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Abstract 

The immense diversity of soil bacterial communities has stymied efforts to characterize 

individual taxa and document their global distributions. We analyzed soils from 237 locations 

across six continents and found that only 2% of bacterial phylotypes (~500 phylotypes) 

consistently accounted for almost half of the soil bacterial communities worldwide. Despite the 

overwhelming diversity of bacterial communities, relatively few bacterial taxa are abundant in 

soils globally. We clustered these dominant taxa into ecological groups to build the first global 

atlas of soil bacterial taxa. Our study narrows down the immense number of bacterial taxa to a 

‘most wanted’ list that will be fruitful targets for genomic and cultivation-based efforts aimed at 

improving our understanding of soil microbes and their contributions to ecosystem functioning. 

 

One Sentence Summary: A few hundred bacterial taxa dominate soils globally, and we predict 

their ecological preferences and map their distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Main text 

Although soil bacteria have been studied for more than a century, most of the diversity of soil 

bacteria remains undescribed. This is unsurprising given that soil bacteria rank among the most 

abundant and diverse group of organisms on Earth (1-4), challenging our capacity to understand 

their specific contributions to ecosystem processes, including nutrient and carbon cycling, plant 

production, and greenhouse gas emissions (1-3). Put simply, characterizing the ecological 

attributes (environmental preferences and functional traits) of the thousands of bacterial taxa 

found in soil is unfeasible. Most soil bacteria do not match those found in pre-existing 16S rRNA 

gene databases (5), we have genomic information for relatively few of them (5-7), and the 

majority of soil bacteria have not been successfully cultivated in vitro (6-7). For these reasons, 

we lack a predictive understanding of the ecological attributes of most soil individual bacterial 

taxa, with their environmental preferences, traits, and metabolic capabilities remaining largely 

unknown.  

Previous work has shown that only a small fraction of soil bacteria is typically shared 

between any pair of unique soil samples (4,8-9). However, we also know that, as with most 

‘macrobial’ communities (10), not all bacterial taxa are equally abundant in soil. There are often 

sub-sets of soil bacterial taxa that are far more abundant than others. For example, the genus 

Bradyrhizobium has been found to be dominant in forest soils from North America (11). 

Similarly, a lineage within the class Spartobacteria was found to be highly abundant in 

undisturbed grassland soils (12). Perhaps more importantly, many individual taxa that are highly 

abundant in individual soil samples may also be abundant across distinct soil samples, even 

when those soil samples are from sites located far apart (e.g. Candidatus Udaeobacter copiosus) 

(13). Therefore, a critical and logical next step to advance our understanding of soil bacterial 

communities is to identify the dominant bacterial phylotypes that are abundant and ubiquitous 

across soils, and determine their ecological attributes.  

From the large body of literature using marker gene sequencing to characterize soil 

bacterial communities, we know which major phyla tend to be more abundant in soil (14) and we 

have a growing understanding of how various factors, including soil properties (e.g. pH) (15), 

climate (9,16), vegetation type (17) and nutrient availability (18), structure the composition of 

soil bacterial communities worldwide. What is currently missing is a detailed ecological 

understanding of common soil bacterial species, which we refer to as phylotypes (as bacterial 



species definitions can be problematic) (19). Understanding the ecological attributes of dominant 

phylotypes will increase our ability to successfully cultivate them in vitro, and allow us to build a 

more predictive understanding of how soil bacterial communities vary across space, time, and in 

response to anthropogenic changes. For example, if we could identify those dominant phylotypes 

with strong preferences for a given set of environmental conditions (e.g. low or high pH), we 

could then use this information to predict their distributions and enrich for these dominant 

phylotypes in vitro. Ultimately, a better understanding of dominant soil bacterial taxa will 

improve our ability to actively manage soil bacterial communities to promote their functional 

capabilities.   

Here we conducted a global analysis of the bacterial communities found in surface soils 

from 237 locations across six continents and eighteen countries (Fig. S1) to: (i) identify the most 

dominant (i.e. most abundant and ubiquitous) soil bacterial phylotypes worldwide; (ii) determine 

which of these dominant phylotypes tend to co-occur and share similar environmental 

preferences; (iii) map the abundances of these ecological clusters of dominant soil bacteria 

across the globe; and (iv) assess the genomic attributes that differentiate phylotypes with distinct 

environmental preferences. The soils included in this study were selected to span a wide range of 

vegetation types, edaphic characteristics, and bioclimatic regions (arid, temperate, tropical, 

continental and polar; 20).  

We first identified the most dominant bacterial phylotypes by 16S rRNA gene amplicon 

sequencing (20). Dominant phylotypes (taxa which share ≥97% sequence similarity across the 

amplified 16S rRNA gene region) include those that are highly abundant (top 10% most common 

phylotypes sorted by their % of 16S rRNA reads) (21) and ubiquitous (found in more than half of 

the 237 soil samples evaluated; 20). Not surprisingly, our global dataset comprised bacterial 

communities that were highly variable with respect to their diversity and overall composition 

(Fig. S2). For example, observed phylotype richness ranged from 774 to 2869 phylotypes per 

sample and there was a large amount of variability in the relative abundances of major phyla 

across the studied sites (Fig. S2). Also, as expected, only a small fraction of phylotypes was 

found to be shared across soil samples and most phylotypes were relatively rare (Fig. S3). Based 

on our criteria, only 2% of the bacterial phylotypes (511 out of 25224 phylotypes) were 

dominant (Fig. 1A). However, this small number of phylotypes accounted for, on average, 41% 

of 16S rRNA gene sequences across all samples (Fig. 1A), although they collectively accounted 



for more than half of the bacterial communities in some environments (e.g. forests from arid 

environments; Fig. 1B). In other words, most soil bacterial phylotypes are rare and relatively few 

are abundant, but many of these are found across a wide range of soils.  

