overrepresented in developing countries (Huang et al. 2016), and 3) 38% of the global population 130 

is highly reliant on the primary production of drylands (Powell & Agnew 2011).   131 

Herein we assess the importance of soil microbial community composition and 132 

abundance for MRGC, including warming, wetting-drying cycles and N fertilization. This has 133 

never been assessed at the global scale. We aimed to do so using soils from 59 dryland 134 

ecosystems from all continents except Antarctica (Fig. 1). Soils were incubated for 21 days under 135 

different conditions to simulate expected impacts from temperature (control & 4.5ºC warming), 136 

changes in water availability (control & wetting-drying cycles) and N fertilization (control & 20 137 

kg N ha-1 year-1), which were used as proxies of two major global change drivers (climate change 138 

and N deposition; Fig. 2a). Following incubation, we measured eight soil variables (hereafter 139 

“functions”) related to carbon (starch and cellulose degradation and carbohydrate availability), 140 

nitrogen (chitin degradation and availability of nitrate and ammonium) and phosphorus (P 141 

mineralization and availability) cycling.  142 

 143 

Methods  144 

Study area and soil sampling  145 

Field data were collected between 2006 and 2014 from 59 dryland sites located in 12 countries 146 

from all continents except Antarctica (Fig. 1). All the surveyed sites had an aridity index (AI = 147 

precipitation/potential evapotranspiration) between 0.05 and 0.65 (UNEP 1992). Locations for 148 

this study were selected to cover a wide variety of natural and semi-natural ecosystem types 149 

(including grasslands, shrublands and open woodlands) representative of dryland ecosystems 150 

worldwide. Field surveys were conducted according to a standardized sampling protocol 151 

(Maestre et al. 2012). In brief, a composite topsoil (0-7.5 cm) sample (collected from five 152 

randomly selected plant interspaces) was obtained from each site and separated into two 153 

portions. One portion was air-dried and used for soil biochemical and functional analyses. The 154 

other portion of soil was immediately frozen at -20 ºC for molecular analyses. Note that previous 155 



studies have found that air drying and further storage of dryland soils from do not alter the 156 

biogeochemistry of these soils (i.e., enzyme activities and nutrient contents; Zornoza et al. 2009). 157 

Similarly, previous studies have found a small effect, or no effect from air drying and further 158 

storage of soils on the community composition of bacteria and fungi (Macdonald et al. 2008; 159 

Lauber et al. 2010). For this reason, this storage approach is generally used in large-scale surveys 160 

(e.g., Maestre et al. 2012; 2015).   161 

Environmental and physicochemical analyses.  162 

Air-dried soils were extracted in de-ionized water for 1h to achieve a 1:5 soil: water solution. 163 

Soil pH was then determined using a combination pH electrode. Total soil organic carbon (TOC) 164 

was determined using the Walkley-Black method as explained in Maestre et al. (2012). The 165 

Aridity Index (AI; mean annual precipitation/potential evapotranspiration) was determined from 166 

Zomer et al. (2008), and uses interpolations from the Worldclim database 167 

(http://www.worldclim.org). For clarity, we used aridity [1–AI] instead of AI (Delgado-168 

Baquerizo et al. 2013a). We used aridity instead of mean annual precipitation in our study 169 

because aridity includes both mean annual precipitation and potential evapotranspiration, and is 170 

therefore a more accurate metric of the long-term water availability at each site.  171 

Characterizing soil microbial communities.  172 

DNA was extracted using the Powersoil® DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, 173 

CA, USA) according to the instructions provided by the manufacturer. qPCR reactions were 174 

performed in triplicate by using 96-well plates on an ABI 7300 Real-Time PCR (Applied 175 

Biosystems). The bacterial 16S-rRNA and fungal ITS genes were amplified with the Eub 338-176 

Eub 518 and ITS 1-5.8S primer sets (Evans & Wallenstein 2011). The fungal: bacterial ratio was 177 

calculated using qPCR data. Note that calculating this ratio using qPCR may be inaccurate in 178 

terms of absolute values; however, it can still be useful for assessing its relationship with MRGC. 179 

In addition, we obtained information on the richness and composition of soil bacteria and fungi 180 

by performing 16S rRNA and ITS genes amplicon sequencing (Illumina MiSeq platform) and the 181 

341F/805R and and FITS7/ITS4 primer sets, respectively (Herlemann et al. 2011; Ihrmark et al. 182 

2012). Bioinformatic analyses were conducted using the QIIME package (See Maestre et al. 183 

2015 for analytical details). Operational Taxonomic Units (OTUs) were picked at 97% sequence 184 

similarity. The resultant OTU abundance tables from these analyses were rarefied to an even 185 

number of sequences per samples to ensure equal sampling depth (11789 and 16222 for 16S 186 



rDNA and ITS, respectively). Bacterial and fungal alpha diversity (i.e. number of phenotypes) 187 

was calculated from these OTUs tables. We also obtained the diversity (i.e. number of 188 

phenotypes) of common (the top 10% in terms of number of reads) and rare (the bottom 90%) 189 

species as described in Soliveres et al. (2016). Rare species, which are highly vulnerable to 190 

global change drivers, are being increasingly recognized as important drivers of ecosystem 191 

functioning (Jousset et al. 2017). 192 

Experimental design: soil incubations 193 

Soils were incubated to evaluate the effects of warming, changes in water availability, i.e. 194 

wetting-drying cycles, and N fertilization. In parallel, 5 g of soil from each site were placed in 195 

four plastic containers, one for each global driver plus an environmental control. The levels of 196 

the different treatments were selected to provide a realistic estimation of the response of 197 

ecosystem functioning to climate change, and land use intensification such as N fertilization 198 

from atmospheric N deposition and livestock dung in global drylands. Thus, the environmental 199 

control was incubated at 25ºC, the average land surface temperature for all sites (see 200 

https://neo.sci.gsfc.nasa.gov/), and 35% of water holding capacity (WHC). The amount of water 201 

in the control was chosen to ensure a minimum of microbial activity during the incubation period 202 

(Fig. 1 in Schwinning & Sala 2004; Delgado-Baquerizo et al. 2013b,c). The warming treatment 203 

had similar water conditions as the environmental control but with increased temperature 204 

