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Objective

Data Science. Analyze and extract information for decision-making from large-scale
and high-dimensional unstructured data.

1 Extand convolutional neural networks to graph-structured data.
2 Reproduce the breakthrough of ConvNets beyond Euclidean data!

Challenge: Efficiently formulate convolution and down-sampling on graphs.
Contribution: Generalization to graphs with same computational complexity.

Convolutional Neural Networks

ConvNets are extremely efficient at leveraging statistical properties of data, in particular
stationarity and compositionality through local statistics.

Ingredients, well defined and efficient on Euclidean grids

1 Convolution → translate filter, fast Fourier transform (FFT)
2 Down-sampling → pick one pixel out of n

3 Non-linearity
4 Pooling

Non-Euclidean Data Structured with Graphs

Modeling versatility: graphs model heterogeneous pairwise relationships.

Graph-structured data

• Social networks: Facebook, Twitter.
• Biological networks: genes, molecules, brain connectivity.
• Infrastructure networks: energy, transportation, Internet, telephony.

Social network Brain structure Telecommunication

Constructed graphs

• Graph between samples, useful for semi-supervised learning.
• Graph between features, useful to reduce computational complexity.

Alternative approach:
1 Embed nodes in an Euclidean space.
2 Use that embedding as features.

Classification
Fully connected 

layers

Feature extraction: feature maps
Convolutional layers

Input graph signals
e.g. user data on

social network

Output signals
e.g. labels / 

classes

Graph signal filtering
1. Convolution

2. Non-linear activation

Graph coarsening
1. Sub-sampling

2. Pooling
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Spectral Graph Theory

Undirected and connected graph G = (V , E ,W )

• V : set of |V| = n vertices.
• E : set of edges.
• W ∈ Rn×n: weighted adjacency matrix.
• Dii = ∑

jWij: diagonal degree matrix.

Graph Laplacian
• Combinatorial: L = D −W ∈ Rn×n

• Normalized: L = In −D−1/2WD−1/2

L is symmetric and positive semidefinite → L = UΛUT (eigendecomposition)
• Graph Fourier basis U = [u0, . . . , un−1] ∈ Rn×n

• Graph “frequencies” Λ = diag(λ1, . . . , λn) ∈ Rn×n

Graph Fourier Transform
1 Graph signal x : V → R seen as x ∈ Rn.
2 Spectral representation x̂ = FG{x} = UTx ∈ Rn.
3 Inverse: x = Ux̂ = UUTx = x.

Graph Convolution
Convolution theorem:

x ∗G g = U
(
UTg � UTx

)
= U

(
ĝ � UTx

)
Conveniently written as:

x ∗G g = U diag (ĝ(λ1), . . . , ĝ(λn))UTx = Uĝ(Λ)UTx = ĝ(L)x

Graph Coarsening and Pooling

1 Coarsening (sub-sampling) with balanced cut models, using efficient greedy
approximations (Graclus, Metis).

2 Parallel pooling (as 1D pooling) with coarsened graphs arranged as binary tree.

Learning Fast Localized Spectral Filters

Spectral filtering of graph signals: y = ĝθ(L)x = Uĝθ(Λ)UTx

Non-parametric filter ĝθ(Λ) = diag(θ), θ ∈ Rn

Non-localized Learning complexity in O(n) Computations & memory in O(n2)

Polynomial parametrization ĝθ(Λ) =
K−1∑
k=0

θkΛk, θ ∈ RK

• Value at j of gθ centered at i: (ĝθ(L)δi)j = (ĝθ(L))i,j = ∑
k θk(Lk)i,j

• dG(i, j) > K implies (LK)i,j = 0
K-localized Learning complexity in O(K) Computational complexity in O(n2)

Figure: Localization on graph with (ĝθ(L)δi)j = (ĝθ(L))i,j.

Recursive Formulation for Fast Filtering ĝθ(Λ) =
K−1∑
k=0

θkTk(Λ̃), Λ̃ = 2Λ/λn−In

• Chebyshev polynomials: Tk(x) = 2xTk−1(x)− Tk−2(x) with T0 = 1 and T1 = x

• Filtering: y = ĝθ(L)x = ∑K−1
k=0 θkTk(L̃)x

• Recurrence: y = ĝθ(L)x = [x̄0, . . . , x̄K−1]θ,
x̄k = Tk(L̃)x = 2L̃x̄k−1 − x̄k−2 with x̄0 = x and x̄1 = L̃x

K-localized Learning complexity in O(K) Computational complexity in O(K|E|)

Learning Filters ys,j =
Fin∑
i=1
ĝθi,j(L)xs,i ∈ Rn

• xs,i: feature map i of sample s, θi,j: Fin × Fout ×K trainable parameters
• Gradients for backprop: ∂E

∂θi,j
= ∑S

s=1[x̄s,i,0, . . . , x̄s,i,K−1]T ∂E
∂ys,j

, ∂E
∂xs,i

= ∑Fout
j=1 gθi,j(L) ∂E∂ys,j

Overall cost of O(K|E|FinFoutS) operations

Results: Sanity Check on MNIST

1 Comparable to classical ConvNets and better than other parametrizations!
2 Isotropic filters → rotation invariance.

Model Architecture Accuracy
Classical CNN C32-P4-C64-P4-FC512 99.33
Proposed graph CNN GC32-P4-GC64-P4-FC512 99.14

Table: Comparison to classical ConvNets on MNIST (grid graph).
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Accuracy
Architecture Non-Param Spline Chebyshev
GC10 95.75 97.26 97.48
GC32-P4-GC64-P4-FC512 96.28 97.15 99.14

Table: Comparison between spectral filters, K = 25.
500 1000 1500 2000

step

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

tr
a
in

in
g
 l
o
ss

Chebyshev

Non-Param

Spline

Results: Documents Classification on 20NEWS

1 Structuring documents as bag-of-words on vocabulary graph.
2 Make graph ConvNets practical!
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Model Accuracy
Linear SVM 65.90
Multinomial Naive Bayes 68.51
Softmax 66.28
FC2500 64.64
FC2500-FC500 65.76
GC32 68.26 2000 4000 6000 8000 10000 12000
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