Importantly, 85% of the dominant phylotypes identified from our dataset were also found 

to be dominant in the bacterial communities recovered from 123 global soils that were analyzed 

using a shotgun metagenomic approach (20). This cross-validation indicates that our list of 

dominant phylotypes is not biased by PCR amplification or by our choice of primers, as most of 

the identified dominant phylotypes were shared between two independent sets of soils analyzed 

using two different approaches (amplicon versus shotgun metagenomic sequencing). In addition, 

we compared the results from our sample set with those soils analyzed via amplicon sequencing 

as part of the Earth Microbiome Project (EMP, 22). The majority of the dominant phylotypes in 

the EMP dataset (80%) –identified using the same criteria explained above– were included 

within our list of dominant taxa (>97% similarity) (20). Also, the top 511 phylotypes, 

comparable to our top 511 dominant taxa, accounted for 0.5% of all bacterial phylotypes and 

41% of all 16S rRNA gene reads in the EMP dataset. Despite important methodological 

differences between the two datasets (20), this concordance between the results from EMP and 

our study reinforces our conclusion that a relatively small sub-set of bacterial phylotypes 

dominate soils across the globe.  

On average, the dominant bacterial phylotypes identified from our dataset were highly 

abundant in soils across multiple continents, ecosystem types, and bioclimatic regions (Fig. 1B). 

The only exception was soil from tropical forests, where the dominant phylotypes accounted for 

only ~20% of 16S rRNA gene sequences, which is likely a product of soils from tropical forests 

being under-represented in our database and/or tropical forest bacterial communities being very 

distinct from those found in other ecosystem types (Fig. S4). Together, our results suggest that 

soil bacterial communities, like plant communities (10), are typically dominated by a relatively 

small subset of phylotypes. As such, we focus all downstream analyses on the 511 phylotypes 

found to be the most abundant and ubiquitous in soils from across the globe.  

The identified dominant phylotypes accurately predicted overall patterns in β-diversity 

for the ‘sub-dominant’ component of the bacterial communities surveyed (98% of phylotypes; 

Figs. S2, S5 and Fig. 1C). In other words, patterns in the distribution of the dominant bacterial 

phylotypes across the globe closely mirrored those observed for the remaining 98% of bacterial 



phylotypes. The most abundant and ubiquitous of these 511 phylotypes included 

Alphaproteobacteria (Bradyrhizobium sp., Sphingomonas sp., Rhodoplanes sp., Devosia sp. and 

Kaistobacter sp.), Betaproteobacteria (Methylibium sp. and Ramlibacter sp.), Actinobacteria 

(Streptomyces sp., Salinibacterium sp. and Mycobacterium sp.), Acidobacteria (Candidatus 

Solibacter sp. and order iii1-15), and Planctomycetes (order WD2101) (see Table S1 for a 

complete list). Remarkably, less than 18% of the 511 phylotypes we identified had a match to an 

available reference genome at the >97% 16S rRNA sequence similarity level, the level 

commonly used for delineating different bacterial species (23) (Fig. 2; Table S1). Approximately 

42% of the dominant 511 phylotypes had no genome match even at the >90% 16S rRNA 

sequence similarity level, indicating that we do not have genomic information for taxa even 

within the same genus or family (Fig. 2A; Table S1). Further, only 45% of the identified 511 

dominant phylotypes are related to cultivated isolates and <30% of the phylotypes have 

representative type strains at the >97% sequence similarity level (Fig. 2B, Table S1), which 

emphasizes the limited amount of phenotypic information we have available for these dominant 

phylotypes. Not surprisingly, phylotypes closely related to previously cultivated taxa tended to 

come from a few well-studied taxonomic groups, mostly Proteobacteria and Actinobacteria, 

with only a few representatives available from other phyla (Figs. 1C and 2B; Table S1), 

highlighting the well-known taxonomic biases of many pre-existing culture collections (6).  

After identifying the dominant 511 phylotypes, we used Random Forest modeling (24) to 

identify habitat preferences for each phylotype (20). Our statistical models included 15 

environmental factors: climate (aridity index, minimum and maximum temperature, precipitation 

seasonality and mean diurnal temperature range –MDR), UV radiation, net primary productivity, 

soil abiotic properties (soil texture, pH, total C, N and P concentrations, and C:N ratio), and 

dominant ecosystem type (forests and grasslands; 20). We found that 53% (270) of the dominant 

511 phylotypes had predictable habitat preferences (models explaining >30% of the variation; 

see ref. 20 and Table S1), with soil pH, climatic factors (aridity index, maximum temperature, 

and precipitation seasonality), and plant productivity consistently being the best predictors of 

their abundances across the globe (Fig. S6). These findings are in line with previous research 

demonstrating that climatic factors and soil pH are often highly correlated with observed 

differences in overall soil bacterial community composition (4,8-9,15-16), but, additionally, we 

found a strong link between microbial community composition and plant productivity (Fig. S7). 



We were unable to identify a strong ecological preference for the remaining 241 of the 511 

phylotypes, which included representatives from a wide range of phyla and sub-phyla (Fig. S8). 