(+4.5ºC; Fig. 2a). This temperature increase mimic global warming forecasts by the end of this 205 

century (A2 scenario from IPPC 2013). The wetting-drying treatment was incubated at the same 206 

temperature than the environmental control, but included four wetting-drying cycles. Each 207 

wetting-drying cycle involved wetting until a 35% WHC was achieved and a subsequent natural 208 

drying for five days. Soil samples were watered the first day of incubation (Fig. 2a). Rapid 209 

changes in water availability, such as those from wetting-drying cycles, are expected to increase 210 

with climate change in global drylands (IPPC 2013). Finally, the N fertilization treatment 211 

includes the same temperature and water conditions as the environmental control plus the 212 

equivalent to 20 kg N ha-1 year-1 (Fig. 2a), which were added in the form of NH4NO3 during the 213 

first watering. This amount was selected to simulate artificial N loads from N deposition and N 214 

in manure from grazing, a major driver of land degradation in drylands worldwide (Eldridge & 215 

Delgado-Baquerizo 2017). The levels applied at our study sites (Fig. 1) were predicted using 216 

published mapping information (Dentener et al. 2006; Potter et al. 2008). Moisture content was 217 



adjusted and maintained at 35% WHC during the duration of the experiment for all treatments 218 

other than the wetting-drying treatment. A total of 236 samples (59 sites x 4 treatments) were 219 

incubated under the different treatments for 21 days.  220 

Assessing multiple ecosystem functions 221 

After incubation, we measured in all soil samples eight functions related to C, N and P cycling: 222 

activity of β-glucosidase (starch degradation), β-D-celluliosidase (cellulose degradation), N-223 

acetyl-β-glucosaminidase (chitin degradation) and phosphatase (organic phosphorus 224 

mineralization) and four measurements of C (dissolved carbohydrates), N (ammonium and 225 

nitrate) and P (inorganic P) availability. Extractable carbohydrates, ammonium and nitrate were 226 

obtained from K2SO4 extracts as explained in Delgado-Baquerizo et al. (2013a). Soil P 227 

availability was estimated from sodium bicarbonate extracts as described in Maestre et al. 228 

(2012). Extracellular soil enzyme activities were measured from 1g of soil by fluorometry as 229 

described in Bell et al. (2013). Overall, these variables constitute good proxies of processes 230 

driving nutrient cycling, biological productivity, and the buildup of nutrient pools (Maestre et al. 231 

2012). In brief, carbohydrates are an essential source of energy for soil microbes and are used as 232 

an indicator of organic matter biodegradability (De Luca 1993). Extracellular enzymes such as 233 

those we measured are produced by soil microorganisms and are involved in the processing, 234 

stabilization, and destabilization of soil organic matter and nutrient cycling in terrestrial 235 

ecosystems (Bell et al. 2013). They are also considered a good indicator of nutrient demand by 236 

plants and soil microorganisms (Bell et al. 2013). Ammonium and nitrate are important N 237 

sources for both microorganisms and plants, and are produced by important ecosystem processes 238 

such as N mineralization and nitrification (Schimel & Bennett 2004). Inorganic P is the main P 239 

source for plants and microorganisms, and its availability is linked to the desorption and 240 

dissolution of P from soil minerals (Vitousek et al. 2004). We explicitly focused on the 241 

bioavailable pools of C, N and P (usually <1% of the total of their respective forms) because the 242 

total pools of these elements may not be relevant for the MRGC within our short-term incubation 243 

experiment.   244 

Assessing the resistance of multiple ecosystem functions to global change drivers 245 

We used the Orwin & Wardle (2004) index (RS) to evaluate the resistance of multiple functions 246 

as: 247 



 248 

In this equation, D0 is the difference between the environmental control (C0; value of each 249 

functional variable in the absence of global change treatments) and the disturbed (P0, warming, 250 

wetting-drying cycles and N fertilization treatments) soils after the incubation period. This index 251 

has the advantage of being: i) standardized by the control, and ii) bounded between -1 (lowest 252 

resistance) and +1 (maximal resistance) even when extreme values are encountered (Orwin & 253 

Wardle 2004). We calculated the resistance of each function independently for each global 254 

change driver. After this, and to evaluate MRGC, we averaged the resistance of the eight 255 

functions measured to obtain a standardized index of multifunctionality resistance. Similar 256 

approaches have been used to obtain multi-stability (Durán et al. 2017) and multifunctionality 257 

(Maestre et al. 2012; Wagg et al. 2014; Delgado-Baquerizo et al. 2016) indexes, as well as 258 

response ratios in meta-analysis (Eldridge & Delgado-Baquerizo 2016). Note that our study 259 

focuses on the simultaneous responses of multiple functions to global change rather than on the 260 

response of single functions that might not be representative of the overall functioning of a 261 

particular ecosystem.  262 

Statistical analyses 263 

Relationship between microbial community composition and multifunctionality resistance 264 

We first explored the overall relationship between the β diversity of microbial communities and 265 

MRGC. To do this, we calculated microbial β-diversity using Bray–Curtis dissimilarity matrices 266 

at the OTU level independently for bacterial and fungal communities. Similarly, the Euclidean 267 

distance was used to create three independent distance matrices from the resistance of eight 268 

single functions. A matrix was constructed for each of the three global environmental drivers: 269 

warming, wetting-drying cycles and N fertilization. We then independently correlated the β-270 

diversity of bacteria and fungi to the dissimilarity matrices from resistance measurements using 271 

Mantel correlations (Pearson). We also assessed all possible Mantel correlations (Pearson) 272 

among resistance multifunctionality to warming, drying-wetting cycles and N fertilization. 273 

Random Forest modeling  274 

To gain a mechanistic understanding of the drivers of MRGC, we conducted a classification 275 