Our inability to predict the distributions of these 241 phylotypes could be related to the absence 

of key, but hard to measure, environmental predictors (e.g. soil C availability) or the fact that our 

models did not take into account specific associations between the bacteria and plants, fungi, or 

animals (e.g. pathogen/host or predator/prey interactions), which may be driving their 

distribution patterns. Alternatively, we may not have been able to identify the habitat preferences 

of these phylotypes due to low variability in their abundances across the samples (Figs. S9 and 

S10). Indeed, the relative abundance of the group including all 241 undetermined phylotypes 

showed a much lower coefficient of variation than the relative abundance of those phylotypes for 

which we could identify their habitat preferences, as explained below (Fig. S9). This result 

suggests that the undetermined phylotypes, those with no clearly identifiable habitat preferences, 

represent a ‘core’ group of dominant phylotypes that are ubiquitous across global soils with 

proportional abundances that are relatively invariant. 

We then used semi-partial correlations (Spearman) and clustering analyses (20) to 

identify groups of phylotypes with shared habitat preferences, restricting our analyses to those 

270 phylotypes with predictable distribution patterns. We found that the phylotypes group into 

five reasonably well-defined ecological clusters sharing environmental preferences for: (i) high 

pH; (ii) low pH; (iii) drylands; (iv) low plant productivity; and (v) dry-forest environments (Figs. 

2B, 3A and Fig. S11 and Table S1). These five clusters of phylotypes included 200 out of the 

270 phylotypes for which we were able to identify their habitat preferences (Table S1). Each of 

the ecological clusters identified included phylotypes from multiple phyla, suggesting that 

habitat preferences are not linked to phylogeny at coarse levels of resolution (Fig. S8). The 

remaining 70 phylotypes were classified into three minor clusters including a small cluster 

consisting of six phylotypes (high pH-forest preference; Table S1 and Fig. 11) and two clusters 

that included phylotypes with preferences including warm-forests, sites with low seasonal 

variation in precipitation, mesic environments, and soils of low phosphorus content (Table S1 

and Fig. 11). These results suggest that the dominant bacterial phylotypes can be clustered into 

predictable ecological groups that share similar habitat preferences. To cross-validate the 

ecological clusters, we used correlation network analyses (20,25) to investigate whether bacterial 

phylotypes sharing similar habitat and environmental preferences tend to co-occur (Fig. 3B). 



Indeed, our network analyses indicated that bacterial phylotypes sharing a particular habitat 

preference (e.g. low pH) tend to co-occur with other phylotypes belonging to the same cluster 

more than we would expect by chance (P < 0.001 for all clusters; Fig. 3B; Fig. S12).  

We next sought to determine if we could identify genomic attributes that delineate 

bacteria assigned to the individual ecological clusters. These analyses were restricted to the 

relatively small subset of bacterial phylotypes for which genomic data were available (>97% 16S 

rRNA sequence similarity to a reference genome). An insufficient number of representative 

unique genomes were available from phylotypes in four of the five major clusters identified (Fig. 

S13). However, we had genomic data for 10 unique genomes out of 25 phylotypes assigned to 

the ‘drylands’ cluster, including representatives of the Proteobacteria and Actinobacteria phyla 

(Fig. S13). We then identified functional genes that were over-represented in this ‘drylands’ 

cluster as compared to the genomes available for the other dominant taxa. A total of 72 genomes 

were included in this analysis, with 10 of these genomes belonging to the dryland cluster (20). 

We found that the genomes within this dryland cluster had significantly higher relative 

abundances of 18 genes (Fig. S14) compared to genomes representative of phylotypes assigned 

to other ecological clusters. Notably, Mnh/Mrp genes, which encode membrane transport 

proteins responsible for the proton-mediated efflux of monovalent cations (e.g. Na+, K+), were 

over-represented in the ‘drylands’ cluster (Fig. S14). These genes have frequently been linked to 

increased bacterial tolerance to alkaline or saline conditions, and, more generally, a greater 

capacity to tolerate external changes in the osmotic environment (26). These adaptations are 

likely to be important for bacteria living in arid soils, which are often saline, have high pH 

values, and experience prolonged periods of low moisture availability (27). Given the low 

number of reference genomes available, these findings are not conclusive and are simply a ‘proof 

of concept’. Nevertheless, our results highlight that it is possible to identify genomic attributes 

that differentiate soil bacteria with distinct environmental preferences. They also emphasize the 

importance of acquiring new genomes to further understand the ecological attributes of dominant 

soil bacterial taxa. As such, our results pave the way for leveraging genomic data to predict the 

spatial distributions of soil bacterial taxa, efforts that will be improved as the collections of 

reference genomes from these microorganisms increase in size. 

Together, our results suggest that there are predictable clusters of co-occurring dominant 

bacterial phylotypes in soils from across the globe. This finding indicates that commonly 



available environmental information could be used to build predictive maps of the global 

distributions of these bacterial clusters at a global scale. We did so for the four major ecological 

clusters (i.e., low pH, high pH, drylands and low productivity, Fig. 4; see Appendix S1 for 

details) using the prediction-oriented regression model Cubist (28) and information on 12 

environmental variables for which we could acquire globally distributed information (20). Our 

models confirm that pH, aridity levels, and net primary productivity are major drivers of the 

low/high pH, dryland, and low productivity clusters observed, respectively (Appendix S1). 

Importantly, our maps (which accounted for 36-64% of the spatial variation in these clusters, 

Fig. 4) provide estimates of the regions where we would expect the groups of dominant soil 

bacterial phylotypes to be most abundant (Fig. 4). As expected, the dryland and low productivity 

clusters were relatively abundant in dryland and low productivity regions across the globe, and 

the low and high pH clusters were particularly abundant in areas known for their low or high pH 

soils, respectively.  