Random Forest analysis (Breiman 2001) as described in Delgado-Baquerizo et al. (2016), which 276 

allowed us to identify common microbial predictors across sites. We used class-level information 277 



in these analyses for two main reasons (1) information on microbial functional traits has become 278 

increasingly available at this taxonomic level (Fierer et al. 2007; Trivedi et al. 2013); and (2) 279 

unlike high taxonomic rank information (OTU/genus), class-level taxa are shared across all soil 280 

samples at the global scale, allowing us to infer general patterns in the role of microbial 281 

composition in predicting MRGC at this spatial scale. In addition to class-level predictors, we 282 

included in our models other microbial attributes such as abundance (qPCR), fungal: bacterial 283 

ratio and alpha diversity (richness of all, common and rare fungi and bacteria). The importance 284 

and statistical significance of each predictor were computed using the rfPermute package (Archer 285 

2016) of the R statistical software, version 3.0.2 (http://cran.r-project.org/). We also used 286 

Spearman correlations between selected major microbial attributes from Random Forest analyses 287 

and the resistance of single functions to global change. The aim of this approach was to obtain 288 

insights into the relationships between the relative abundance of particular microbial taxa and the 289 

resistance of specific functions, complementing results from MRGC analyses.  290 

Structural equation modeling  291 

We used structural equation modeling (SEM; Grace 2006) to evaluate the direct and indirect 292 

relationships between geographical location (latitude and longitude), aridity, soil properties (pH 293 

and soil total organic carbon) and microbial attributes on MRGC based on expectations under an 294 

a priori model (Fig. S1). Microbial drivers included pre-selected major significant MRGC 295 

predictors from Random Forest analyses described above. Aridity and soil properties such as 296 

total organic carbon and pH are major drivers of microbial community composition in drylands 297 

(Fierer & Jackson 2006; Fierer et al. 2012; Maestre et al. 2015). These same drivers have been 298 

reported to strongly influence multifunctionality in global drylands (Delgado-Baquerizo et al. 299 

2016). Geographical location was included in our models to control for spatial autocorrelation 300 

(Delgado-Baquerizo et al. 2013a). In our study, aridity does not represent a lack of available 301 

water because soils were watered during incubation. Rather, we included it to illustrate the 302 

legacy effects of aridity on soil properties and microbial communities. Microbial drivers and 303 

geographical location were included as composite variables in the SEM. The use of composite 304 

variables does not alter the underlying SEM model, but collapses the effects of multiple 305 

conceptually-related variables into a single composite effect, aiding to interpret model results 306 

(Grace 2006). 307 



As some of the variables introduced were not normally distributed, the probability that a 308 

path coefficient differs from zero was tested using bootstraping. Bootstrapping is preferred to the 309 

classical maximum-likelihood estimation in these cases because probability assessments are not 310 

based on the assumption that the data conform to a specific theoretical distribution. Bootstrapped 311 

data were randomly sampled, with replacement, to derive estimates of standard errors associated 312 

with the distribution of the sample data. Following these data manipulations, we parameterized 313 

our model and tested its overall goodness-of-fit. There is no single universally accepted test of 314 

overall goodness-of-fit for SEM (Schermelleh-Engel et al. 2003). We used three metrics to 315 

quantify the goodness of fit of our model: (1) Chi-square test (χ2; the model has a good fit when 316 

0 ≤ χ2/df ≤ 2 and 0.05 < P ≤ 1.00) (Schermelleh-Engel et al. 2003), (2) The root mean square 317 

error of approximation (RMSEA; the model has a good fit when 0 ≤ RMSEA ≤ 0.05 and 0.10 < P 318 

≤ 1.00) (Schermelleh-Engel et al. 2003) and (3) Bollen-Stine bootstrap test (the model has a 319 

good fit when 0.10 < Bollen-Stine bootstrap P-value ≤ 1.00). The different goodness-of-fit 320 

metrics used indicate that our a priori model was satisfactorily fitted to our data, and thus no post 321 

hoc alterations were made. 322 

Finally, to aid interpretation of the SEM, we calculated the standardized total effects 323 

(STEs) of geographical location (latitude and longitude), aridity, soil properties (pH and soil total 324 

organic carbon) and microbial attributes on MRGC. The STEs, the net influence that one 325 

variable has upon another is calculated by summing all direct and indirect pathways between the 326 

two variables. If the model fits the data well, the total effect should approximate the bivariate 327 

correlation coefficient for that pair of variables. 328 

 329 

Results  330 

On average, multifunctionality showed the lowest and highest resistance values to wetting-drying 331 

cycles and N fertilization, respectively (Fig. 2b; P < 0.001). The resistance of single functions to 332 

global change drivers followed similar patterns to those observed for MRGC (Table S1; Fig. S2). 333 

Mantel tests revealed that the more similar the microbial communities between two sites, i.e. the 334 

more similar their β-diversity, the more similar their functional resistance to warming, wetting-335 

drying cycles and N fertilization is (Fig. 3; P < 0.05). Interestingly, we also found significant 336 

positive relationships among multifunctionality resistance to warming and to wetting-drying 337 

cycles and N fertilization (Fig. S2; P < 0.05). Conversely, we failed to find any significant 338 



relationship between the richness of fungi and bacteria and MRGC (Table S2). The abundance of 339 

bacteria was positively related (Spearman ρ = 0.26; P = 0.05) to multifunctionality resistance to 340 

warming (Table S2).  341 

In general, the composition of fungi and bacteria were selected over other microbial 342 

drivers as the main predictors of MRGC (Fig. S3). We found that a relatively small proportion of 343 

bacterial and fungal taxa (2-10%) were major drivers of MRGC in our studied drylands (Fig. 344 

S3). Microbial attributes selected by Random Forest analyses as major predictors of MRGC were 345 

also significantly correlated with the resistance of single functions to the global change drivers 346 

evaluated (Table S3). The fungal: bacterial ratio was never selected as a major predictor of 347 

MRGC by our Random Forest models. Even so, we still found a positive correlation between this 348 

ratio and the resistance of particular functions such as nitrate (Spearman ρ = 0.27; P = 0.04) and 349 

carbohydrate availability (Spearman ρ = 0.23; P = 0.08).  350 

Our SEM analyses provided further evidence that microbial taxa can have both positive 351 

and negative effects on MRGC via direct effects and that these effects are maintained after 352 

accounting for important drivers of soil microbial communities and ecosystem multifunctionality 353 

(Fig. 4; Appendix S1; Table 1). For example, the relative abundance of class Saprospirae 354 

(Bacteroidetes) was negatively related to the resistance of multifunctionality and labile C 355 

availability to warming (Fig. 4 and Tables 1 and S3). Conversely, the relative abundance of the 356 

classes Solibacteres and Spartobacteria (phyla Acidobacteria and Verrucomicrobia) were both 357 

positively related to the resistance of multifunctionality and starch degradation to drying-wetting 358 

cycles and warming, respectively (Fig. 4, Table 1; Appendix S1). Selected examples of specific 359 

effects from microbial taxa on MRGC are given in Table 1 and explained in detail in Appendix 360 

S1.  361 

We also found that, compared with geographical location, soil carbon and aridity, only 362 

pH had a consistently net positive effect on MRGC (Fig. 4). This was an indirect effect driven 363 

via changes in the soil microbial composition induced by this variable (Fig. 4). For example, pH 364 

had a negative direct effect on the relative abundance of Spartobacteria and Saprospira, which 365 

were both negatively related to multifunctionality resistance to warming (Fig. 4; Table 1). 366 

Moreover, soil pH had a positive effect on the class Gitt-GS-136, which promotes 367 

multifunctionality resistance to drying-wetting cycles, and negatively related to the class 368 

Solibacteres, which reduced multifunctionality resistance to wetting-drying cycles (Fig. 4; Table 369 



1). Finally, pH had a positive effect on the relative abundance of class Fibrobacteria, which 370 

increased the resistance of multifunctionality to N fertilization (Fig. 4; Table 1).  371 

 372 

Discussion  373 

Our study provides strong evidence for a link between the composition of bacterial- and fungal-374 

communities and multifunctionality resistance to warming and fertilization in dryland soils from 375 

across the globe. Most importantly, we identified particular microbial taxa that are likely to be 376 

major drivers of the resistance of multifunctionality to these major global change drivers. In the 377 

short-term –while improvements in microbial isolation and culturing techniques take place–, our 378 

results suggest that MRCG could be promoted by altering soil properties such as pH, a major 379 

driver of microbial community composition (Fierer & Jackson 2006; Lauber et al. 2009). 380 

Notably, multifunctionality had a lower resistance to wetting-drying cycles than to warming or N 381 

deposition. This is an interesting point, as we should expect that wetting-drying cycles are the 382 

disturbances that these dryland soils are more likely to be adapted to. However, our results 383 

accord with the largely accepted notion that water availability is the principal driver of 384 

ecosystem functioning in drylands (Maestre et al. 2012). It further indicates that more intense 385 

wetting-drying cycles will reduce MRGC in drylands worldwide (Evans and Wallenstein 2014). 386 

Overall, our work provides new insights into the importance of microbial composition for 387 

buffering the negative effects of global change drivers. 388 

Interestingly, we also detected significant positive relationships between 389 

multifunctionality resistance to warming and to wetting-drying cycles and N fertilization, 390 

suggesting some commonalities in the processes driving MRGC across the globe (Fig. S3). The 391 

importance of soil microbial communities as drivers of multifunctionality is supported by a 392 

number of small-scale experiments showing that total abundance of microbes controls the 393 

resistance of particular functions such as soil respiration or N mineralization to drought (de Vries 394 

et al. 2012; de Vries & Shade 2013; Downing & Leibold 2010). However, to the best of our 395 

knowledge, our results provide the first empirical evidence, based on experimental manipulation, 396 

that microbial community composition and multifunctionality resistance are linked at the global 397 

scale. Our findings indicate, therefore, that microbial community composition can be critical for 398 

maintaining MRGC, and that changes in this composition resulting from land use intensification 399 



(Gossner et al. 2016) or climate change (Maestre et al. 2015) will likely alter the resistance of 400 

critical ecosystem functions to global change drivers in drylands across the globe.  401 

Our Random Forest analysis allowed us to identify particular microbial taxa (class level) 402 

as major predictors of MRGC over other microbial attributes such as abundance, diversity and 403 

fungal: bacterial ratio. In particular, we found that a relatively small proportion of bacterial and 404 

fungal taxa (2-10%) were major drivers of MRGC. These included specific classes within phyla 405 

Verrucomicrobia, Bacteroidetes, Chloroflexi, Acidobacteria, Firmicutes and Ascomycota, which 406 

are globally distributed (Ramirez et al. 2014; Maestre et al. 2015). The same microbial taxa were 407 

also correlated with the resistance of single functions to global change (Table S2). These results 408 

imply that different microbial drivers govern multifunctionality and MRGC in dryland soils 409 

worldwide. Thus, while multifunctionality per se is likely to be driven by multiple microbial 410 

attributes (Appendix S2; Figs. S4 and S5), the effects of microbial attributes on MRGC are 411 

mostly limited to those from microbial composition via key microbial taxa. These results are 412 

consistent with novel soil ecological theories suggesting that key microbial taxa may control the 413 

resistance of soil functioning to global change (de Vries & Shade 2013). Conversely, we failed to 414 

find any significant relationship between abundance and richness (rare and common species) of 415 

fungi and bacteria and MRGC. Similarly, our results further suggest that the fungal:bacterial 416 

ratio, previously suggested to be a major predictor of ecosystem functions (de Vries et al. 2012), 417 

may be a poor predictor of MRGC. Note that, unlike de Vries et al. (2012), we used a qPCR 418 

approach to calculate the fungal: bacterial ratio. Thus, we would like to acknowledge that the use 419 

of different methods might also partially explain differences between de Vries et al. (2012) and 420 

our results. Nevertheless, we still found a positive correlation between this ratio and the 421 

resistance of particular functions such as nitrate, a proxy for nitrification rates, and carbohydrate 422 

availability. This finding supports results of a previous study demonstrating strong relationships 423 

between the fungal:bacterial ratio, and both N mineralization and soil respiration (de Vries et al. 424 

2012).  425 

Our SEM revealed a direct and significant relationship between the composition of 426 

microbial communities and MRGC after accounting for multiple drivers of this resistance. These 427 

results further support the notion that key microbial taxa play critical roles in supporting MRGC 428 

in dryland soils worldwide. We found that different microbial taxa were involved in the 429 

multifunctionality resistance of each global change factor. Given that multiple global change 430 



drivers will occur simultaneously, our results suggest that preserving the diversity of soil 431 

microbial communities may be crucial to sustain the provision of ecosystem services in the 432 

future. Furthermore, we found both direct positive and negative effects from particular taxa on 433 