This global inventory of dominant soil bacterial phylotypes represents a small subset of 

phylotypes that account for almost half of the 16S rRNA sequences recovered from soils. We 

show that we can predict the environmental preferences for over half of these dominant 

phylotypes, making it possible to predict how future environmental change will affect the spatial 

distribution of these taxa. Following Grime’s mass ratio hypothesis (10), we would expect that 

identifying the physiological attributes of these dominant taxa will be critical for improving our 

understanding of the microbial controls on some key soil processes, including those that regulate 

soil C and nutrient cycling (1-3,29). Also, given the strong links between the distribution of 

bacterial phylotypes and their functional attributes across the globe (8,12), and the observed 

associations between dominant and sub-dominant phylotypes (Fig. S5), we expect that these 

dominant bacteria will be critical drivers, or indicators, of key soil processes worldwide. We also 

found that habitat preferences were not predictable from phylum-level identity alone, given that 

all of the ecological clusters included phylotypes from multiple phyla. This suggests that 

phylotypes from diverse taxa share some phenotypic traits (e.g. osmoregulatory capabilities) or 

life history strategies (29-30) that allow them to survive under particular environmental 

conditions. By narrowing down the number of phylotypes to be targeted in future studies from 

tens of thousands to a few hundred, our study paves the way for a more predictive understanding 



of soil bacterial communities, which is critical for accurately forecasting the ecological 

consequences of ongoing global environmental change. 
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Figure 1. Abundance and composition of dominant soil bacterial phylotypes across the 

globe. Percentage of phylotypes and relative abundance of 16S rRNA genes representing the 

dominant versus the remaining bacterial phylotypes (A). Relative abundance (mean ± SE) of 

dominant phylotypes across continents and ecosystem types (B). Ecosystem type classification 

followed the Köppen climate classification and the major vegetation types found in our database. 

Grasslands include both tropical and temperate grasslands. Shrublands include polar, temperate 

and tropical shrublands. The number of samples in each category is indicated in brackets. The 

taxonomic composition of the dominant phylotypes is shown in (C). The phylotypes assigned to 

the least abundant phyla are not shown (including Armatimonadetes = 0.08%, TM7 = 0.05% and 

WS2 = 0.03%). Details on the top 511 dominant phylotypes are shown in Table S1.  

 

 

 



 

Figure 2. Phylogenetic tree including the taxonomic information on dominant soil bacterial 

phylotypes. Histogram showing the percentage 16S rRNA gene sequence similarity between the 

511 dominant phylotypes and the most closely related available reference genome for each 

phylotype (A). Phylogenetic distribution of the 511 dominant phylotypes (B). Black shading on 



the innermost and middle rings indicate, for each phylotype, whether there is a representative 

isolate and a genome match at the ≥97% 16S rRNA gene sequence similarity level. The coloring 

on the outermost ring highlights the distribution of environmental preferences for all phylotypes 

(n = 511). For the few phylotypes where taxonomic assignment did not correspond to tree 

topology, no manual corrections were made. Betaproteo. = Betaproteobacteria; Alphaproteo. = 

Alphaproteobacteria; Deltaproteo. = Deltaproteobacteria; Plancto. = Planctomycetes; Firmic. = 

Firmicutes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 3. Identified habitat preferences for dominant soil bacterial phylotypes. 

Relationships between the relative abundance of the phylotypes assigned to each ecological 

cluster and their major environmental predictors (A, statistical analyses and identity of 

phylotypes within each cluster are presented in Table S1). Network diagram with nodes 

(bacterial phylotypes) colored by each of the five major ecological clusters that were identified, 

highlighting that the phylotypes within each ecological cluster tend to co-occur more than 

expected by chance (B, statistical analyses presented in Fig. S12). 

 

 

 

 

 

 

 

 

 



 

Figure 4. A global atlas of the dominant bacteria found in soil. Predicted global distribution 

of the relative abundances of the four major ecological clusters of bacterial phylotypes sharing 

habitat preferences for high pH, low pH, drylands and low plant productivity. R2 (percentage of 

variation explained by the models) as follows: (1) High pH cluster, R2 = 0.53, P < 0.001; (2) Low 

pH cluster, R2 = 0.36, P < 0.001; (3) Drylands cluster, R2 = 0.64, P < 0.001; and (4) Low 

productivity cluster, R2 = 0.40, P < 0.001. The scale bar represents the standardized abundance 

(z-score) of each ecological cluster. An independent cross-validation for these maps is available 

in ref. 20.  
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Material and Methods 

Field survey and soil sample collection. Soils were collected from 237 locations across 

eighteen countries and six continents (Fig. S1). These sites include a wide range of ecosystem 

types (forests, grasslands, and shrublands) and climatic regions (arid, temperate, tropical, 



continental, and polar ecosystems). Mean annual precipitation and temperature in these locations 

ranged from 67 to 3085mm and -11.4º to 26.5ºC, respectively. Soil sample collection took place 

between 2003 and 2015. The coordinates of each site were recorded in situ with a portable GPS, 

and the ecosystem type (grassland, shrubland, or forest) of each location recorded. At each site, a 

composite soil sample (top ~7.5cm depth) was collected under the most common vegetation. 

After field collection, each soil sample was separated into two sub-samples - one sub-sample was 

immediately frozen at -20 ºC for molecular analyses while the other sub-sample was air-dried for 

chemical analyses.  

PCR-based 16S rRNA gene analyses. Soil DNA was extracted using the Powersoil® DNA 

Isolation Kit (MoBio Laboratories, Carlsbad, CA, USA) according to the manufacturer’s 

instructions. The extracted DNA samples were frozen and shipped to the Next Generation 

Genome Sequencing Facility of the University of Western Sydney (Australia), where a portion of 

the bacterial 16S rRNA gene (V3-V4 region) was sequenced using the Illumina MiSeq platform 

and the 341F/805R primer set. Bioinformatic processing was performed using a combination of 

QIIME (31), USEARCH (32) and UPARSE (33). Raw data were processed by trimming 20 

nucleotides off the beginning and end of each sequence, then merged using the usearch7 

command with a fastq_maxee of 1. Sequences were next dereplicated, and phylotypes were 

identified at the ≥97% identity level using UCLUST (32). Taxonomy was assigned using the 

Ribosomal Database Project classifier (34) and the Greengenes 13_8 database (35). The resulting 

phylotype tables were rarefied to 10000 sequences per sample. We further removed phylotypes 

that were represented by only a single read across all samples. In addition, we removed any 

archaeal, chloroplasts and mitochondria phylotypes, which together accounted for 0.8% of all 

phylotypes (204 of 25,424 phylotypes).  

Soil and site characteristics. To avoid biases associated with having multiple laboratories 

analyzing soils from different sites, and to facilitate the comparison of results between them, all 

dried soil samples were shipped to the Universidad Rey Juan Carlos (Spain) for laboratory 

analyses. For all soil samples, we measured pH, texture, total organic carbon (soil C), total 

nitrogen (soil N) and total phosphorus (soil P) concentrations using standard laboratory methods. 

pH was measured in all the soil samples with a pH meter, in a 1: 2.5 mass: volume soil and water 

suspension. Texture (% of fine fractions: clay + silt) was determined according to ref. 36. The 

concentration of soil total organic carbon (C) was determined using a wet chemistry method 



described in ref. 37. Soil total N was measured with a CN analyzer (Leco CHN628 Series, LECO 

Corporation, St Joseph, MI, USA) and total phosphorus (P) was measured using a SKALAR 

San++ Analyzer (Skalar, Breda, The Netherlands) after digestion with sulphuric acid. The 

collected soils represent a wide range in soil properties. In brief, soil pH ranged from 4.04 to 

9.21, soil C from 0.15 to 34.77%, soil N from to 0.02 to 1.57%, soil P from 75.10 to 4111.04 mg 

P Kg-1 soil, C:N ratio from 2.12 to 67.52 and fine texture fraction (% clay+silt) from 1.40 to 

92.00%.  

We obtained information on maximum and minimum temperature, precipitation 

seasonality, and mean diurnal temperature range (MDR) for all sampling locations from the 

Worldclim database (www.worldclim.org), which has a 1 km resolution (38). In addition, for 

each site we estimated the Aridity Index (Precipitation/evapotranspiration) from the Global 

Potential Evapotranspiration database (39), which is based on interpolations provided by 

WorldClim (38). We used the Aridity Index rather than mean annual precipitation because 

Aridity Index includes both mean annual precipitation and potential evapotranspiration, and is 

therefore a better measure of the long-term water availability at each site. We obtained 

information on annual ultraviolet index (UV index) from the NASA's Aura satellite 

(https://neo.sci.gsfc.nasa.gov) (40), which has a 50 km resolution. The UV index is a measure of 

the intensity of UV radiation ranging from 0 (minimal UV exposure risk) to 16 (extreme risk).  

We used the Normalized Difference Vegetation Index (NDVI) as our proxy for net plant 

primary productivity (41-42). This index provides a global measure of the "greenness" of 

vegetation across Earth's landscapes for a given composite period, and thus acts as a proxy of 

photosynthetic activity and large-scale vegetation distribution (41-42). NDVI data were obtained 

from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra 

satellites (http://neo.sci.gsfc.nasa.gov/) as described in ref. 42. We calculated the monthly 

average value for this variable between the 2003-2015 period (~10km resolution), when all soil 

sampling was conducted.  

Identification of the dominant bacterial phylotypes. We identified the most common and 

ubiquitous phylotypes across our global dataset following two criteria. First, we identified the 

top 10% most abundant phylotypes based on total number of reads across all samples (as 

described in ref. 21). Abundance is widely accepted as a metric of how common or rare species 

(here ‘phylotypes’) are in their environment, therefore is a useful metric to identify dominant 



phylotypes (21). Second, we only kept those phylotypes that were also found in more than half of 

the samples (i.e., > 55% of samples). These phylotypes were considered to be widely present 

across soil samples and therefore to be reasonably ubiquitous.  

For the isolate and reference strain data, we matched our amplicon sequences to 

appropriate databases maintained by RDP and counted hits of 97% similarity as matches. For the 

reference genomes, we matched our amplicon sequences to the Integrated Microbial Genomes & 

Microbiomes (IMG/M) database (https://img.jgi.doe.gov). We took into consideration those new 

genomes from ref. 43. 

Dominant taxa cross-validation #1: shotgun sequencing data. We validated the ubiquity of 

identified phylotypes with an independent previously published shotgun metagenomic dataset 

(18) that included a total of 123 soils collected from a broad range of locations to confirm that 

the same phylotypes are also dominant when community composition is assessed using a PCR-

free approach (44). Using Metaxa2 (45), we extracted 16S rRNA gene sequences from these 

shotgun datasets, then matched the 16S rRNA gene sequences to the Greengenes database (35) 

using the usearch7 command -usearch_global at ≥97% identity. We used these matches to obtain 

longer sequences that would uniformly contain the specific hyper-variable region covered by the 

primer pair 341F/805R. We then used the same usearch command to compare the representative 

sequences of the dominant phylotypes to the Greengenes reference database. We counted 

sequences as present in both shotgun and amplicon datasets if they had at least 97% similarity to 

each other. Note that, unlike 16S rRNA amplicon sequencing, shotgun metagenomic sequencing 

can include all DNA present in a given sample, not just 16S rRNA genes from bacteria (with 16S 

rRNA genes representing ~0.04% of metagenomic reads, on average). As we were only able to 

recover a relatively small number of 16S rRNA genes in each shotgun metagenome, we assumed 

that the bacterial 16S rRNA genes identified using this approach represent those phylotypes that 

are highly abundant in soil.  