MRGC. We argue that many of the effects can be understood by drawing on our current 434 

knowledge of soil microbial communities. Of special interest is the role that microbial life-435 

strategy (i.e., r- vs. k- strategists) might play in driving MRGC, with special references to C 436 

cycling (de Vries & Shade 2013). For example, the relative abundance of class Saprospirae 437 

(Bacteroidetes), classified as r-strategist or copiotrophs (Fierer et al. 2007) directly and 438 

negatively affected multifunctionality resistance and labile C availability resistance to warming, 439 

presumably due to their rapid growth. Conversely, the greatest net negative effect of a microbial 440 

taxon on the resistance of multifunctionality (i.e., to wetting-drying cycles) came from 441 

Solibacteres (Fig. 4; Table 1), which was positively related to functions associated with the C 442 

cycle (e.g. starch degradation) but negatively related to functions from N cycle (e.g. chitin 443 

degradation and N availability; Table S3). The positive effect of Solibacteres on the resistance of 444 

labile C mineralization is consistent with results from previous studies suggesting that 445 

oligotrophic communities (sensu Fierer et al. 2007; Trivedi et al. 2013) promote the resistance of 446 

functions related to C cycle (de Vries & Shade 2013). The negative effect of class Solibacteres 447 

may be related to the necessity of certain bacteria to immobilize/release large amounts of N in 448 

osmolytic forms to survive desiccation in response to wetting-drying cycles (Schimel & Balser 449 

2007; Tables 1 and S3; de Vries & Shade 2013). The resistance of starch degradation appears to 450 

behave differently to the other functions. Thus, microbial taxa that are positively correlated with 451 

the resistance of starch degradation seem to be negatively correlated with the resistance of other 452 

functions. This intriguing result suggests that C preferences from microbial communities (labile 453 

vs. more recalcitrant) might influence the resistance of particular ecosystem functions to global 454 

change drivers.  455 

Our SEM analyses further suggested that by adjusting soil pH we could potentially 456 

unleash the positive effects of microbial community composition on MRGC. Thus, pH was the 457 

only environmental predictor having a consistent net positive effect on MRGC either by 458 

suppressing or promoting taxa that were negatively (Spartobacteria, Saprospira and Solibacteres) 459 

and positively (Gitt-GS-136 and Fibrobacteria) related to MRGC, respectively. The importance 460 

of soil pH as a major driver of the composition of bacterial and fungal communities in terrestrial 461 



ecosystems is well known (Fierer & Jackson 2006; Lauber et al. 2009). However, our study 462 

provides evidence, for the first time, that soil pH also indirectly regulates the effects of microbial 463 

community composition on MRGC. These results have implications for the understanding and 464 

management of MRGC in the field, as they suggest that we could still potentially increase 465 

MRGC by changing soil pH, thereby driving the composition of soil microbial communities in a 466 

specific direction. Future endeavors exploring the role of microbial composition in driving 467 

multifunctionality resistance may further test this hypothesis using experimental approaches 468 

including soil pH manipulations.  469 

Altogether, we found a strong link between soil bacterial and fungal communities and 470 

MRGC in soils from global drylands. Our results suggest that key microbial taxa, rather than the 471 

richness, abundance and the ratio of bacteria and fungi, control MRGC. They also point to the 472 

potential role that manipulations in soil pH could have to buffer negative effects of global change 473 

drivers on multifunctionality resistance. Our findings imply that climate- and/or management-474 

induced changes in the composition of soil bacterial and fungal communities may alter 475 

multifunctionality resistance, with concomitant effects on the provision of key ecosystem 476 

services than rely on them.   477 
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Figure 1. Locations of the 59 sites included in this study. 646 
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 659 

Figure 2. (a) Methodological framework explaining the conditions in all experimental treatments 660 

used. (b) Effects of warming, wetting-drying cycles and N fertilization on the multifunctionality 661 

resistance of dryland soils from across the globe.  Data are means ± SE (n = 59).  662 
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 679 

Figure 3. Relationship between community dissimilarity for community composition of bacteria 680 

and fungi and multifunctionality resistance to warming, wetting-drying cycles and N fertilization 681 

in soils from global drylands. The solid lines represent the fitted linear regressions. 682 
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 687 

Figure 4. Structural equation model describing the effects of multiple drivers on 688 

multifunctionality resistance to warming, wetting-drying cycles and N fertilization. Numbers 689 



adjacent to arrows are indicative of the effect size of the relationship. For simplicity, only 690 

significant direct effects are plotted (P < 0.05; see a priori model in Fig. S1). (P < 0.05; see a 691 

priori model in Fig. S1). Brackets includes information of the particular taxa related to MRGC. 692 

R2 denotes the proportion of variance explained. Significance levels of each predictor are *P < 693 

0.05, **P < 0.01. Bar graphs include total standardized effects (sum of direct and indirect 694 

effects) from SEM on multifunctionality resistance to warming, wetting-drying cycles and N 695 

fertilization. Grey lines represent tested, but not significant, paths. 696 
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Table 1. Selected examples of the positive and negative effects of differential microbial drivers 721 

on the resistance of multiple and single ecosystem functions. This table is derived from results in 722 

Fig. 4 and Table S2. An extended version of these examples with further explanations is 723 

available in Appendix S1. 724 

Global change 
driver Microbial driver Effect Function Microbial trait 

Temperature 
 
 
 
 
 
 

Lychinomycetes 

 Multifunctionality, 
NH4

+ availability, P 
mineralization 

Ascomycota. Dominant phylum 
in dry environments. Highly 

adapted to extreme temperatures 
conditions  

(physical protection) Pezizomycetes 
 

P mineralization 

Spartobacteria 
 

 Starch degradation (+)  
Multifunctionality, 

Chitin degradation & 
P mineralization (-) 

Verrucomicrobia – 
Saccharolytic.  Oligotroph: slow 

C cycling. 

Saprospirae 
 
 

 Multifunctionality, 
Labile C availability,  
Chitin degradation & 

P mineralization 
Bacteroidetes – copiotroph: fast 

C cycling.  

Wetting-
drying cycles 

 
 
 
 
 
 
 
 
 
 

Gitt-GS-136  
 

 

 Multifunctionality, 
Labile C availability, 
cellulose and chitin 

degradation & NH4+ 
and NO3- availability 

(+) 
Starch degradation (-)  

Chloroflexi – Prefer dry to humid 
ecosystems. Structural 

adaptations to desiccation. 
Resistant– life strategy vs. 

wetting-drying cycles. Slow-
growing bacteria. 

 
  TK17 

 Multifunctionality, 
NH4+ availability (+) 
& Starch degradation 

(-) 

Solibacteres 
 
 
 

 

 Starch degradation 
(+), 

Multifunctionality, 
chitin degradation & 

NH4+ and NO3- 
availability (-) 

 
 

Acidobacteria – Prefer humid to 
dry ecosystems. Oligotroph: slow 

C cycling. May need to 
immobilize/release large 

amounts of N (in osmolytes) to 
survive desiccation  

N fertilization 
 

 
 

Fibrobacteria 

 Multifunctionality, 
NH4+ and P 
availability 

Obligatory anaerobic. Slow-
growing bacteria in dry 

conditions. 

Pezizomycetes 
 

 Multifunctionality, 
Starch degradation 

 

Dryland fungi – N use efficiency. 
Use N to produce C degradation 

enzymes.  
 725 
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Supplementary figure captions 730 

Figure S1. A priori structural equation model including direct and indirect effects of 731 

geographical location, aridity, soil properties and microbial communities on the resistance of 732 

multifunctionality to global change. 733 

Figure S2. Effects of warming, wetting-drying cycles and N fertilization on the resistance of 734 

eight single functions to global change. Data are means ± SE (n = 59). 735 

Figure S3. Relationship between the matrix of dissimilarity (Euclidean) from multifunctionality 736 

resistance to warming, wetting-drying cycles and N fertilization in global drylands. The solid 737 

lines represent the fitted linear regressions. 738 

Figure S4. Results from a Random Forest aiming to identify the main significant (P < 0.05) 739 

microbial predictors of multifunctionality resistance to warming, wetting-drying cycles and N 740 

fertilization in global drylands. Pie chart includes the relative abundance of selected taxa driving 741 

multifunctionality resistance to global change drivers in dryland soils from across the globe.  742 

Figure S5. (a) Results from a Random Forest aiming to identify the main significant (P < 0.05) 743 

microbial predictors of multifunctionality in global drylands. (b) Pie chart includes the relative 744 

abundance of selected taxa driving multifunctionality in global drylands. (c) Structural equation 745 

model describing the effects of multiple drivers on multifunctionality. Numbers adjacent to 746 

arrows are indicative of the effect size of the relationship. Continuous and dashed arrows 747 

indicate positive and negative relationships, respectively. This model only includes the direct 748 

effects that were statistically significant (P < 0.05; see a priori model in Fig. S1). Brackets 749 

includes information of the particular taxa related to multifunctionality resistance to global 750 

change. R2 denotes the proportion of variance explained. Significance levels of each predictor are 751 

*P < 0.05, **P < 0.01.  752 
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Appendix S1. Selected examples on specific effects from microbial taxa on MRGC. 791 

Fungal classes Lychinomycetes and Pezizomycetes, highly adapted to extreme temperatures via 792 

physical protection (Paul 2015), had the highest net positive effect on multifunctionality 793 

resistance, and that of activity of phosphatase and/or ammonium availability to warming (Table 794 

1; Table S2). Saprospirae, however, always had a significant negative effect on the resistance of 795 

multiple and single functions to changes in temperature (Fig. 4; Table 1). These results are in 796 

agreement with the notion that the resistance of soil functioning may decrease with increasing 797 

relative abundance of r-strategists (i.e., copiotrophs), such as those from phylum Bacteroidetes, 798 

vs. k-strategist (oligotrophs, Table 1, Fierer et al. 2007; Trivedi et al. 2013; de Vries & Shade 799 

2013).  800 

Chloroflexi classes Gitt-GS-136 and TK17, highly resistant to desiccation and wetting-801 

drying cycles (Battistuzzi & Hedges 2009; Barnard et al. 2013), had the highest net positive 802 

effect on the resistance of multiple and single ecosystem functions to wetting-drying cycles (Fig. 803 

4; Tables 1 and S2).  804 

Finally, the bacteria class Fibrobacteria had the highest positive effect on 805 

multifunctionality resistance to N fertilization (Fig. 3; Table 1), as well as positive effects on the 806 

resistance of N and P availability (Table S1). These organisms are obligate anaerobes (Rahman 807 

et al. 2015), and presumably have a slow growth dynamics in drylands. Because of this, this class 808 

might immobilize both N and P during prolonged dry periods (Schimel & Balser 2007) 809 

promoting the stability of N and P cycles. On the contrary, the fungi class Pezizomycetes had the 810 

highest negative microbial effect on multifunctionality resistance and that of starch and cellulose 811 

degradation to N fertilization (Fig. 4c; Tables 1 and S1). This class might use N from fertilization 812 

to produce enzymes (N-rich molecules) aiming to decompose soil organic matter, reducing the 813 

stability of soil C cycle in response to N additions (Austin et al. 2004).  814 

 815 

Appendix S2. Identifying major microbial drivers of multifunctionality.  816 

Using the control treatment and information on eight soil functions (activity of β-glucosidase, 817 

cellobiosidase, N-Acetylglucosamine and phosphatase and carbohydrates, ammonium, nitrate 818 

and inorganic P), we calculated a multifunctionality index (Maestre et al. 2012). To obtain an 819 

averaging multifunctionality index for each sample, we first normalized (log-transformed when 820 

needed) and standardized each of our eight ecosystem functions using the Z-score transformation 821 



as described in Maestre et al. (2012). Following this, the standardized ecosystem functions were 822 

averaged to obtain a multifunctionality index (Maestre et al. 2012). We then repeated analyses 823 

explained in the Methods section including Random Forest and Structural equation modeling to 824 

identify the major microbial drivers of multifunctionality. These analyses are independent to 825 

those from Delgado-Baquerizo et al. (2016), as here, we used functions measured in the 826 

treatment controls for this incubation experiment. Our Random Forest model (Fig. S4) supported 827 

the results from Delgado-Baquerizo et al. (2016), further suggesting that richness of bacteria and 828 

fungi are major drivers of multifunctionality in global drylands. In particular, our SEM results 829 