Dominant taxa cross-validation #2: the Earth Microbiome Project (EMP). We used data 

from the EMP (22) to further validate our results. Note that any comparisons between the EMP 

dataset and our dataset need to be considered carefully given methodological differences in the 

primer sets used (here 341F/805R vs. 515F/806R for the EMP), read lengths (here 

400bp/sequence vs. <150bp, but mostly <100bp, for the EMP) and lack of standardization in the 

EMP soil sampling protocols and metadata collection. We selected all soil samples from the 



EMP that were comparable with those in our dataset (soil samples from <10cm depth). We used 

the subset of 2,004 EMP samples (100bp) from soil (<10cm depth), rarefying this dataset to 

10,000 reads/sample (as done in our original analyses). Using the same approach explained 

above, we identified the dominant taxa across the 2,004 EMP samples, i.e. the top 10% most 

common phylotypes found in more than half (>55%) of the soil samples. After conducting these 

analyses we found that 97 phylotypes were dominant in the subset of the EMP data used here 

(vs. our top dominant 511 phylotypes). The majority of the dominant phylotypes in the EMP data 

(80%) were included within our dominant taxa (>97% similarity). We also repeated the analyses 

included in Fig. 1A of our manuscript and found, that for the EMP data used, the top 511 

dominant phylotypes accounted for ~41% of all reads, but they only represented 0.5% of all the 

bacterial phylotypes (>35% ubiquity). Therefore, we found very similar results to those reported 

from our dataset (511 phylotypes accounting for 41% of all reads). Considering that our study 

used different methods and given the aforementioned limitations of the EMP dataset, we believe 

that the similarity between our results and the results obtained by re-analyzing the EMP dataset 

are compelling. Importantly, in both datasets we find that a few hundred taxa account for an 

enormous proportion of the soil bacterial communities found across the globe.  

Identifying groups of dominant phylotypes with shared habitat preferences. We used 

Random Forest analysis (24) as explained in ref. 42 to identify the environmental preferences of 

each of the dominant bacterial phylotypes across the globe. We considered that we were able to 

identify the environmental preferences for a given phylotype when the Random Forest model 

explained >30% of variation in the distribution of this phylotype, which is considered to be a 

high level of variation explained in the context of large scale studies (46). Our models included 

15 environmental predictors: climate variables (Aridity Index, minimum and maximum 

temperature, precipitation seasonality and mean diurnal temperature range –MDR), UV 

radiation, net primary productivity (NDVI index), soil properties (texture [% of clay + silt], soil 

pH, total C, N and P concentrations and C: N ratio) and dominant ecosystem types in our dataset 

(forest and grasslands). Ecosystem types were coded as categorical variables with two levels: 1 

(a given ecosystem type) and 0 (remaining ecosystem types). This approach allowed us to 

compare the effect of a particular ecosystem type on the relative abundance of each phylotype 

compared with the average of the remaining ecosystem types. Note that minority ecosystem 

types in this dataset (i.e., shrublands) were selected as our baseline condition (i.e. procedural 



control), and thus were not explicitly included in our model. These analyses were conducted 

using the rfPermute package (47). 

We next clustered the phylotypes with known environmental preferences (% variation 

explained from Random Forest > 30%) into different ecological groups. To do this, we 

conducted semi-partial correlations (Spearman) using the ppcor package (48) to further identify 

the unique contribution of each predictor in explaining the distribution of a given phylotype. 

Unlike regular correlations, semi-partial correlations allow us to identify the variance from a 

given response variable (here dominant bacterial phylotypes) that is uniquely predictable from a 

given predictor, controlling for all other predictors simultaneously (49). Information on semi-

partial correlations (significant P < 0.05 correlation coefficients) was then used to cluster our 

dominant bacterial phylotypes in different ecological clusters with hierarchical cluster analysis 

(as implemented in the “hclust” function in the R package “stats”). We used a heatmap 

(heatmap.2 function in the R package gplots) to visualize our ecological clusters (Fig. S11). We 

then computed the relative abundance of each cluster per sample by averaging the standardized 

(z-score) relative abundance of the phylotypes that belong to each ecological cluster. Using this 

approach, each phylotype contributed equally to the final relative abundance of each ecological 

cluster.  

Phylogenetic analyses. We built a phylogenetic tree for the 511 dominant phylotypes to 

visualize the extent to which environmental preferences, reference isolates, and reference 

genomes were phylogenetically clustered. To obtain a more robust phylogeny, we first identified 

the nearest neighbor for each sequence at the 98% cutoff with the “search and classify” function 

with the Silva Incremental Aligner (SINA v1.2.11) (50). We then aligned those representative 

sequences and the remaining original sequences (those without a 98% match) using SINA with 

default parameters (50). After aligning, gaps were trimmed with trimAl (threshold = 0.2) (51). 

We then built a tree with FastTree using a GTR model of nucleotide evolution and visualized the 

tree with GraPhlAn (52).  

Network analyses. We used correlation network analyses to evaluate whether dominant 

bacterial phylotypes within a particular ecological cluster were found to co-occur more often 

than expected by chance. To build the co-occurrence network, we first calculated pairwise 

Spearman’s rank correlations (ρ) between all dominant bacterial phylotypes. We focused 

exclusively on positive correlations, as they provide information on microbial phylotypes that 



may respond similarly to environmental conditions. We considered a co-occurrence to be robust 

if the Spearman’s correlation coefficient (ρ) was > 0.65 and P < 0.00001 (53). The network we 

recovered included 270 nodes with 3646 edges. This network was visualized with the interactive 

platform gephi (54). We then investigated whether microbial phylotypes tend to co-occur with 

others in the same ecological cluster (as identified with the Random Forest and clustering 

analyses). To do this, we generated 1,000 random graphs with the same number of nodes and 

edges as the derived network, under the Erdős–Rényi model. This allowed us to estimate null 

distributions (in a method similar to that described in ref. 55) for the likelihood of co-occurrences 

across versus within ecological clusters, providing a metric for the robustness of each ecological 

cluster. We conducted these analyses using the igraph package (v1.0.1) and custom R functions 

(available from https://github.com/amoliverio/rnetworks).   

Mapping of ecological groups across the globe. We used the prediction-oriented regression 

model Cubist (28) to predict the distribution of the four major ecological clusters (i.e., low pH, 

high pH, drylands and low productivity clusters) across the globe. The Cubist algorithm uses a 

regression tree analysis to generate a set of hierarchical rules using information on environmental 

covariates (56), which are later used for spatial prediction (56). Covariates in our models include 

12 out of the 15 environmental predictors evaluated: soil properties (soil C, soil pH and texture), 

climate (MDR, Aridity Index, maximum and minimum temperature, precipitation seasonality), 

net primary productivity, UV radiation and major vegetation types (forests and grasslands). We 

did not include soil total N, P and C:N ratio in these analyses because (1) they were not selected 

as major drivers of dominant phylotypes (Fig. S6) and (2) high-resolution information on these 

variables is not available at the global scale. Global predictions on the distribution of major 

clusters were done on a 25km resolution grid. Global information on soil properties for this grid 

was obtained using the ISRIC (global gridded soil information) Soil Grids 

(https://soilgrids.org/#!/?layer=geonode:taxnwrb_250m). Similarly, global information on the 

major vegetation types in this study (grasslands and forests) was obtained using the 

Globcover2009 map from the European Space Agency 

(http://due.esrin.esa.int/page_globcover.php) (57). Global information on climate, UV radiation 

and net primary productivity were obtained from the WorldClim database (www.worldclim.org) 

(38) and NASA satellites (https://neo.sci.gsfc.nasa.gov), as explained above. We used the 

package Cubist in R to conduct these analyses (56).  



Cross-validation of maps using data from the Earth Microbiome Project (EMP). We cross-

validated our maps using the selected soil samples from the EMP dataset used above (22). We 

focused this cross-validation on the top two clusters identified in this study (Low and High pH) 

which included the largest number of phylotypes (Fig. 3). The EMP high and low pH clusters 

included the dominant phylotypes from the EMP (as defined in our study), which were highly 

related (>97% similarity) to the phylotypes within the high pH and low pH cluster from our 

study. The relative abundance of the High and Low pH cluster in the EMP dataset was calculated 

as the average standardized abundance (z-score) of EMP phylotypes  assigned to these two 

ecological clusters, as explained for our dataset above. Then, using the spatial information 

(latitude and longitude) for the selected 2004 soil samples from the EMP, and the information 

derived from our maps in Fig. 4, we extracted the predicted abundances of the high and low pH 

clusters for these selected EMP locations. Finally, we correlated the relative abundance of these 

two High and Low pH clusters based on our map predictions with that from the same clusters 

calculated for the EMP. We found strong positive and significant correlations between 

information based on our maps and that from the EMP data: High pH cluster Pearson´s r = 0.41 

(P < 0.001) and Low pH cluster Pearson´s r = 0.32 (P < 0.001). This concordance between our 

predictions and independent results obtained from the EMP data is compelling given the local 

scale variation in soil properties and the fact that our data and the EMP data were independently 

generated using different methods (see above). Therefore, these results strongly support the 

validity of our maps as representations of the distribution of ecological clusters of dominant taxa 

across the globe. 

Identifying genomic attributes within ecological groups. We next identified the genomic 

attributes within ecological groups – in particular within the drylands cluster, as there were a 

sufficient number of unique reference genomes for phylotypes included in this cluster (Fig. S13). 

To do this, we obtained information on ~20000 genes characterizing the genomic attributes for 

all unique genomes in our dataset (Table S1). We obtained this information from the Kyoto 

Encyclopedia of Genes and Genomes database (www.genome.jp/kegg/) using the Integrated 

Microbial Genomes & Microbiomes (IMG/M) system (https://img.jgi.doe.gov). We only 

included in our analyses those genomes that matched >97% a reference genome and were over 

~90% complete. A total of 72 genomes were included in this analysis, with 10 of these genomes 

belonging to the dryland cluster. We further filtered our gene database to maintain those genes 



that had >5 gene counts across all genomes. Finally, we used Random Forest analyses (24) as 

described in ref. 58 to identify the main genes characterizing genomes within the dryland clusters 

versus those genomes representing phylotypes assigned to other clusters. In this respect, our 

response variable in this analysis is a categorical variable including “drylands” and “others” and 

our predictor variables are the genomic attributes.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix S1.  

Extended results regarding the mapping of ecological clusters. According to the results from 

the Random Forest analyses and semi-partial correlations, the Cubist model found the following 

variables to be the most important predictors of the following ecological clusters (values inside 

the parenthesis indicate the model usage of those environmental covariates for mapping): (1) 

High pH: pH (100%), net primary productivity (60%), maximum temperature (30%), MDR 



(38%), UV radiation (32%), precipitation seasonality (30%) and minimum temperature (30%). 