(Fig. S4) indicate that richness from common bacteria (calculated following Soliveres et al. 830 

2016) and richness from all fungi positively relate to multifunctionality. In addition, our Random 831 

Forests selected other microbial attributes –not included in Delgado-Baquerizo et al. (2016)– as 832 

major drivers of multifunctionality including bacterial and fungal total abundance and the fungal: 833 

bacterial ratio –all of them positively related to multifunctionality– and bacterial and fungal 834 

composition –with both positive (e.g. Ktedonobacteria) and negative (e.g. Solibacteres) effects 835 

on multifunctionality–. Our SEM results further suggested that all effects from soil carbon, pH, 836 

aridity, latitude and longitude on multifunctionality are indirectly driven via changes in microbial 837 

community attributes; being soil organic C the environmental driver with the highest total 838 

positive effect (sum of directs and indirect effects from SEM) (Fig. S4).  839 
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 849 



Table S1. Spearman correlations between the resistance of multifunctionality and that from eight 850 

single functions to warming, wetting-drying cycles and N fertilization. P values below 0.05 are 851 

in bold. BG = β-glucosidase activity; CB = β-D-celluliosidase activity; PHOS = Phosphatase 852 

activity; NAG = N-acetyl-β-Glucosaminidase activity. 853 

 854 

  Resistance of multifunctionality 
Resistance of Parameters Warming Wetting-Drying N fertilization 
Carbohydrates ρ 0.510 0.685 0.572 

P value <0.001 <0.001 <0.001 
Ammonium ρ 0.533 0.473 0.490 

P value <0.001 <0.001 <0.001 
Nitrate ρ 0.565 0.473 0.160 

P value <0.001 <0.001 0.226 
Available P ρ 0.097 0.361 0.421 

P value 0.465 0.005 0.001 
CB ρ 0.276 0.416 0.099 

P value 0.034 0.001 0.457 
BG ρ -0.090 -0.079 0.191 

P value 0.498 0.554 0.148 
NAG ρ 0.298 0.502 0.330 

P value 0.022 <0.001 0.011 
PHOS ρ 0.548 0.261 0.256 

P value <0.001 0.046 0.051 
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Table S2. Spearman correlations between microbial abundance, diversity and the fungal: 868 

bacterial ratio and multifunctionality resistance to warming, wetting-drying cycles and N 869 

fertilization.  870 

 871 

Microbial drivers Parameter Warming Wetting-drying cycles N fertilization 
Fungal abundance ρ 0.204 0.128 -0.048 

P-value 0.122 0.334 0.719 
Bacterial abundance ρ 0.256 0.095 -0.177 

P-value 0.051 0.473 0.181 
Fungal: bacterial ratio ρ -0.103 0.059 0.079 

P-value 0.436 0.658 0.553 
Richness all bacteria ρ 0.184 0.008 -0.076 

P-value 0.163 0.951 0.565 
Richness rare bacteria ρ 0.017 -0.129 -0.12 

P-value 0.896 0.328 0.367 
Richness common bacteria ρ 0.215 0.051 -0.048 

P-value 0.103 0.7 0.72 
Richness all fungi ρ 0.118 0.03 -0.132 

P-value 0.371 0.823 0.317 
Richness rare fungi ρ 0.063 -0.023 -0.118 

P-value 0.637 0.86 0.375 
Richness common fungi ρ 0.144 0.098 -0.095 

P-value 0.276 0.462 0.474 
 872 
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Table S3. Spearman correlations between selected microbial variables from Random Forest 885 

analyses and the resistance of eight single functions to warming, wetting-drying cycles and N 886 

fertilization. P values below 0.05 are in bold. BG = β-glucosidase activity; CB = β-D-887 

celluliosidase activity; PHOS = Phosphatase activity; NAG = N-acetyl-β-Glucosaminidase 888 

activity.  889 

 890 

Global change 
drivers Microbial variable Parameter BG Carbohydrates CB NAG 

Ammoniu
m Nitrate PHOS Available P 

Warming Pezizomycetes ρ -0.099 0.107 -0.068 0.201 0.433 0.249 0.34 -0.031 

P-value 0.456 0.42 0.611 0.127 0.001 0.057 0.008 0.816 

Spartobacteria ρ 0.397 -0.205 0.002 -0.57 -0.148 -0.141 -0.268 -0.021 

P-value 0.002 0.119 0.990 <0.001 0.263 0.285 0.040 0.877 

Saprospirae ρ 0.239 -0.263 0.094 -0.301 -0.219 -0.049 -0.407 -0.037 

P-value 0.069 0.044 0.478 0.021 0.096 0.711 0.001 0.778 

Bacilli ρ 0.15 -0.184 -0.042 -0.327 -0.267 -0.146 -0.154 0.069 

P-value 0.258 0.164 0.75 0.012 0.041 0.271 0.243 0.606 
Bacterial 

abundance ρ -0.198 0.142 -0.09 0.162 0.211 0.318 -0.016 -0.064 

P-value 0.133 0.282 0.498 0.22 0.108 0.014 0.904 0.632 

TK17 ρ -0.192 0.079 -0.187 0.41 -0.042 -0.106 0.414 0.105 

P-value 0.145 0.552 0.156 0.001 0.754 0.424 0.001 0.429 

Sphingobacteriia ρ 0.15 -0.296 -0.021 -0.102 -0.24 -0.051 -0.241 -0.119 

P-value 0.258 0.023 0.872 0.442 0.067 0.701 0.066 0.37 

S085 ρ -0.505 0.265 -0.191 0.42 0.176 0.206 0.104 0.097 

P-value <0.001 0.043 0.148 0.001 0.183 0.117 0.435 0.465 

Chloroplast ρ -0.087 0.037 -0.329 0.079 -0.105 -0.097 0.045 -0.041 

P-value 0.512 0.778 0.011 0.551 0.427 0.464 0.736 0.761 

Lichinomycetes ρ 0.141 0.024 0.06 -0.044 0.09 -0.043 0.31 -0.075 

P-value 0.286 0.857 0.652 0.742 0.496 0.746 0.017 0.574 

Dehalococcoidetes ρ -0.174 -0.028 -0.135 0.099 -0.055 -0.004 -0.091 0.059 

P-value 0.187 0.835 0.309 0.456 0.677 0.976 0.493 0.655 

Wetting-Drying Solibacteres ρ 0.542 -0.178 -0.078 -0.337 -0.575 -0.561 0.177 -0.109 

P-value <0.001 0.176 0.557 0.009 <0.001 <0.001 0.181 0.413 

Gitt.GS.136 ρ -0.425 0.361 0.258 0.428 0.356 0.363 0.012 0.166 

P-value 0.001 0.005 0.048 0.001 0.006 0.005 0.926 0.209 

SHA.37 ρ 0.474 -0.258 -0.28 -0.456 -0.608 -0.358 0.034 0.014 

P-value <0.001 0.049 0.032 <0.001 <0.001 0.005 0.796 0.918 



Thermomicrobia ρ -0.476 0.097 0.236 0.454 0.328 0.413 -0.134 0.295 

P-value <0.001 0.467 0.072 <0.001 0.011 0.001 0.311 0.023 

C0119 ρ 0.371 -0.3 -0.1 -0.272 -0.252 -0.295 0.032 -0.198 

P-value 0.004 0.021 0.453 0.037 0.054 0.023 0.810 0.133 
Richness common 

bacteria ρ -0.367 -0.04 0.039 0.116 0.369 0.345 0.009 -0.197 

P-value 0.004 0.764 0.769 0.381 0.004 0.007 0.948 0.134 

Elusimicrobia ρ 0.22 -0.096 -0.061 -0.169 -0.135 -0.281 -0.032 -0.306 

P-value 0.094 0.469 0.646 0.202 0.309 0.031 0.809 0.019 

PRR.12 ρ 0.113 0.119 0.031 0.019 0.187 0.094 0.119 -0.174 

P-value 0.395 0.369 0.817 0.886 0.155 0.480 0.371 0.187 

TM7.1 ρ 0.299 -0.132 -0.1 -0.128 -0.394 -0.333 0.028 -0.199 

P-value 0.022 0.320 0.453 0.333 0.002 0.010 0.830 0.130 

Mollicutes ρ -0.246 -0.222 -0.167 0.093 0.060 0.047 0.039 -0.164 

P-value 0.060 0.091 0.207 0.484 0.650 0.726 0.77 0.216 

TK17 ρ -0.281 0.245 0.096 0.212 0.335 0.233 -0.102 0.207 

P-value 0.031 0.062 0.471 0.108 0.010 0.076 0.441 0.115 
Monoblepharidom

ycetes ρ 0.287 -0.084 0.015 -0.148 -0.381 -0.481 -0.197 -0.051 

P-value 0.028 0.526 0.909 0.262 0.003 <0.001 0.134 0.703 

Pucciniomycetes ρ 0.135 -0.142 -0.091 -0.135 0.086 -0.086 0.058 0.056 

P-value 0.307 0.283 0.495 0.309 0.518 0.515 0.66 0.674 

ABS.6 ρ 0.537 -0.095 -0.516 -0.24 -0.537 -0.3 0.27 -0.091 

P-value <0.001 0.473 <0.001 0.067 <0.001 0.021 0.039 0.494 

SJA.176 ρ 0.352 -0.067 -0.212 -0.207 -0.368 -0.16 0.077 -0.33 

P-value 0.006 0.614 0.107 0.115 0.004 0.226 0.56 0.011 

N fertilization Fibrobacteria ρ -0.119 0.162 -0.186 -0.066 0.264 0.096 -0.159 0.252 

P-value 0.371 0.222 0.159 0.619 0.043 0.468 0.23 0.055 

Pezizomycetes ρ -0.263 0.082 -0.233 -0.192 -0.019 -0.096 -0.215 -0.112 

P-value 0.044 0.537 0.076 0.145 0.886 0.471 0.103 0.398 
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 902 

Figure S1. A priori structural equation model including direct and indirect effects of 903 

geographical location, aridity, soil properties and microbial communities on the resistance of 904 

multifunctionality to global change. 905 

 906 



 907 

 908 

Figure S2. Effects of warming, wetting-drying cycles and N fertilization on the resistance of 909 

eight single functions to global change. Data are means ± SE (n = 59). 910 

 911 

 912 

 913 

 914 



 915 

Figure S3. Relationship between the matrix of dissimilarity (Euclidean) from multifunctionality 916 

resistance to warming, wetting-drying cycles and N fertilization in global drylands. The solid 917 

lines represent the fitted linear regressions. 918 
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 922 



 923 

Figure S4. Results from a Random Forest aiming to identify the main significant (P < 0.05) 924 

microbial predictors of multifunctionality resistance to warming, wetting-drying cycles and N 925 

fertilization in global drylands. Pie chart includes the relative abundance of selected taxa driving 926 

multifunctionality resistance to global change drivers in dryland soils from across the globe.  927 
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 934 

Figure S5. (a) Results from a Random Forest aiming to identify the main significant (P < 0.05) 935 

microbial predictors of multifunctionality in global drylands. (b) Pie chart includes the relative 936 



abundance of selected taxa driving multifunctionality in global drylands. (c) Structural equation 937 

model describing the effects of multiple drivers on multifunctionality. Numbers adjacent to 938 

arrows are indicative of the effect size of the relationship. Continuous and dashed arrows 939 

indicate positive and negative relationships, respectively. This model only includes the direct 940 

effects that were statistically significant (P < 0.05; see a priori model in Fig. S1). Brackets 941 

includes information of the particular taxa related to multifunctionality resistance to global 942 

change. R2 denotes the proportion of variance explained. Significance levels of each predictor are 943 

*P < 0.05, **P < 0.01.  944 
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