(2) Low pH: pH (100%), precipitation seasonality (58%), minimum temperature (22%), MDR 

(72%), Aridity Index (41%), UV radiation (37%), net primary productivity (35%), maximum 

temperature (25%) and soil C (8%). (3) Drylands: Aridity Index (100%), precipitation 

seasonality (25%), UV radiation (100%), pH (96%), forests (96%), clay+silt (59%), C (35%), net 

primary productivity (29%) and MDR (25%). (4) Low productivity: net primary productivity 

(100%), soil C (100%), Aridity Index (63%), pH (45%), precipitation seasonality (45%), 

maximum temperature (35%), minimum temperature (35%), MDR (35%) and clay+silt (20%).  

 

 

 

 

 

 

 

 

 

Figure S1. Locations of the 237 soil sampling sites included in this study. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 



 

Figure S2. Richness and composition of the bacterial communities across the 237 soil samples 

included in this study. (A) Distribution of per-sample bacterial richness across the globe at a 

rarefied sequencing depth of 10,000 16S rRNA gene reads per sample. (B) Relative abundances 

(mean ± maximum/minimum values) of major groups of bacteria for the entire bacterial 

community and for the subset identified as dominant (2% of bacterial phylotypes).  



 

Figure S3. Histograms reporting the distributions for ubiquity (A) and the relative abundances of 

25224 taxa (B) in the 237 soil samples from across the globe.  

 



 

Figure S4. NMDS ordination summarizing the dissimilarity in community composition of 

bacteria across the globe for different continents (A) and ecosystem types (B). Grasslands 

include both tropical and temperate grasslands. Shrublands include polar, temperate and tropical 

shrublands.  

 



 

Figure S5. Relationship between beta diversity (community dissimilarity) based on Bray-Curtis 

distance for the dominant (511 phylotypes) and the remaining 24713 bacterial phylotypes. 

Correlation was done using the Mantel test.  

 

 

 

 

 

 

 



 

Figure S6. Major predictors of the distribution of dominant bacterial taxa across the globe. 

Averaged importance of environmental factors (across 270 Random Forest models) in predicting 

the relative abundance of dominant bacterial taxa (A). Number of cases (out of 270 Random 

Forest models) for which a particular environmental factor is the best predictor for the dominant 

bacterial taxa (B). MINT = minimum temperature; MAXT = maximum temperature; MDR = 

Mean diurnal temperature range. Primary productivity = net primary productivity. 

 

 

 

 

 

 

 

 

 

 



 

Figure S7. Major predictors of the distribution of bacterial communities across the globe. Panels 

(A) and (B) include the importance of environmental factors in predicting the relative abundance 

of bacterial community composition (two axes from a NMDS summarizing information on the 

overall community composition of bacteria at the phylotype level). MINT = minimum 

temperature; MAXT = maximum temperature; MDR = Mean diurnal temperature range. Primary 

productivity = net plant primary productivity. Significant levels are: **P < 0.01, *P < 0.05 and 

°P < 0.10.  

 

 

 

 

 

 

 

 

 

 



 

Figure S8. Taxonomic composition (% of phylotypes (OTUs) within each cluster) for five well-

defined ecological clusters of bacterial phylotypes sharing habitat preferences and also for those 

phylotypes for which we were not able to identify their niche model (undetermined phylotypes). 

The total number of phylotypes per cluster is indicated in parentheses.  

 

 

 

 

 

 

 



 

Figure S9. Coefficients of variation in the relative abundances of dominant bacterial phylotypes 

assigned to each of the five major ecological clusters and those phylotypes that fell within an 

‘undetermined’ group (those dominant bacterial phylotypes with no identifiable habitat or 

environmental preferences). 

 

 

 

 

 



 

Figure S10. Sum of the relative abundances (per sample) of taxa with defined and undefined 

habitat preferences for the 511 dominant bacterial phylotypes. SD = standard deviation.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S11. Heatmap including coefficients of correlation from semi-partial correlations 

between the relative abundance of each bacterial taxon (out of 270 phylotypes) with multiple 

environmental predictors. Data were sorted using the ecological cluster information provided in 

Table S1. MINT = minimum temperature; MAXT = maximum temperature; MDR = Mean 

diurnal temperature range. NPP = net primary productivity. PSEA = Precipitation seasonality. 

 



 

Figure S12. Distributions of cluster environmental assembly across observed data and null 

models (dashed line). For each major cluster, including high pH, low pH cluster, low 

productivity, drylands and dry-forest a histogram displays the expected distribution of expected 

number of edges between taxa that share an environmental cluster based on 1,000 random graphs 

under the Erdős–Rényi model if there were no structuring of co-occurrence patterns by 

environmental cluster (e.g. the null model). The dashed line indicates the observed number of 

edges between taxa that share an environmental cluster. For all environmental clusters, the P-

value of expected versus observed is less than 0.001. 



 

 

Figure S13. Percentage of genomes within each cluster for five well-defined ecological clusters 

of bacterial phylotypes with shared habitat preferences. The total number of phyloypes for which 

representative genomic data are available per cluster are indicated in brackets. 

 

 

 

 

 

 

 

 

 



 

Figure S14. Gene count (mean ± 1 SE) for selected genes from Random Forest (RF) analyses of 

those genomes matching phylotypes in the drylands cluster versus those genomes representing 

phylotypes assigned to other clusters. RF Importance = Increase in % mean square error. Only 

predictors from RF with a P < 0.01 are selected for this analyses.  

 

 

 

 

 



Table S1. List of identified dominant bacterial phylotypes from soils across the globe. This list 

contains information on the taxonomic identity of each phylotype, the ecological cluster it was 

assigned to, and the most closely related reference genome, cultivated strain and isolate. 

 

Table S1 is available online as a Separate .XLS file under the Supporting Materials for this 

article. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


